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PREFACE 

This book was initially conceived as a revision of Linear Network Analysis 
by Sundaram Seshu and Norman Balabanian in the summer of 1965. 
Before the work of revision had actually started, however, Seshu died 
tragically in an automobile accident. Since then the conceived revision 
evolved and was modified to such a great extent that it took on the charac-
ter of a new book and is being presented as such. We (especially Norman 
Balabanian) wish, nevertheless, to acknowledge a debt to Seshu for his 
direct and indirect contributions to this book. 

The set of notes from which this book has grown has been used in a 
beginning graduate course at Syracuse University and at the Berkeley 
campus of the University of California. Its level would also permit the use 
of selected parts of the book in a senior course. 

In the study of electrical systems it is sometimes appropriate to deal 
with the internal structure and composition of the system. In such cases 
topology becomes an important tool in the analysis. At other times only 
the external characteristics are of interest. Then " systems " considerations 
come into play. In this book we are concerned with both internal composi
tion and system, or port, characteristics. 

The mathematical tools of most importance are matrix analysis, linear 
graphs, functions of a complex variable, and Laplace transforms. The 
first two are developed within the text , whereas the last two are treated 
in appendices. Also treated in an appendix, to undergird the use of impulse 
functions in Chapter 5, is the subject of generalized functions. Each of 
the appendices constitutes a relatively detailed and careful development 
of the subject treated. 

In this book we have attempted a careful development of the fundamen
tals of network theory. Frequency and time response are considered, as are 
analysis and synthesis. Active and nonreciprocal components (such as 
controlled sources, gyrators, and negative converters) are treated side-
by-side with passive, reciprocal components. Although most of the book 
is limited to linear, time-invariant networks, there is an extensive chapter 
concerned with time-varying and nonlinear networks. 

v 
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Matrix analysis is not treated all in one place but some of it is introduced 
at the time it is required. Thus introductory considerations are discussed 
in Chapter 1 but functions of a matrix are introduced in Chapter 4 in 
which a solution of the vector state equation is sought. Similarly, equi
valence, canonic forms of a matrix, and quadratic forms are discussed in 
Chapter 7, preparatory to the development of analytic properties of net
work functions. 

The analysis of networks starts in Chapter 2 with a precise formulation 
of the fundamental relationships of Kirchhoff, developed through the 
application of graph theory. The classical methods of loop, node, node-
pair, and mixed-variable equations are presented on a topological base. 

In Chapter 3 the port description and the terminal description of 
multiterminal networks are discussed. The usual two-port parameters are 
introduced, but also discussed are multiport networks. The indefinite 
admittance and indefinite impedance matrices and their properties make 
their appearance here. The chapter ends with a discussion of formulas 
for the calculation of network functions by topological concepts. 

The state formulation of network equations is introduced in Chapter 4. 
Procedures for writing the state equations for passive and active and 
reciprocal and nonreciprocal networks include an approach that requires 
calculation of multiport parameters of only a resistive network (which 
may be active and nonreciprocal). An extensive discussion of the time-
domain solution of the vector state equation is provided. 

Chapter 5 deals with integral methods of solution, which include the 
convolution integral and superposition integrals. Numerical methods of 
evaluating the transition matrix, as well as the problem of errors in 
numerical solutions, are discussed. 

Chapters 6 and 7 provide a transition from analysis to synthesis. The 
sufficiency of the real part, magnitude, or angle as specifications of a 
network function are taken up and procedures for determining a function 
from any of its parts are developed. These include algebraic methods as 
well as integral relationships given by the Bode formulas. Integral 
formulas relating the real and imaginary parts of a network function to 
the impulse or step response are also developed. For passive networks the 
energy functions provide a basis for establishing analytic properties of 
network functions. Positive real functions are introduced and the proper
ties of reactance functions and RC impedance and admittance functions 
are derived from them in depth. Synthesis procedures discussed for these 
and other network functions include the Darlington procedure and active 
RC synthesis techniques. 

Chapter 8 presents a thorough treatment of scattering parameters and 
the description of multiport networks by scattering matrices. Both real 
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and complex normalization are treated, the latter including single-
frequency and frequency-independent normalization. Reflection and 
transmission properties of multiport networks, both active and passive, 
reciprocal and non-reciprocal, are developed in terms of scattering 
parameters. Applications to filter design and negative resistance amplifiers 
are discussed. 

Concepts of feedback and stability are discussed in Chapter 9. Here the 
signal flow-graph is introduced as a tool. The Routh-Hurwitz, Liénard-
Chipart, and Nyquist criteria are presented. 

The final chapter is devoted to time-varying and nonlinear networks. 
Emphasis is on general properties of both types of network as developed 
through their state equations. Questions of existence and uniqueness of 
solutions are discussed, as are numerical methods for obtaining a solution. 
Attention is also devoted to Liapunov stability theory. 

A rich variety of problems has been presented at the end of each chapter. 
There is a total of 460, some of which are routine applications of results 
derived in the text. Many, however, require considerable extension of 
the text material or proof of collateral results which, but for the lack of 
space, could easily have been included in the text. In a number of the 
chapters a specific class of problems has been included. Each of these 
problems, denoted by an asterisk, requires the preparation of a computer 
program for some specific problem treated in the text. Even though writing 
computer programs has not been covered and only a minimal discussion 
of numerical procedures is included, we feel that readers of this book may 
have sufficient background to permit completion of those problems. 

A bibliography is presented which serves the purpose of listing some 
authors to whom we are indebted for some of our ideas. Furthermore, 
it provides additional references which may be consulted for specific 
topics. 

We have benefited from the comments and criticisms of many colleagues 
and students who suggested improvements for which we express our 
thanks. 

Syracuse, New York 
November, 1968 

N. BALABANIAN 
T. A. B l C K A R T 
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ELECTRICAL NETWORK THEORY 





. 1 . 

FUNDAMENTAL CONCEPTS 

1.1 I N T R O D U C T I O N 

Electric network theory, like many branches of science, attempts to 
describe the phenomena that occur in a portion of the physical world by 
setting up a mathematical model. This model, of course, is based on ob
servations in the physical world, but it also utilizes other mathematical 
models that have stood the test of time so well that they have come to 
be regarded as physical reality themselves. As an example, the picture 
of electrons flowing in conductors and thus constituting an electric cur
rent is so vivid that we lose sight of the fact that this is just a theoretical 
model of a portion of the physical world. 

The purpose of a model is to permit us to understand natural phe
nomena; but, more than this, we expect that the logical consequences to 
which we are led will enable us to predict the behavior of the model 
under conditions we establish. If we can duplicate in the physical world 
the conditions that prevail in the model, our predictions can be experi
mentally checked. If our predictions are verified, we gain confidence that 
the model is a good one. If there is a difference between the predicted 
and experimental values that cannot be ascribed to experimental error, 
and we are reasonably sure that the experimental analogue of the theo
retical model duplicates the conditions of the model, we must conclude 
that the model is not "adequate" for the purpose of understanding the 
physical world and must be overhauled.* 

* An example of such an overhaul occurred after the celebrated Michelson-Morley 
experiment, where calculations based on Newtonian mechanics did not agree with 
experimental results. The revised model is relativistic mechanics. 

1 
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In the case of electric network theory, the model has had great success 
in predicting experimental results. As a matter of fact, the model has 
become so real that it is difficult for students to distinguish between the 
model and the physical world. 

The first step in establishing a model is to make detailed observa
tions of the physical world. Experiments are performed in an attempt to 
establish universal relationships among the measurable quantities. From 
these experiments general conclusions are drawn concerning the behavior 
of the quantities involved. These conclusions are regarded as "laws," 
and are usually stated in terms of the variables of the mathematical 
model. 

Needless to say, we shall not be concerned with this step in the process. 
The model has by now been well established. We shall, instead, intro
duce the elements of the model without justification or empirical veri
fication. The process of abstracting an appropriate interconnection of the 
hypothetical elements of the model in order to describe adequately a 
given physical situation is an important consideration, but outside the 
scope of this book. 

This book is concerned with the theory of linear electric networks. By 
an electric network is meant an interconnection of electrical devices form
ing a structure with accessible points at which signals can be observed. 
It is assumed that the electrical devices making up the network are 
represented by models, or hypothetical elements whose voltage-current 
equations are linear equations—algebraic equations, difference equations, 
ordinary differential equations, or partial differential equations. In this 
book we shall be concerned only with lumped networks; hence, we shall 
not deal with partial differential equations or difference equations. 

The properties of networks can be classified under two general headings. 
First, there are those properties of a network that are consequences of its 
structure—the topological properties. These properties do not depend on 
the specific elements that constitute the branches of the network but 
only on how the branches are interconnected; for example, it may be 
deduced that the transfer function zeros of a ladder network (a specific 
topological structure) lie in the left half-plane regardless of what passive 
elements constitute the branches. Second, there are the properties of net
works as signal processors. Signals are applied at the accessible points of 
the network, and these signals are modified or processed in certain ways 
by the network. These signal-processing properties depend on the elements 
of which the network is composed and also on the topological structure 
of the network. Thus if the network elements are lossless, signals are 
modified in certain ways no matter what the structure of the network; 
further limitations are imposed on these properties by the structure. The 
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properties of lossless ladders, for example, differ from those of lossless 
lattices. We shall be concerned with both the topological and the signal-
processing properties of networks. 

1.2 E L E M E N T A R Y M A T R I X A L G E B R A 

In the analysis of electric networks, as in many other fields of science 
and engineering, there arise systems of linear equations, either algebraic 
or differential. If the systems contain many individual equations, the 
mere process of writing and visualizing them all becomes difficult. Matrix 
notation is a convenient method for writing such equations. Furthermore, 
matrix notation simplifies the operations to be performed on the equa
tions and their solution. Just as one learns to think of a space vector with 
three components as a single entity, so also one can think of a system of 
equations as one matrix equation. In this section, we shall review some 
elementary properties of matrices and matrix algebra without great 
elaboration. In subsequent chapters, as the need for additional topics 
arises, we shall briefly digress from the discussion at hand for the purpose 
of introducing these topics. 

A matrix is a rectangular array of quantities arranged in rows and 
columns, each quantity being called an entry, or element, of the matrix. 
The quantities involved may be real or complex numbers, functions of 
time, functions of frequency, derivative operators, etc. We shall assume 
that the entries are chosen from a "field"; that is, they obey an algebra 
similar to the algebra of real numbers. The following are examples of 
matrices: 

Square brackets are placed around the entries to enclose the whole 
matrix. It is not necessary to write the whole matrix in order to refer to it. 
It is possible to give it a " n a m e " by assigning it a single symbol, such as 
M or V in the above examples. We shall consistently use boldface letters, 
either capital or lower case, to represent matrices. 

The order of a matrix is an ordered pair of numbers specifying the 
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number of rows and number of columns, as follows: (m, n) or m × n. In 
the examples above, the orders are (3, 2), (2, 2), and (4, 1), respectively. 
When the alternate notation is used, the matrices are of order 3 × 2, 
2 × 2, and 4 × 1, respectively. The latter is a special kind of matrix 
called a column matrix, for obvious reasons. It is also possible for a 
matrix to be of order 1 × n; such a matrix has a single row and is called 
a row matrix. A matrix in which the number of rows is equal to the 
number of columns is called a square matrix. In the above examples, Z 
is square. For the special cases in which the type of matrix is a column 
matrix, row matrix, or square matrix the order is determined unam
biguously by a single number, which is the number of rows, columns, or 
either, respectively; for example, if M is a square matrix with n rows 
and n columns, it is of order n. 

In order to refer to the elements of a matrix in general terms, we use 
the notation 

If the order (m, n) is not of interest, it need not be shown in this expres
sion. The " typical e lement" is ay. The above simple expression stands 
for the same thing as 

BASIC OPERATIONS 

Equality. Two matrices A = [aij] and B = [bij] are said to be equal if 
they are of the same order and if corresponding elements of the two 
matrices are identical; that is, A = B if 

aij = bij 

for all i and j. 
Multiplication by a Scalar. To multiply a matrix A = [aij] by a scalar 

(i.e., an ordinary number) k, we multiply each element of the matrix by 
the scalar; that is, kA is a matrix whose typical element is kaij. 

Addition of Matrices. Addition is defined only for matrices of the same 
order. To add two matrices we add corresponding elements. Thus if 
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A = [aij] and B = [bij], then 

( 2 ) 

Clearly, addition is commutative and associative; that is, 

( 3 ) 

Multiplication of Matrices. If A = [aij]m,n and B = [bij]n,p, then the 
product of A and B is defined as 

( 4 ) 

where the elements of the product are given by 

( 5 ) 

That is, the (i,j)th element of the product is obtained by multiplying 
the elements of the ith row of the first matrix by the corresponding 
elements in the jth column of the second matrix, then adding these pro
ducts. This means that multiplication is defined only when the number 
of columns in the first matrix is equal to the number of rows in the 
second matrix. Note that the product matrix C above has the same 
number of rows as the first matrix and the same number of columns as 
the second one. 

Example: 

When the product AB is defined (i.e., when the number of columns in 
A is equal to the number of rows in B), we say that the product AB is 
conformable. It should be clear that the product AB may be conformable 
whereas BA is not. (Try it out on the above example.) Thus AB is not 
necessarily equal to BA. Furthermore, this may be the case even if both 
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products are conformable. Thus let 

[Ch. 1 

Then 

which shows that A B B A in this case. 
We see that matrix multiplication is not commutative as a general rule, 

although it may be in some cases. Hence, when referring to the product 
of two matrices A and B , it must be specified how they are to be multi
plied. In the product A B , we say A is postmultiplied by B , and B is 
premultiplied by A . 

Even though matrix multiplication is noncommutative, it is associative 
and distributive over addition. Thus if the products A B and B C are defined, 
then 

( 6 ) 

Sometimes it is convenient to rewrite a given matrix so that certain 
submatrices are treated as units. Thus, let A = [aIJ]3,5. It can be separated 
or partitioned in one of a number of ways, two of which follow. 

where 
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or 

where 

The submatrices into which A is partitioned are shown by drawing dotted 
lines. Each submatrix can be treated as an element of the matrix A in 
any further operations that are to be performed on A; for example, the 
product of two partitioned matrices is given by 

(?) 

Of course, in order for this partitioning to lead to the correct result, it is 
necessary that each of the submatrix products, A 2 1 B 1 1 , etc., be conform
able. Matrices partitioned in this fashion are said to be conformally par
titioned. This is illustrated in the following product of two matrices: 
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Differentiation. Let A be of order n × m. Then, for any point at which 
daij(x)/dx exists for i = 1, 2, ..., n and j = 1, 2, ..., m, dA(x)/dx is defined 
as 

(8) 

Thus the matrix dA(x)/dx is obtained by replacing each element aij(x) 
of A(x) with its derivative daij(x)/dx. Now it is easy, and left to you 
as an exercise, to show that 

(9) 

(10) 

and 

(11) 

We see that the familiar rules for differentiation of combinations of 
functions apply to the differentiation of matrices; the one caution is that 
the sequence of matrix products must be preserved in (10). 

Integration. Let the order of A be n × m. Then, for any interval on 
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which aij(y) dy exists for i = 1, 2, ..., n and j = 1, 2, ..., m, A(y) dy 
JXl JXi 

is defined as 
(12) 

Thus the (i, j)th element of the integral of A is the integral of the (i, j)th 
element of A. 

Trace. The trace of a square matrix A is a number denoted by tr A 
and defined as 

where n is the order of A. Note that tr A is simply the sum of the main 
diagonal elements of A. 

Transpose. The operation of interchanging the rows and columns of a 
matrix is called transposing. The result of this operation on a matrix A 
is called the transpose of A and is designated A'. If A = [aij]mjn, then 
A' = [bij]n, m , where bij = aji. The transpose of a column matrix is a row 
matrix, and vice versa. If, as often happens in analysis, it is necessary to 
find the transpose of the product of two matrices, it is important to know 
that 

(13) 

that is, the transpose of a product equals the product of transposes, but 
in the opposite order. This result can be established simply by writing 
the typical element of the transpose of the product and showing that it 
is the same as the typical element of the product of the transposes. 

Conjugate. If each of the elements of a matrix A is replaced by its 
complex conjugate, the resulting matrix is said to be the conjugate of A 
and is denoted by A. Thus, if A = [aij]ntm, then A = [bij]njm, where 
bij = aij and aij denotes the complex-conjugate of aij. 

Conjugate Transpose. The matrix that is the conjugate of the transpose 
of A or, equivalently, the transpose of the conjugate of A, is called the 
conjugate transpose of A and is denoted by A*; that is, 

(14) 

TYPES OF MATRICES 

There are two special matrices that have the properties of the scalars 
0 and 1. The matrix 0 = [0] which has 0 for each entry is called the zero, 
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or null, matrix. It is square and of any order. Similarly, the unit or 
identity matrix U is a square matrix of any order having elements on the 
main diagonal that are all 1, all other elements being zero. Thus 

are unit matrices of order 2 , 3 , and 4 respectively. It can be readily veri
fied that the unit matrix does have the properties of the number 1; namely, 
that given a matrix A 

( 1 5 ) 

where the order of U is such as to make the products conformable. 
If a square matrix has the same structure as a unit matrix, in that 

only the elements on its main diagonal are nonzero, it is called a diagonal 
matrix. Thus a diagonal matrix has the form 

All elements both above the main diagonal and below the main diagonal 
are zero. A diagonal matrix is its own transpose. 

If the elements only below the main diagonal or only above the main 
diagonal of a square matrix are zero, as in the following, 
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the matrix is called a triangular matrix, for obvious reasons. Also, to be 
a little more precise, A might be called an upper triangular matrix and B 
might be called a lower triangular matrix. 

Symmetric and Skew-Symmetric Matrices. A square matrix is said to be 
symmetric if it is equal to its own transpose: A = A' or aij = aji for all 
i and j . On the other hand, if a matrix equals the negative of its trans
pose, it is called skew-symmetric: A = — A ' or aij =—aji. When this 
definition is applied to the elements on the main diagonal, for which i = j , 
it is found that these elements must be zero for a skew-symmetric matrix. 

A given square matrix A can always be written as the sum of a sym
metric matrix and a skew-symmetric one. Thus let 

Then 

(16) 

Hermitian and Skew-Hermitian Matrices. A square matrix is said to 
be Hermitian if it equals its conjugate transpose; that is, A is Hermitian 
if A = A* or, equivalently, aij = aji for all i and j . As another special case, 
if a matrix equals the negative of its conjugate transpose, it is called 
skew-Hermitian. Thus A is skew-Hermitian if A = —A* or, equivalently, 
aij = — a j i for all i and j . Observe that a Hermitian matrix having only 
real elements is symmetric, and a skew-Hermitian matrix having only 
real elements is skew-symmetric. 

DETERMINANTS 

With any square matrix A there is associated a number called the 
determinant of A. Usually the determinant of A will be denoted by the 
symbol det A or |A|; however, we will sometimes use the symbol A to 
stand for a determinant when it is not necessary to call attention to the 
particular matrix for which A is the determinant. Note that a matrix and 
its determinant are two altogether different things. If two matrices have 
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equal determinants, this does not imply that the matrices are equal; the 
two may even be of different orders. 

The determinant of the n × n matrix A is defined as 

( 1 7 ) 

or, by the equivalent relation, 

( 1 8 ) 

where the summation extends over all n! permutations vi, v2 ..., vn of 
the subscripts 1, 2, ..., n and ε is equal to + 1 or —1 as the permutation 
vi, v2 ..., vn is even or odd. As a consequence of this definition, the 
determinant of a 1 × 1 matrix is equal to its only element, and the 
determinant of a 2 × 2 matrix is established as 

The product a11a22 was multiplied by ε = + 1 because v1 , v2 = 1, 2 is an 
even permutation of 1, 2; the product a12a21 was multiplied by ε = —1 
because v1, v2 = 2, 1 is an odd permutation of 1, 2. Determinant evalua
tion for large n by applying the above definition is difficult and not always 
necessary. Very often the amount of time consumed in performing the 
arithmetic operations needed to evaluate a determinant can be reduced 
by applying some of the properties of determinants. A summary of some 
of the major properties follows: 

1. The determinant of a matrix and that of its transpose are equal; 
that is, det A = det A'. 

2. If every element of any row or any column of a determinant is 
multiplied by a scalar k, the determinant is multiplied by k. 

3. Interchanging any two rows or columns changes the sign of a 
determinant. 

4. If any two rows or columns are identical, then the determinant is 
zero. 

5. If every element of any row or any column is zero, then the deter
minant is zero. 

6. The determinant is unchanged if to each element of any row or 
column is added a scalar multiple of the corresponding element of any 
other row or column. 

Cofactor Expansion. Let A be a square matrix of order n. If the ith row 
and jth column of A are deleted, the determinant of the remaining 
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matrix of order n — 1 is called a first minor (or simply a minor) of A or 
of det A and is denoted by Mij. The corresponding (first) cofactor is 
defined as 

(19) 

It is said that Δ i j is the cofactor of element aij. If i =j, the minor and 
cofactor are called principal minor and principal cofactor. More specifically, 
a principal minor (cofactor) of A is one whose diagonal elements are also 
diagonal elements of A.* The value of a determinant can be obtained by 
multiplying each element of a row or column by its corresponding cofactor 
and adding the results. Thus 

(20a) 

(20b) 

These expressions are called the cofactor expansions along a row or 
column and are established by collecting the terms of (17) or (18) into 
groups, each corresponding to an element times its cofactor. 

What would happen if the elements of a row or column were multiplied 
by the corresponding cofactors of another row or column? It is left to 
you as a problem to show that the result would be zero; that is, 

(21a) 

(21b) 

The Kronecker delta is a function denoted by δ i j and is defined as 

δ i j = 1 if i = j 

= 0 if i≠j 

where i and j are integers. Using the Kronecker delta, we can consolidate 
(20a) and (21a) and write 

(22) 

* This definition does not limit the number of rows and columns deleted from Δ to 
form the minor or cofactor. If one row and column are deleted, we should more properly 
refer to the first principal cofactor. In general, if n rows and columns are deleted, we 
would refer to the result as the nth. principal cofactor. 
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Similarly, (20b) and (21b) combine to yield 

(23) 

Determinant of a Matrix Product. Let A and B be square matrices of 
the same order. The determinant of the product of A and B is the product 
of the determinants; that is, 

(24) 

Derivative of a Determinant. If the elements of the square matrix A 
are functions of some variable, say x, then |A| will be a function of x. 
It is useful to know that 

(25) 

The result follows from the observation that 

and from the cofactor expansion for | A| in (22) or (23) that d | A | /da i j = Δ i j . 

Binet-Cauchy Theorem. Consider the determinant of the product AB, 
assuming the orders are (m, n) and (n, m), with m < n. Observe that the 
product is square of order m. The largest square subrnatrix of each of the 
matrices A and B is of order m. Let the determinant of each square sub-
matrix of maximum order be called a major determinant, or simply a 
major. Then |AB| is given by the following theorem called the Binet-
Cauchy theorem. 

(26) 

The phrase "corresponding majors" means that whatever numbered 
columns are used for forming a major of A, the same numbered rows are 
used for forming the major of B. 

To illustrate, let 
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In this case m = 2 and n = 3. By direct multiplication we find that 

The determinant of this matrix is easily seen to be 18. Now let us apply 
the Binet-Cauchy theorem. We see that there are three determinants of 
order two to be considered. Applying (26), we get 

This agrees with the value calculated by direct evaluation of the deter
minant. 

THE INVERSE OF A MATRIX 

In the case of scalars, if a φ 0, there is a number b such that ab = ba = 1. 
In the same way, given a square matrix A, we seek a matrix B such that 

BA = AB = U . 

Such a B may not exist. But if this relationship is satisfied, we say B is 
the inverse of A and we write it B = A - 1 . The inverse relationship is 
mutual, so that if B = A - 1 , then A = B - 1 . 

Given a square matrix A, form another matrix as follows: 

where Δ = det A and Δ j i is the cofactor of aji. By direct expansion of 
AB and BA and application of (22) and (23), it can be shown that B is 
the inverse of A. (Do it.) In words, to form the inverse of A we replace 
each element of A by its cofactor, then we take the transpose, and finally 
we divide by the determinant of A. 
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Since the elements of the inverse of A have Δ in the denominator, it is 
clear that the inverse will not exist if det A = 0. A matrix whose deter
minant equals zero is said to be singular. If det A ≠ 0, the matrix is 
nonsingular. 

The process of forming the inverse is clarified by defining another 
matrix related to A. Define the adjoint of A, written adj A as 

(27) 

Note that the elements in the ith row of adj A are the cofactors of the 
elements of the ith column of A. The inverse of A can now be written as 

(28) 

Observe, after premultiplying both sides of (28) by A, that 

A • [adj A] = U det A. (29) 

Each side of this expression is a matrix, the left side being the product of 
two matrices and the right side being a diagonal matrix whose diagonal 
elements each equal det A. Taking the determinant of both sides yields 

(det A)(det adj A) = (det A)n 

or 

det adj A = (det A ) n - 1 . (30) 

In some of the work that follows in later chapters, the product of two 
matrices is often encountered. It is desirable, therefore, to evaluate the 
result of finding the inverse and adjoint of the product of two matrices 
A and B. The results are 

( A B ) - 1 = B - 1 A - 1 

adj (AB) = (adj B)(adj A). 

(31) 

(32) 
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Obviously, the product AB must be conformable. Furthermore, both A 
and B must be square and nonsingular. 

In the case of the first one, note that 

( A B ) ( B - 1 A - 1 ) = A ( B B - 1 ) A - 1 = A A - 1 = U. 

Hence AB is the inverse of B - 1 A _ 1 , whence the result. For the second one, 
we can form the products (AB)(adj AB) and (AB)(adj B)(adj A) and 
show by repeated use of the relationship M(adj M) = U (det M) that both 
products equal U (det AB). The result follows. 

PIVOTAL CONDENSATION 

By repeated application of the cofactor expansion, the evaluation of the 
determinant of an n × n array of numbers can be reduced to the evalua
tion of numerous 2 × 2 arrays. It is obvious that the number of arith
metic operations grows excessively as n increases. An alternate method 
for determinant evaluation, which requires significantly fewer arithmetic 
operations, is called pivotal condensation. We will now develop this method. 

Let the n × n matrix A be partitioned as 

(33) 

where the submatrix A11 is of order m × m for some 1 ≤ m < n. Assume 
A11 is nonsingular. Then A 1 1

- 1 exists, and A may be factored as follows: 

The validity of this factorization is established by performing the indi
cated matrix multiplications and observing that the result is (33). 

Now, by repeated application of the cofactor expansion, it may be 
shown (Problem 35) that the determinant of a triangular matrix is equal 
to the product of its main diagonal elements. Since 

and 



18 FUNDAMENTAL CONCEPTS [Ch. 1 

are triangular with "ones" on the main diagonal, their determinants 
are unity. So, only the middle matrix in (34) needs attention. This matrix, 
in turn, can be factorized as 

(35) 

The determinants of the matrices on the right are simply det A11 and 
det (A 2 2 — A 2 1 A 1 1

- 1 A 1 2 ) , respectively. 
Since the determinant of a product of matrices equals the product of 

the determinants, then taking the determinant of both sides of (34) and 
using (35) leads to 

(36) 

If A 1 1 is the scalar a11 ≠ 0 (i.e., the order of A 1 1 is 1 × 1), then the last 
equation reduces to 

Now, according to the properties of a determinant, multiplying each row 
of a matrix by a constant 1 /a 1 1 , will cause the determinant to be multi
plied by l / α 1 1 , where m is the order of the matrix. For the matrix on the 
right side whose determinant is being found the order is n — 1, one less 
than the order of A. Hence 

(37) 

This is the mathematical relation associated with pivotal condensation. 
The requirement that the pivotal element a11 be nonzero can always be 
met, unless all elements of the first row or column are zero, in which case 
det A = 0 by inspection. Barring this, a nonzero element can always be 
placed in the (1 ,1) position by the interchange of another row with row 1 
or another column with column 1. Such an interchange will require a 
change of sign, according to property 3 for determinants. It is of primary 
significance that repeated application of (37) reduces evaluation of det A 
to evaluation of the determinant of just one 2 × 2 array. 
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The example that follows illustrates the method of pivotal condensation. 

(inter
change of 
columns 
1 and 3) 
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Many of the steps included here for completeness are ordinarily eliminated 
by someone who has become facile in using pivotal condensation to 
evaluate a determinant. 

LINEAR EQUATIONS 

Matrix notation and the concept of matrices originated in the desire 
to handle sets of linear algebraic equations. Since, in network analysis, 
we are confronted with such equations and their solution, we shall now 
turn our attention to them. Consider the following set of linear algebraic 
equations: 

Such a system of equations may be written in matrix notation as 

(39) 

This fact may be verified by carrying out the multiplication on the left. 
In fact, the definition of a matrix product, which may have seemed strange 
when it was introduced earlier, was so contrived precisely in order to 
permit the writing of a set of linear equations in matrix form. 

The expression can be simplified even further by using the matrix 
symbols A, x, and y, with obvious definitions, to yield 

Ax = y, (40) 

This single matrix equation can represent any set of any number of linear 
equations having any number of variables. The great economy of thought 
and of expression in the use of matrices should now be evident. The re
maining problem is that of solving this matrix equation, or the corre
sponding set of scalar equations, by which we mean finding a set of 
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values for the x's that satisfies the equations simultaneously. If a solution 
exists, we say the equations are consistent. 

Each column (or row) of a matrix is identified by its elements. It can 
be thought of as a vector, with the elements playing the role of components 
of the vector. Although vectors having more than three dimensions cannot 
be visualized geometrically, nevertheless the terminology of space vectors 
is useful in the present context and can be extended to n-dimensional 
space. Thus, in (40), x, y, and each column and each row of A are vectors. 
If the vector consists of a column of elements, then it is more precisely 
called a column vector. Row vector is the complete name for a vector that 
is a row of elements. The modifiers " c o l u m n " and " r o w " are used only 
if confusion is otherwise likely. Further, when the word " vector " is used 
alone, it would most often be interpreted as " column vector." 

Now, given a set of vectors, the question arises as to whether there is 
some relationship among them or whether they are independent. In 
ordinary two-dimensional space, we know that any two vectors are in
dependent of each other, unless they happen to be collinear. Furthermore, 
any other vector in the plane can be obtained as some linear combination 
of these two, and so three vectors cannot be independent in two-dimen
sional space. 

In the more general case, we will say that a set of m vectors, labeled 
xì (i = 1 to m), is linearly dependent if a set of constants ki can be found 
such that 

(ki not all zero). (41) 

If no such relationship exists, the vectors are linearly independent. 
Clearly, if the vectors are dependent, then one or more of the vectors 
can be expressed as a linear combination of the remaining ones by 
solving (41). 

With the notion of linear dependence, it is possible to tackle the job 
of solving linear equations. Let us partition matrix A by columns and 
examine the product. 
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Expressed in this way, we see that Ax is a linear combination of the 
column vectors of A. In fact, there is a vector x that will give us any 
desired combination of these column vectors. It is evident, therefore, that 
y must be a linear combination of the column vectors of A, if the equation 
y = Ax is to have a solution. An equivalent statement of this condition 
is the following: The maximum number of linearly independent vectors 
in the two sets a 1 , ..., a n and a 1 , a 2 , ..., a n , y must be the same if the 
system of equations y = Ax is to be consistent. 

A more compact statement of this condition for the existence of a 
solution, or consistency, of y = Ax can be established. Define the rank 
of a matrix as the order of the largest ηoηsiηgular square matrix that 
can be obtained by removing rows and columns of the original matrix. 
If the rank of a square matrix equals its order, the matrix must be non-
singular, so its determinant is nonzero. In fact, it can be established as a 
theorem that the determinant of a matrix is zero if and only if the rows and 
columns of the matrix are linearly dependent. (Do it.) Thus the rows and 
columns of a nonsingular matrix must be linearly independent. It follows 
that the rank of a matrix equals the maximum number of linearly inde
pendent rows and columns. 

Now consider the two matrices A and [A y] , where the second matrix 
is obtained from A by appending the column vector y as an extra column. 
We have previously seen that the maximum number of linearly indepen
dent column vectors in these two matrices must be the same for consis
tency, so we conclude that the rank of the two matrices must be the 
same; that is, the system of equations y = Ax is consistent if and only if 

rank A = rank [A y] . ( 4 2 ) 

This is called the consistency condition. 

Example 

Suppose A is the following matrix of order 3 × 4: 

By direct calculation, it is found that each of the four square matrices 
of order 3 obtained by removing one column of A is singular—has zero 
determinant. However, the 2 × 2 matrix 
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obtained by deleting the third row and third and fourth columns is non-
singular. Thus rank A = 2. This also tells us that the column vectors 

are linearly independent. The column vectors 

are linear combinations of a 1 a n d a 2 ; in particular, 

If y = Ax is to have a solution, then y must be a linear combination of 
a1 and a 2 . Suppose y = αa1 + β a 2 . Then we must solve 

or, since 

then 

Thus for any x3 and x4, x is a solution of y = Ax if x1 = α — 3x 3 — 3x 4 

and x2 = β + 2x1 + x2. The fact that the solution is not unique is a 
consequence of the fact that the rank of A is less than the number of 
columns of A. This is also true of the general solution of y = Ax, to which 
we now turn our attention. 
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GENERAL SOLUTION OF y = Ax 

Suppose the consistency condition is satisfied and rank A = r. Then 
the equation y = Ax can always be partitioned as follows: 

(43) 

This is done by first determining the rank r by finding the highest order 
submatrix whose determinant is nonzero. The equations are then re
arranged (and the subscripts on the x's and y's modified), so that the first 
r rows and columns have a nonzero determinant; that is, A11 is nonsingu-
lar. The equation can now be rewritten as 

(44a) 

(44b) 

The second of these is simply disregarded, because each of the equations 
in (44b) is a linear combination of the equations in (44a). You can show 
that this is a result of assuming that the consistency condition is satisfied. 
In (44a), the second term is transposed to the right and the equation is 
multiplied through by A11

-1 which exists since A11 is nonsingular. The 
result will be 

(45) 

This constitutes the solution. The vector x1 contains r of the elements of 
the original vector x; they are here expressed in terms of the elements of 
y1 and the remaining m — r elements of x. 

Observe that the solution (45) is not unique if n > r. In fact, there are 
exactly q = n — r variables, the elements of x 2 , which may be selected 
arbitrarily. This number q is an attribute of the matrix A and is called the 
nullity, or degeneracy, of A. 
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For the special case of homogeneous equations, namely the case where 
y = 0 , it should be observed from (45) that a nontrivial solution exists 
only if the nullity is nonzero. For the further special case of m = n (i.e., 
when A is a square matrix), the nullity is nonzero and a nontrivial solu
tion exists only if A is singular. 

To illustrate the preceding, consider the following set of equations: 

We observe that the first four rows and columns 2, 4, 6, and 8 of A form 
a unit matrix (which is nonsingular) and so rank A > 4. In addition, the 
fifth row is equal to the negative of the sum of the first four rows. Thus 
the rows of A are not linearly independent and rank A < 5. Since 4 ≤ 
rank A < 5, we have established that rank A = 4. For precisely the same 
reasons it is found that rank [A y] = 4. Thus the consistency condi
tion is satisfied. Now the columns can be rearranged and the matrices 
partitioned as follows: 
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This has been partitioned in the form of (43) with A11 = U, a unit matrix. 
The bottom row of the partitioning is discarded, and the remainder is 
rewritten. Thus 

Since the inverse of U is itself, this constitutes the solution. In scalar 
form, it is 

For each set of values for x1, x3, x5, and x7 there wili be a set of values for 
x2, x4, x6, and x8. In a physical problem the former set of variables may 
not be arbitrary (though they are, as far as the mathematics is concerned); 
they must often be chosen to satisfy other conditions of the problem. 

CHARACTERISTIC EQUATION 

An algebraic equation that often appears in network analysis is 

λx = Ax (46) 

where A is a square matrix of order n. The problem, known as the eigen
value problem, is to find scalars λ and vectors x that satisfy this equation. 
A value of λ, for which a nontrivial solution of x exists, is called an 
eigenvalue, or characteristic value, of A. The corresponding vector x is 
called an eigenvector, or characteristic vector, of A. 

Let us first rewrite (46) as follows: 

( λ U - A ) x = 0 . (47) 

This is a homogeneous equation, which we know will have a nontrivial 
solution only if λU — A is singular or, equivalently, 

d e t ( λ U - A ) = 0 . (48) 
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The determinant on the left-hand side is a polynomial of degree n in λ 
and is known as the characteristic polynomial of A. The equation itself 
is known as the characteristic equation associated with A. For each value 
of λ that satisfies the characteristic equation, a nontrivial solution of (47) 
can be found by the methods of the preceding subsection. 

To illustrate these ideas, consider the 2 × 2 matrix 

The characteristic polynomial is 

The values 3 and 4 satisfy the characteristic equation (λ — 3)(λ — 4) = 0 
and hence are the eigenvalues of A. To obtain the eigenvector correspond
ing to the eigenvalue λ = 3, we solve (47) by using the given matrix A 
and λ = 3. Thus 

The result is 

for any value of x1. The eigenvector corresponding to the eigenvalue 
λ = 4 is obtained similarly. 

from which 

for any value of x\. 
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SIMILARITY 

Two square matrices A and B of the same order are said to be similar 
if a nonsingular matrix S exists such that 

S - 1 A S = B. ( 4 9 ) 

The matrix B is called the similarity transform of A by S. Furthermore, 
A is the similarity transform of B by S - 1 . 

The reason that similarity of matrices is an important concept is the 
fact that similar matrices have equal determinants, the same character
istic polynomials, and, hence, the same eigenvalues. These facts are easily 
established. Thus, by applying the rule for the determinant of a product 
of square matrices, the determinants are equal, because 

B| = | S - 1 A S | = | S - 1 | |A| |S| = | S - 1 S | |A| = |A|. 

The characteristic polynomials are equal because 

|λU - B| = |λU - S - 1 A S | = | S - 1 ( λ U - A)S| 

= | S - 1 | |λU - A| |S| = | S - 1 S | |λU - A| 

= | λ U - A | . 

Since the eigenvalues of a matrix are the zeros of its characteristic poly
nomial, and since A and B have the same characteristic polynomials, their 
eigenvalues must be equal. 

An important, special similarity relation is the similarity of A to a 
diagonal matrix 

Now, if A and Λ are similar, then the diagonal elements of Λ are the 
eigenvalues of A. This follows from the fact that A and Λ have the same 
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eigenvalues and, as may easily be shown, the eigenvalues of Λ are its 
diagonal elements. 

Next we will show that A is similar to a diagonal matrix A if and only 
if A has n linearly independent eigenvectors. First, suppose that A is 
similar to Λ. This means Λ = S - 1 A S or, equivalently, 

SΛ = AS. (50) 

Now partition S by columns; that is, set S = [Si S 2 ... S n ] , where the S i are 
the column vectors of S. Equating the jth column of AS to the jth column 
of SΛ, in accordance with (50), we get 

λ j S j = A S j . (51) 

By comparing with (46), we see that S j is the eigenvector corresponding 
to λ j . Since A is similar to Λ, S is nonsingular, and its column vectors 
(eigenvectors of A) are linearly independent. This establishes the necessity. 

Now let us suppose that A has n linearly independent eigenvectors. By 
(50), the matrix S satisfies SΛ = AS. Since the n eigenvectors of A 
(column vectors of S) are linearly independent, S is nonsingular, and 
SΛ = AS implies Λ = S - 1 A S . Thus Λ is similar to A and, equivalently, A 
is similar to Λ. 

We have just shown that, if the square matrix S having the eigenvec
tors of A as its column vectors is nonsingular, then A is similar to the 
diagonal matrix Λ = S - 1 A S . 

Example 

As an illustration take the previously considered matrix 

Earlier we found that λi = 3 and λ 2 = 4 are the eigenvalues and that, for 
arbitrary, nonzero sn and s12, 

and 

are the corresponding eigenvectors. Let sn = s12 = 1; then 
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and therefore 

Then, of course, 

The procedure so far available to us for ascertaining the existence 
of S such that A is similar to Λ requires that we construct a trial ma trix 
having the eigenvectors of A as columns. If that trial ma trix is nonsingu-
lar, then it is S, and S exists. I t is often of interest to know that an S 
exists without first constructing it. The following theorem provides such 
a criterion: The n eigenvectors of A are distinct and, hence, S exists, if— 

1. The eigenvalues of A are distinct. 

2. A is either symmetric or Hermitian.* 

S Y L V E S T E R ' S I N E Q U A L I T Y 

Consider the ma trix product P Q , where P is a matrix of order m × n 
and rank rP and where Q is a matrix of order n × k and rank rQ. Le t 
rPQ denote the rank of the product matrix. Sylvester's inequality is a 
relation be tween rP, rQ, and rPQ which states that† 

rP + rQ — n≤rPQ≤min {rP, rQ}. (52) 

Note that n is the number of columns of the first matrix in the product or 
the number of rows of the second one. 

As a special case, suppose P and Q are nonsingular square matrices of 
order n. Then rP = rQ = n, and, by Sylvester's inequality, n≤rPQ≤nor 
rpQ = n. This we also know to be true by the fact that | Ρ Q | = | P | | Q | ≠ 0, 
since | P | ≠ 0 and | Q | ≠ 0. As another special case, suppose P Q = 0 . Then 
rPQ is obviously zero, and, by Sylvester's inequality, rP + rQ < n. 

* Proofs may be found in R. Bellman, Introduction to Matrix Analysis, McGraw-Hill 
Book Co., Inc., New York, 1960, Chs. 3 and 4. 

† A proof of Sylvester's inequality requires an understanding of some basic concepts 
associated with finite dimensional vector spaces. The topic is outside the scope of this 
text and no proof will be given. For such a proof see F. R. Ganthmacher, The Theory of 
Matrices, Vol. I, Chelsea Publishing Co., New York, 1959. 
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NORM OF A VECTOR 

One of the properties of a space vector is its length. For an n-vector the 
notion of length no longer has a geometrical interpretation. Nevertheless, 
it is a useful concept, which we shall now discuss. 

Define the norm of an n-vector x as a non negative number ||x|| that 
possesses the following properties: 

1. ||x|| = 0 if and only if x = 0 . 

2. ||αx|| = |α| ||x||, where α is a real or complex number. 

3 . | | x i + x 2 | | ≤ | | x i | | + ||x2||, where x i and x 2 are two n-vectors. 

A vector may have a number of different norms satisfying these properties. 
The most familiar norm is the Euclidean norm, defined by 

( 5 3 ) 

This is the square root of the sum of the squares of the components of the 
vector. The Euclidean norm is the one we are most likely to think about 
when reference is made to the length of a vector; however, there are 
other norms that are easier to work with in numerical calculations. One 
such norm is 

( 5 4 ) 

that is, the sum of the magnitudes of the vector components. For want of 
a better name, we shall call it the sum-magnitude norm. Another such 
norm is 

( 5 5 ) 

that is, the magnitude of the component having the largest magnitude. 
We shall call it the max-magnitude norm. It is a simple matter to show that 
| |x 2 | | , ||x||1 , and ||x||∞ each satisfy the stated properties of a norm. 

That each of these norms is a satisfactory measure of vector length can 
be established by several observations. If any one of these norms is non
zero, the other two are nonzero. If any one of them tends toward zero as 
a limit, the other two must do likewise. 

A matrix is often thought of as a transformation. If A is a matrix of 
order m × n and x is an n-vector, then we think of A as a matrix that 
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transforms x into the m-vector Ax. We will later need to establish bounds 
on the norm of the vector Ax; to do this we introduce the norm of a 
matrix. 

The matrix A is said to be bounded if there exists a real, positive con
stant K such that 

(56) 

for all x. The greatest lower bound of all such K is called the norm of A 
and is denoted by ||A||. It is easy to show that the matrix norm has the 
usual properties of a norm; that is, 

1. ||A|| = 0 if and only if A = 0; 

2. ||αA|| = |α|||A||, where α is a real or complex number; and 

3. | | A 1 + A 2 | | < | | A 1 | | + ||A 2||. 

In addition, it is easily deduced that | |A 1 A 2 | | ≤ ||A1|| ||A 2||. 
By the definition of the greatest lower bound, it is clear that 

(57) 

It is possible to show that a vector exists such that (57) holds as an 
equality. We will not do so in general, but will take the cases of the sum-
magnitude norm in (54), the max-magnitude norm in (55), and the Eucli
dean norm in (53). 

Thus, by using the sum-magnitude norm in (54), we get 

(58) 

The first step and the last step follow from the definition of the sum-
magnitude norm. The second step is a result of the triangle inequality 
for complex numbers. Suppose the sum of magnitudes of aij is the largest 

m a x 1 7 1 1 7 1 

for the kth column; that is, suppose y £ |aij| = £ |aifc|. Then (58) is 
J

 i = l i=l 
satisfied as an equality when xj = 0 for j ≠ k and xjc = 1. Therefore 

(59) 
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Thus the sum-magnitude norm of a matrix A is the sum-magnitude norm 
of the column vector of A which has the largest sum-magnitude norm. 

Next let us use the max-magnitude norm in (55). Then 

(60) 

The pattern of steps here is the same as in the preceding norm except that 
the max-magnitude norm is used. Again, suppose the sum of magnitudes 

of aij is largest for the kth row; that is, suppose m ^ X ]Γ j = 1 lαυ'l
 =
 Σ j=i \ aw\. 

Then (60) is satisfied as an equality when xj = sgn (aA;j). (The function 
s g n y equals + 1 when y is positive and —1 when y is negative.) 
Therefore 

(61) 

Thus the max-magnitude norm of a matrix A is the sum-magnitude 
norm of that row vector of A which has the largest sum-magnitude norm. 

Finally, for the Euclidean norm, although we shall not prove it here, 
it can be shown* that 

(62) 

* Tools for showing this will be provided in Chapter 7. 

where λm is the eigenvalue of A*A having the largest magnitude. It can 
also be shown that a vector x exists such that (62) holds as an equality. 
Therefore 

||A||2 = |λ m | 1 /2 . (63) 

Example 

As an illustration, suppose y = Ax, or 
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From (59) the sum-magnitude norm of A is 

||A||1 = max {6, 5} = 6. 

From (61) the max-magnitude norm of A is 

| |A||∞ = max {2, 2, 7} = 7. 

As for the Euclidean norm, we first find that 

The characteristic equation of A*A is 

Hence λm = 26.64 and 

We also know, by substituting the above matrix norms into (57), that 

and 

In this section, we have given a hasty treatment of some topics in 
matrix theory largely without adequate development and proof. Some of 
the proofs and corollary results are suggested in the problems. 

1.3 NOTATION AND REFERENCES 

The signals, or the variables in terms of which the behavior of electric 
networks is described, are voltage and current. These are functions of 
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time t and will be consistently represented by lower-case symbols v(t) and 
i(t). Sometimes the functional dependence will not be shown explicitly 
when there is no possibility of confusion; thus v and i will be used instead 
of v(t) and i(t). 

The Laplace transform of a time function will be represented by the 
capital letters corresponding to the lower-case letter representing the 
time function. Thus, I(s) is the Laplace transform of i(t), where s is 
the complex frequency variable, s = σ +jω. Sometimes the functional 
dependence on s will not be shown explicitly, and I(s) will be written as 
plain I. 

The fundamental laws on which network theory is founded express 
relationships among voltages and currents at various places in a network. 
Before these laws can even be formulated it is necessary to establish a 
system for correlating the sense of the quantities i and v with the indica
tions of a meter. This is done by establishing a reference for each voltage 
and current. The functions i(t) and υ(t) are real functions of time that can 
take on negative as well as positive values in the course of time. The 
system of references adopted in this book is shown in Fig. 1. An arrow 

Fig. 1. Current and voltage references. 

indicates the reference for the current in a branch. This arrow does not 
mean that the current is always in the arrow direction. It means that, 
whenever the current is in the arrow direction, i(t) will be positive. 
Similarly, the plus and minus signs at the ends of a branch are the 
voltage reference for the branch. Whenever the voltage polarity is actu
ally in the sense indicated by the reference, v(t) will be positive. Actually, 
the symbol for voltage reference has some redundancy, since showing 
only the plus sign will imply the minus sign also. Whenever there is no 
possibility of confusion, the minus sign can be omitted from the reference. 

For a given branch the direction chosen as the current reference and the 
polarity chosen as the voltage reference are arbitrary. Either of the two 
possibilities can be chosen as the current reference, and either of the 
two possibilities can be chosen as the voltage reference. Furthermore, the 
reference for current is independent of the reference for voltage. However, 
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it is often convenient to choose these two references in a certain way, as 
shown in Fig. 2. Thus, with the current-reference arrow drawn along-

Fig. 2 . Standard references. 

side the branch, if the voltage-reference plus is at the tail of the current 
reference, the result is called the standard reference. If it is stated that the 
standard reference is being used, then only one of the two need be shown; 
the other will be implied. It must be emphasized that there is no require
ment for choosing standard references, only convenience. 

1 . 4 N E T W O R K C L A S S I F I C A T I O N 

It is possible to arrive at a classification of networks in one of two ways. 
One possibility is to specify the kinds of elements of which the network is 
composed and, on the basis of their properties, to arrive at some generali
zations regarding the network as a whole. Thus, if the values of all the 
elements of a network are constant and do not change with time, the net
work as a whole can be classified as a time-invariant network. 

Another approach is to focus attention on the points of access to the 
network and classify the network in terms of the general properties of 
its responses to excitations applied at these points. In this section we shall 
examine the second of these approaches. 

LINEARITY 

Let the excitation applied to a network that has no initial energy storage 
be labeled e(t) and the response resulting therefrom w(t). A linear network 
is one in wh ich the response is proportional to the excitation and the 
principle of superposition applies. More precisely, if the response to an 
excitation ei(t) is wi(t) and the response to an excitation e2(t) is w2(t), 
then the network is linear if the response to the excitation k1e1(t) + 
k2e2(t) ÌS kiwi(t) + k2w2(t). 

This scalar definition can be extended to matrix form for multiple 
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excitations and responses. Excitation and response vectors, e(t) and 
w(t) , are defined as column vectors 

and 

where ea,eb, etc., are excitations at positions a, b, etc.; and wa,wb, 
etc., are the corresponding responses. Then a network is linear if the 
excitation vector kie1(t) + k2e2(t) gives rise to a response vector k1w1(t) + 
k2w2(t), where wi is the response vector to the excitation vector e i . 

TIME INVARIANCE 

A network that will produce the same response to a given excitation no 
matter when it is applied is time invariant. Thus, if the response to an 
excitation e(t) is w(t), then the response to an excitation e(t + t1) will be 
w( t + t1) in a time-invariant network. This definition implies that the 
values of the network components remain constant. 

PASSIVITY 

Some networks have the property of either absorbing or storing energy. 
They can return their previously stored energy to an external network, 
but never more than the amount so stored. Such networks are called 
passive. Let E(t) be the energy delivered to a network having one pair 
of terminals from an external source up to time t. The voltage and cur
rent at the terminals, with standard references, are v(t) and i(t). The power 
delivered to the network will be p(t) = v(t) i(t). We define the network to 
be passive if 

( 6 4 ) 

or 

This must be true for any voltage and its resulting current for all t. 
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Any network that does not satisfy this condition is called an active 
cl 

network; that is, v(x) i(x) dx < 0 for some time t. 
^ - 00 

If the network has more than one pair of terminals through which 
energy can be supplied from the outside, let the terminal voltage and 
current matrices be 

with standard references. The instantaneous power supplied to the net
work from the outside will then be 

(65) 

The network will be passive if, for all t, 

(66) 

RECIPROCITY 

Some networks have the property that the response produced at one 
point of the network by an excitation at another point is invariant if the 
positions of excitation and response are interchanged (excitation and 
response being properly interpreted). Specifically, in Fig. 3a the network 

Fig. 3. Reciprocity condition. 

(a) 

Network 

(b) 

Network 

is assumed to have no initial energy storage; the excitation is the voltage 
vi(t) and the response is the current i2(t) in the short circuit. In Fig. 3b, 
the excitation is applied at the previously short-circuited point, and the 
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response is the current in the short-circuit placed at the position of the 
previous excitation. The references of the two currents are the same 
relative to those of the voltages. A reciprocal network is one in which, 
for any pair of excitation and response points, here labeled 1 and 2, 
iλ = i2 if V2 = v1. If the network does not satisfy this condition, it is 
nonreciprocal. 

Up to the last chapter of this book we shall be concerned with networks 
that are linear and time invariant. However, the networks will not be 
limited to passive or reciprocal types. The latter types of network do have 
special properties, and some procedures we shall discuss are limited to such 
networks. When we are discussing procedures whose application is limited 
to passive or reciprocal networks, we shall so specify. When no specifi
cation is made, it is assumed that the procedures and properties under 
discussion are generally applicable to both passive and active, and to 
both reciprocal and nonreciprocal, networks. The final chapter of the 
book will be devoted to linear, time-varying and to nonlinear networks. 

1.5 N E T W O R K C O M P O N E N T S 

Now let us turn to a classification of networks on the basis of the kinds 
of elements they include. In the first place, our network can be charac
terized by the adjective "lumped." We assume that all electrical effects 
are experienced immediately throughout the network. With this assump
tion we neglect the influence of spatial dimensions in a physical circuit, 
and we assume that electrical effects are lumped in space rather than being 
distributed. 

In the network model we postulate the existence of certain elements that 
are defined by the relationship between their currents and voltages. The 
three basic elements are the resistor, the inductor, and the capacitor. Their 
diagrammatic representations and voltage-current relationships are 
given in Table 1. The resistor is described by the resistance parameter R 
or the conductance parameter G, where G= 1/R. 
The inductor is described by the inductance parameter. The reciprocal 
of L has no name, but the symbol Γ (an inverted L) is sometimes used. 
Finally, the capacitor is described by the capacitance parameter C. The 
reciprocal of C is given the name elastance, and the symbol D is some
times used. 

A number of comments are in order concerning these elements. First, 
the v-i relations (v = Ri, v = L di/dt, and i = C dv/dt) satisfy the linearity 
condition, assuming that i and υ play the roles of excitation and response, 
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as the case may be. (Demonstrate this to yourself.) Thus networks of 
R, L, and C elements are linear. Second, the parameters R, L, and C 
are constant, so networks of R, L, and C elements will be time invariant. 

Table 1 

Voltage-Current Relationships 

Element Parameter Direct Inverse Symbol 

Resistor Resistance R 
Conductance G 

Inductor Inductance L 
Inverse Inductance Γ 

Capacitor Capacitance C 
Elastance D 

In the third place, assuming standard references, the energy delivered to 
each of the elements starting at a time when the current and voltage were 
zero will be 

(67) 

(68) 

(69) 

Each of the right-hand sides is non-negative for all t. Hence networks 
of R, L, and C elements are passive. Finally, networks of R, L, and C 
elements are reciprocal, but demonstration of this fact must await later 
developments. 

It should be observed in Table 1 that the inverse v-i relations for the 
inductance and capacitance element are written as definite integrals. 
Quite often this inverse relationship is written elsewhere as an indefi
nite integral (or antiderivative) instead of a definite integral. Such an 
expression is incomplete unless there is added to it a specification of the 
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initial values i(0) or v(0), and in this sense is misleading. Normally one 
thinks of the voltage v(t) and the current i(t) as being expressed as 
explicit functions such as ε - α t , sin ωt, etc., and the antiderivative as being 
something unique: — ( l / α ) ε - α t , —(1/ω) cos ωt, etc., which is certainly not 
true in general. Also, in many cases the voltage or current may not be 
expressible in such a simple fashion for all t; the analytic expression for 
v(t) or i(t) may depend on the particular interval of the axis on which the 
point t falls. Some such wave shapes are shown in Fig. 4. 

Fig. 4. Signal waveshapes. 

(a) (b) 

The origin of time t is arbitrary; it is usually chosen to coincide with 
some particular event, such as the opening or closing of a switch. In 
addition to the definite integral from 0 to t, the expression for the capaci
tor voltage, v(t) = ( l / C ) J i(x)dx + v(0), contains the initial value v(0). 

This can be considered as a d-c voltage source (sources are discussed 
below) in series with an initially relaxed (no initial voltage) capacitor, as 

shown in Fig. 5. Similarly, for the inductor i(t) = v(x) dx + i(0), 

Fig. 5. Initial values as sources. 

Initially 
relaxed 

Initially 
relaxed 

where i(0) is the initial value of the current. This can be considered as a 
d-c current source in parallel with an initially relaxed inductor, as shown 
in Fig. 5. If these sources are shown explicitly, they will account for all 
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initial values, and all capacitors and inductors can be considered to be 
initially relaxed. Such initial-value sources can be useful for some methods 
of analysis but not for others, such as the state-equation formulation. 

THE TRANSFORMER 

The R, L, and C elements all have two terminals; other components 
have more than two terminals. The next element we shall introduce is the 
ideal transformer shown in Fig. 6. It has two pairs of terminals and is 

Fig. 6. An ideal transformer. 

(a) 

Ideal 

(b) 
Ideal 

defined in terms of the following v-i relationships: 

(70a) 

(70b) 

or 

(70c) 

The ideal transformer is characterized by a single parameter n called the 
turns ratio. The ideal transformer is an abstraction arising from coupled 
coils of wire. The v-i relationships are idealized relations expressing Fara
day's law and Ampere's law, respectively. The signs in these equations 
apply for the references shown. If any one reference is changed, the 
corresponding sign will change. 

An ideal transformer has the property that a resistance R connected 
to one pair of terminals appears as R times the turns ratio squared at the 
other pair of terminals. Thus in Fig. 6b, v2 = —Ri 2 . When this is used in 
the v-i relationships, the result becomes 

(71) 
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At the input terminals, then, the equivalent resistance is n2R. 
Observe that the total energy delivered to the ideal transformer from 

connections made at its terminals will be 

(72) 

The right-hand side results when the v-i relations of the ideal transformer 
are inserted in the middle. Thus the device is passive; it transmits—but 
neither stores nor dissipates—energy. 

A less abstract model of a physical transformer is shown in Fig. 7. 

Fig. 7 . A transformer. 

The diagram is almost the same except that the diagram of the ideal 
transformer shows the turns ratio directly on it. The transformer is 
characterized by the following v-i relationships for the references shown 
in Fig. 7: 

(73a) 

and 

(73b) 

Thus it is characterized by three parameters: the two self-inductances L\ 
and L2, and the mutual inductance M. 

The total energy delivered to the transformer from external sources is 

(74) 
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It is easy to show* that the last line will be non-negative if 

(75) 

Since physical considerations require the transformer to be passive, this 
condition must apply. The quantity k is called the coefficient of coupling. 
Its maximum value is unity. 

A transformer for which the coupling coefficient takes on its maximum 
value k = 1 is called a perfect, or perfectly coupled, transformer. A perfect 
transformer is not the same thing as an ideal transformer. To find the 
difference, turn to the transformer equations (73) and insert the perfect-
transformer condition M=√L1L2 ; then take the ratio v1/v2. The result 
will be 

(76) 

This expression is identical with v± = nv2 for the ideal transformer† if 

(77) 

Next let us consider the current ratio. Since (73) involve the derivatives 
of the currents, it will be necessary to integrate. The result of inserting 
the perfect-transformer condition M = √L1L2 and the value n = 
√ L 1 / L 2 , and integrating (73a) from 0 to t will yield, after rearranging, 

(78) 

* A simple approach is to observe (with Li, L 2 , and M all non-negative) that the 
only way L\ii2 + 2M i 1 i 2 + L 2 i 2

2 can become negative is for ii and i2 to be of opposite 
sign. So set i2 = — xiu with x any real positive number, and the quantity of interest 
becomes Li — 2Mx - f L 2 * 2 . If the minimum value of this quadratic in x is non-negative, 
then the quantity will be non-negative for any value of x. Differentiate the quadratic 
with respect to x and find the minimum value; it will be Li — M 2 / L 2 , from which the 
result follows. 

† Since, for actual coils of wire, the inductance is approximately proportional 
to the square of the number of turns in the coil, the expression V L1/L2 equals the ratio of 
the turns in the primary and secondary of a physical transformer. This is the origin of 
the name "turns ratio" for n. 
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This is to be compared with i1 = —i2/n for the ideal transformer. The 
form of the expression in brackets suggests the v-i equation for an induc
tor. The diagram shown in Fig. 8 satisfies both (78) and (76). It shows 
how a perfect transformer is related to an ideal transformer. If, in a 
perfect transformer, L1 and L2 are permitted to approach infinity, but in 
such a way that their ratio remains constant, the result will be an ideal 
transformer. 

Perfect transformer 

Fig. 8. Relationship between a perfect and an ideal transformer. 

THE GYRATOR 

Another component having two pairs of terminals is the gyrator, 
whose diagrammatic symbol is shown in Fig. 9. It is defined in terms of 

Fig. 9. A gyrator. 
(a) (b) 

the following v-i relations: 

For Fig. 9a 

(79a) 

For Fig. 9b 

(79b) 
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The gyrator, like the ideal transformer, is characterized by a single para
meter r, called the gyration resistance. The arrow to the right or the left in 
Fig. 9 shows the direction of gyration. 

The gyrator is a hypothetical device that is introduced to account for 
physical situations in which the reciprocity condition does not hold. 
Indeed, if first the right-hand side is short-circuited and a voltage v1 = v 
is applied to the left side, and if next the left side is shorted and the 
same voltage (v2 = v) is applied to the right side, then it will be found 
that i2 = —i1. Thus the gyrator is not a reciprocal device. In fact, it is 
antireciprocal. 

On the other hand, the total energy input to the gyrator is 

(80) 

Hence it is a passive device that neither stores nor dissipates energy. In 
this respect it is similar to an ideal transformer. 

In the case of the ideal transformer, it was found that the resistance at 
one pair of terminals, when the second pair is terminated in a resistance R, 
is n2R. The ideal transformer thus changes a resistance by a factor n2. 
What does the gyrator do in the corresponding situation? If a gyrator is 
terminated in a resistance R (Fig. 10), the output voltage and current 

Fig. 10 . Gyrator terminated in a resistance R. 

will be related by v2 = — R i 2 . When this is inserted into the v-i rela
tions, the result becomes 

(81) 

Thus the equivalent resistance at the input terminals equals r2 times the 
conductance terminating the output terminals. The gyrator thus has the 
property of inverting. 

The inverting property brings about more unusual results when the 
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gyrator is terminated in a capacitor or an inductor; for example, suppose 
a gyrator is terminated in a capacitor, as shown in Fig. 11. We know that 

Fig. 11 . Gyrator terminated in a capacitance C. 

i2 = —C dv2/dt. Therefore, upon inserting the v-i relations associated with 
the gyrator, we observe that 

(82) 

Thus at the input terminals the v-i relationship is that of an inductor, 
with inductance r2C. In a similar manner it can be shown that the v-i 
relationship at the input terminals of an inductor-terminated gyrator is 
that of a capacitor. 

I N D E P E N D E N T SOURCES 

All the devices introduced so far have been passive. Other network 
components are needed to account for the ability to generate voltage, 
current, or power. 

Two types of sources are defined as follows: 

1. A voltage source is a two-terminal device whose voltage at any instant 
of time is independent of the current through its terminals. No matter 
what network may be connected at the terminals of a voltage source, its 
voltage will maintain its magnitude and waveform. (It makes no sense to 
short-circuit the terminals of a voltage source, because this imposes two 
idealized conflicting requirements at the terminals.) The current in the 
source, on the other hand, will be determined by this network. The 
diagram is shown in Fig. 12a. 

2. A current source is a two-terminal device whose current at any instant 
of time is independent of the voltage across its terminals. No matter what 
network may be connected at the terminals of a current source, the cur
rent will maintain its magnitude and waveform. (It makes no sense to 
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open-circuit the terminals of a current source because this, again, imposes 
two conflicting requirements at the terminals.) The voltage across the 
source, on the other hand, will be determined by this network. The 
diagram is shown in Fig. 12b. 

Fig. 12 . Voltage and current sources. 

Everyone is familiar enough with the dimming of the house lights when 
a large electrical appliance is switched on the line to know that the voltage 
of a physical source varies under load. Also, in an actual physical source 
the current or voltage generated may depend on some nonelectrical 
quantity, such as the speed of a rotating machine, or the concentration 
of acid in a battery, or the intensity of light incident on a photoelectric 
cell. These relationships are of no interest to us in network analysis, 
since we are not concerned with the internal operation of sources, but 
only with their terminal behavior. Thus our idealized sources take no cog
nizance of the dependence of voltage or current on nonelectrical quan
tities; they are called independent sources. 

CONTROLLED OR D E P E N D E N T SOURCES 

The independent sources just introduced cannot account for our ability 
to amplify signals. Another class of devices is now introduced; these are 
called controlled, or dependent, sources. A controlled voltage source is a 
source whose terminal voltage is a function of some other voltage or 
current. A controlled current source is defined analogously. The four possi
bilities are shown in Table 2. These devices have two pairs of terminals— 
one pair designating the controlling quantity; the other, the controlled 
quantity. In each of the components in Table 2, the controlled voltage or 
current is directly proportional to the controlling quantity, voltage or 
current. This is the simplest type of dependence; it would be possible to 
introduce a dependent source whose voltage or current is proportional to 
the derivative of some other voltage of current, for example. However, 
detailed consideration will not be given to any other type of dependence. 
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For certain ranges of voltage and current the behavior of certain 
vacuum tubes and transistors can be approximated by a model consisting 

Table 2 

Device 

Voltage-controlled 
voltage source 

(hybrid g) 

Current-controlled 
voltage source 

(impedance) 

Voltage-controlled 
current source 

(admittance) 

Current-controlled 
current source 

(hybrid h) 

of interconnected dependent sources and other network elements. Figure 
13 shows two such models. These models are not valid representations 
of the physical devices under all conditions of operation; for example, at 
high enough frequency, the interelectrode capacitances of the tube would 
have to be included in the model. 

Fig. 13 . Models of transistor and triode. 
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The last point brings up a question. When an engineer is presented with 
a physical problem concerned with calculating certain voltages and cur
rents in an interconnection of various physical electrical devices, his first 
task must be one of representing each device by a model. This model will 
consist of interconnections of the various components that have been 
defined in this chapter. The extent and complexity of the model will de
pend on the type of physical devices involved and the conditions under 
which they are to operate. Considerations involved in choosing an appro
priate model to use, under various given conditions, do not form a proper 
part of network analysis. This is not to say that such considerations and 
the ability to choose an appropriate model are not important; they are. 
However, many other things are important in the total education of an 
engineer, and they certainly cannot all be treated in one book. In this 
book we will make no attempt to construct a model of a given physical 
situation before proceeding with the analysis. Our starting point will be 
a model. 

THE NEGATIVE CONVERTER 

The last component we shall introduce is the negative converter (NC for 
short). It is a device with two pairs of terminals and is defined by the 
following v-i equations: 

(83a) 

or 

(83b) 

There is no special diagram for the NC, so it is shown by the general 
symbol in Fig. 14. The NC is characterized by a single parameter k, called 
the conversion ratio. If the left-hand terminals are considered the input 
and the right-hand ones the output, it is seen from the first set of equa
tions that when ii is in its reference direction, i2 will also be in its reference 
direction; hence the current will be " inverted" in going through the NC. 
On the other hand, the voltage will not be inverted. This type is therefore 
called a current NC, or INC. 

For the second set of relations the opposite is true: the voltage is in
verted, but the current is not. This type is called a voltage NC, or VNC. 

When either of these devices is terminated in a passive component at one 
pair of terminals, something very interesting happens at the other pair. 
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(a) (b) 
Fig. 14. Negative converters: (a) current-inverting variety: vi = kv2 and i2 = kii; 

(6) voltage-inverting variety: vi = —kv2 and i2 = —kii. 

Thus, let an inductance L terminate the output; then v2 = —L diz/dt. 
When this is inserted into the v-i relations, there results 

( 8 4 ) 

Thus at the input terminals the equivalent inductance is proportional 
to the negative of the terminating inductance. (Hence its name.) Similar 
conclusions would follow if the terminating element were a resistor or 
capacitor. 

The introduction of the NC expands the number of network building 
blocks considerably, because it is now possible to include negative R, L, 
and C elements in the network. 

PROBLEMS 

1 . Is (A + B) 2 = A 2 + 2AB + B 2 in matrix algebra? if not, give the correct 
formula. 

2 . Let 

Compute AB and AC and compare them. Deduce, thereby, which law 
of ordinary algebra fails to hold for matrices? 

3. Under what conditions can we conclude B = C from AB = AC? 
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4 . Let 

Compute AB. What theorem of ordinary algebra is not true for matrices? 
5 . Let A and B be conformable and let the submatrices Ay and B j k be 

conformable for all i and k. Verify the statement that the (i, k) sub-
matrix of the product AB is Σ j Ay Rjk. 

6 . Show that 

7 . Prove that ( A B ) = A B and ( A B ) * = B * A * . 

8 . Verify the statement that any square matrix A can be expressed as the 
sum of a Hermitian matrix A H and a skew-Hermitian matrix ASH. Find 
A H and A S H . 

9 . Prove that if A is skew-Hermitian, Re (an) = 0 for all i. 

1 0 . Prove "Γ*=i -<*Δ = 0 if £ ≠j. 
1 1 . Define the inverse of A as the matrix B such that B A = A B = U. Show 

that, if the inverse exists, it is unique. (Assume two inverses and show 
they are equal.) 

1 2 . Check whether any of the following matrices are nonsingular. Find the 
inverses of the nonsingular matrices 

1 3 . Prove that the inverse of a symmetric matrix is symmetric. 
1 4 . Prove that ( A - i ) ' = ( A ) - 1 . 

1 5 . Prove that if Z is symmetric, so is (BZB'). 
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16. Prove that adj (AB) = (adj B) (adj A) when A and B are nonsingular 
square matrices. 

17. Prove that 

18. Prove that 

19. Prove that 

20. Show that 

21. If A and B are nonsquare matrices, is it true that AB can never equal 
BA? Explain. 

22. A is of order n and rank n — 1. Prove that adj A is of rank 1. 
23. Let D be a diagonal matrix with diagonal elements da, and let A = [αy] 

be a square matrix of the same order. Show that (a) When D 
premultiplies A, the elements of the ith row of A are multiplied by 
da; and (b) When D postmultiplies A, the elements of the ith column 
of A are multiplied by dii. 

24. Prove that (a) (AB)' = B'A' and (b) (A + B)' = A' + B'. 
25. Let A and B be symmetric and of order n. Prove that (a) the product AB 

is symmetric if A and B commute, and (b) A and B commute if the 
product AB is symmetric. 

26. In the matrix product A = BC, A and C are square nonsingular matrices. 
Prove that B is nonsingular. 

27. Use pivotal condensation to evaluate the determinant of the following 
matrices: 
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28. For a set of homogeneous equations the solution as given in (45) will 
become xi = —A{^αAi2 x 2 . If m = n and the matrix A is of rank 
r = n — 1, determine an expression for each of the x% variables in xi in 
terms of cofactors of A. 

29. Prove the statement: A determinant is zero if and only if the rows and 
columns are linearly dependent. 

30. For the following set of equations verify (42). 

31. Solve the following systems of equations: 

32. Evaluate det A by applying the definition of a determinant when 

33. Show the maximum number of linearly independent n-vectors from the 
set of all n-vectors x that satisfy 0 = Ax is equal to the nullity of A. 

34. If qp, qQ, and qpQ denote the nullity of P, Q, and PQ, respectively, 
show that 

qQ < qpQ ≤qp + qQ-

35. Show that the determinant of a triangular matrix equals the product of 
the main diagonal elements. 
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36. Let 

where A n and A 2 2 are square submatrices. Show that 

37. Find the eigenvalues and eigenvectors of the following matrices: 

(a) (b) (c) (d) 

38. Each of the following matrices A is similar to a diagonal matrix 
A = S - 1 AS. Find S in each case. 

(a) (b) 

(c) 

39. Evaluate the matrix norms ||A||i, | |A|| 2 , and ||A||oowhen 

(a) (b) 

(c) 

40. A network has the excitation and response pair shown in Fig. P-40. A 
second excitation is also shown. If the network is linear and time-
invariant, sketch the response for this second excitation. 
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Fig. P-40 

41. Suppose the output current of a linear, time-invariant, and reciprocal 
network, subject to excitation only at the input, is as illustrated in 
Fig. P^llα. Find the input current ii when the network is excited as 
shown in Fig. P-41b. 

Fig. P-41 
(a) (b) 

42. Show that the controlled-voltage source shown in the circuit of Fig. P-42 
is not a passive device. Comment on the activity or passivity of both 
independent and dependent sources. 

Fig. P-42 

43. Show that a negative converter is not passive. 
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44. Establish the terminal equations for the networks shown in Fig. P-44. 

Fig. P -44 
(a) (b) 

45. Draw a diagram containing only controlled sources to represent: 
(a) an ideal transformer; (b) a gyrator; (c) a negative converter. 

46. Find the v-i relations at the input terminals of a gyrator when the 
output terminals are terminated in an inductor L. In a particular 
application a customer requires a 1000 μf capacitor. Can you suggest 
what to ship the customer? 



. 2 . 

GRAPH THEORY 
AND NETWORK EQUATIONS 

2 .1 I N T R O D U C T O R Y C O N C E P T S 

When two or more of the components defined in the previous chapter are 
interconnected, the result is an electric network. (A more abstract definition 
is given in Section 2.3.) Such networks store energy, dissipate energy, and 
transmit signals from one point to another. A component part of a 
network lying between two terminals to which connections can be made 
is called a branch. The position where two or more branches are connected 
together is called a node, or junction. A simple closed path in a network is 
called a loop. 

In the first section of this chapter, we shall briefly discuss a number of 
ideas with which you are no doubt familiar to a greater or lesser degree. 
Most of these will be amplified subsequently, but an early introduction in 
rather a simple form will serve to focus the discussion of these concepts 
before a fuller treatment is given. 

KIRCHHOFF'S LAWS 

In network theory, the fundamental laws, or postulates, are Kirchhoff's 
two laws. These can be stated as follows. 

Kirchhoff's current law (KCL) states that in any electric network the 

58 
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sum of all currents leaving any node equals zero at any instant of time. When 
this law is applied at a node in a network, an equation relating the branch 
currents will result. Proper attention must, of course, be given to the cur
rent references. Thus, in Fig. 1, KCL applied at node A leads to the 
following equation: 

(1) 

Fig. 1. Illustrating KCL and KVL. 

Since the reference of ii is oriented toward the node, the current " leav ing" 
the node through branch 1 is —i1; similarly, the current leaving the node 
through branch 3 is — i 3 . 

Kirchhoff's voltage law (KVL) states that in any electric network, the 
sum of voltages of all branches forming any loop equals zero at any instant of 
time. Application of this law to a loop in an electric network leads to an 
equation relating the branch voltages on the loop. In stating KCL, it was 
arbitrarily chosen that currents "leaving the node" were to be summed. 
It could, alternatively, have been decided to sum the currents "entering 
the node." Similarly, in applying KVL, the summing of voltages can be 
performed in either of the two ways one can traverse a loop. Thus, going 
clockwise in the loop formed by branches 1, 2, 5, and 6 in Fig. 1 leads to 
the equation 

( 2 ) 

Since the reference of v6 is oriented opposite to the orientation of the loop, 
the contribution of this voltage to the summation will be — v 6 . 

It should be noted that KCL and KVL lead to algebraic equations that 
form constraints on the branch currents and voltages. There will be as 
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many KCL equations as there are nodes in the network and as many KVL 
equations as there are loops. Later we shall prove that these equations are 
not all independent; if the number of nodes is n + 1 and the number of 
branches is b, then we shall prove that the number of independent KCL 
equations is n and the number of independent KVL equations is b — n. 
We shall not dwell on these matters now, but simply observe them and 
note that together there are n + (b — n) = b independent KCL and KVL 
equations. 

Now each branch in the network also contributes a relationship between 
its voltage and current. This may be an algebraic relationship like v = Ri 
or a dynamic relationship like v = Ldi/dt. In any case there will be as 
many such equations as branches, or b equations. Altogether there will 
be b + b = 2b equations relating b currents and b voltages, or 2b variables. 
(As discussed in a later section, independent sources will not be counted 
as branches in this context.) Hence the three sets of relations together— 
namely, KCL, KVL, and the branch v-i relationships—provide an ade
quate set of equations to permit a solution for all voltages and currents. 

Now 2b is a relatively large number, and a prudent person will try to 
avoid having to solve that many equations simultaneously. There are a 
number of systematic ways of combining the three basic sets of equations, 
each leading to a different formulation requiring the solution of less than 
2b simultaneous equations. In this introductory section, we shall briefly 
discuss three such procedures and illustrate each one. The bridge in Fig. 2 

Fig. 2 . Example for network equations. 

will be used as an example. The voltage source in series with a resistor is 
counted as a single branch. Standard branch references are assumed and 
are shown by the arrows on the branches. The time following which we are 
interested in this network is taken to be t = 0, and we assume there is an 
initial voltage v5(0) = V0 on the capacitor and an initial current i2(0) = I0 

through the inductor. 
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LOOP EQUATIONS 

In this network there are six branches (b = 6) and four nodes (n = 3). 
Hence there will be b — n = 3 independent KVL equations and n = 3 
independent KCL equations. In Fig. 2, the circular arrows indicate the 
orientations of the loops we have chosen for writing KVL equations. 
They do not carry any implication of current (as yet). But suppose we 
conceive of fictitious circulating loop currents, with references given by 
the loop orientations. Examination of the figure shows that these loop 
currents are identical with the branch currents ii, i2, and i 6 . 

The following equations result if KVL is applied to the loops shown: 

(3) 

These are three equations in six unknowns, and they are observed to be 
independent. Into these equations are next substituted the v-i relation
ships of the branches, leading to 

(4) 

These are still three equations in six unknowns, this time the branch 
current unknowns. 

There remains KCL. Application of KCL at the nodes labeled A, C, 
and D results in 

(5) 

These equations are seen to be independent. In writing KCL equations 
any one node of a network can be omitted, and the resulting equations 
will be independent. It is observed that all branch currents are expressed 
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in terms of the three currents i1, i2, and i6, which are identical with the 
loop currents. When these equations are substituted into (4) and terms 
are collected, the result becomes 

This is a set of three simultaneous equations in the three loop-current 
unknowns. When the terms are collected in this manner, the equations are 
said to be in standard form. They are called the loop equations. Since both 
integrals and derivatives of variables appear, they are integrodifferential 
equations. Once the equations are solved for the loop currents, the 
remaining currents can be found from the KCL relationships in (5). 

Let us review the procedure for writing loop equations. The first step 
consists of writing a set of (independent) KVL equations in the branch-
voltage variables. Into these equations are next inserted the v-i relation
ships, changing the variables to branch currents. Finally, the branch 
currents are expressed in terms of loop currents, resulting in a set of 
integrodifferential equations in the loop-current unknowns. 

N O D E EQUATIONS 

Suppose now that the order in which the steps were taken is modified. 
Suppose we first write KCL equations as in (5); then we insert the i-v rela
tionships. The result (when the terms are written on the same side) becomes 

(6) 

These are three equations in the six branch-voltage variables. When 
writing the KCL equations, node B was omitted from consideration. 
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Suppose node R is selected as a datum with respect to which the voltages 
of all other nodes in the network are to be referred. Let these voltages 
be called the node voltages. In Fig. 2, the node voltages are VAB , vCB, and 
VDB- All the branch voltages can be expressed in terms of the node 
voltages by applying KVL. Thus 

(7) 

When these expressions are inserted into (5), and the terms are collected, 
the result becomes 

(8) 

These equations are called the node equations. Like the loop equations, 
they are integrodifferential equations. Once these equations are solved 
for the node voltages VAB, VCB, and VDB, all the branch voltages will be 
known from (7). 

To review, the first step in writing node equations is to write KCL 
equations at all nodes of a network but one. This particular node is 
chosen as a datum, and node voltages are defined as the voltages of the 
other nodes relative to this datum. The i-v relationships are inserted into 
the KCL equations, changing the variables to branch voltages. The 
branch voltages are then expressed in terms of the node voltages. Thus 
the order in which KCL, KVL, and the v-i relationships are used for 
writing node equations is the reverse of the order for writing loop equa
tions. 

STATE EQUATIONS—A MIXED SET 

The presence of the integral of an unknown in the loop and node 
equations presents some difficulties of solution. Such integrals can, of 
course, be eliminated by differentiating the equations in which they 
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appear. But this will increase the order of the equations. It would be 
better to avoid the appearance of the integrals in the first place. 

In the present example it may be seen that an integral appears in the 
loop equations when the voltage of a capacitor is eliminated in a KVL 
equation by substituting its v-i relationship. Similarly, an integral appears 
in the node equations when the current of an inductor is eliminated in a 
KCL equation by substituting its i-v relationship. These integrals will 
not arise if we leave the capacitor voltages and inductor currents as 
variables in the equations. 

With this objective in mind, return to the KVL equations in (3). 
Eliminate all branch voltages except the capacitor voltage v5 by using 
the branch v-i relations. Since the branch relationship of the capacitor is 
not used in this process, add it as another equation to the set. The result 
will be 

(9) 

These are four equations in six unknowns, but now one of the unknowns 
is a voltage. As before, the KCL equations can be used to eliminate some 
of the currents. Substituting them from (5) into (9) and rearranging terms 
yields 
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Here we have four equations in four unknowns, and they can now be 
solved. But we seem to have complicated matters by increasing the 
number of equations that must be solved simultaneously. However, note 
that the last two equations in this set are algebraic; they contain no 
derivatives or integrals. The first of them can be solved for i1, the second 
for i6, and the results inserted into the previous two equations. The 
result of this manipulation will be 

or, collecting terms, 

or, in matrix form, 

(10) 

where 
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(11) 

The resulting matrix equation (10) represents two first-order differential 
equations in two unknowns. It is called the state equation, for reasons 
which will be discussed in a later chapter. The variables i2 and v5 are 
called the state variables. 

In looking back at the procedure used to write the state equations, 
note that the basic ingredients are the same as those for writing loop or 
node equations. This time, however, we do not insist that the eventual 
variables be either all voltages or all currents; we settle for a mixed set of 
variables. Integrals are avoided if we choose capacitor voltages and 
inductor currents as variables. The starting point is a set of KVL equations 
into which all branch relationships except for capacitor branches are 
inserted. Then KCL is used to eliminate some of the branch currents. In 
the resulting equations, some resistor currents also appear as variables, 
but it is possible to eliminate them because a sufficient number of equa
tions are algebraic in nature and not differential. 

SOLUTIONS OF EQUATIONS 

The loop, node, and state equations of linear, time-invariant, lumped 
networks are ordinary differential equations with constant coefficients. 
(Integrals that may appear initially can be removed by differentiation.) 
There remains the task of solving such equations. A number of different 
methods exist for this purpose. A time-domain method for solving the 
state equations is discussed in a later chapter, and the Laplace-transform 
method is discussed in Appendix 3. 

In the transform method, the Laplace transform of the simultaneous 
differential equations is taken, converting them to simultaneous algebraic 
equations in the complex variable s. These algebraic equations are solved 
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for the transform of the desired variables, whether loop currents, 
node voltages, or state variables. Finally, the inverse transform is taken. 
This yields the solution as a function of time following the initial instant, 
to = 0. 

The solution has contributions from two places: the exciting signal 
sources and the initial conditions. The initial conditions are the values of 
capacitor voltages and inductor currents immediately after t0. The 
principles of continuity of charge and of flux linkage impose constraints 
on the capacitor voltages and inductor currents—constraints that serve 
to determine their values just after t0 from their values just before t0.* 
The network is said to be initially relaxed if the values of capacitor 
voltages and inductor currents are initially zero. 

In the interest of concreteness, we shall carry out the remainder of the 
discussion with the state equations (10) previously derived for Fig. 2 
as an illustration. Taking Laplace transforms of these equations and 
rearranging leads to 

(12) 

where I0 and V0 are the initial values. These can now be solved for I2(s) 
or V5(s). For I2(s) we get 

(13) 

where Δ = s2 — (a + e)s + ae — bd is the determinant of the equations. The 
contributions of the source and of the initial conditions are clearly 
evident. 

Again for concreteness, suppose that 

and 

(14) 

* For a detailed discussion of initial conditions, see S. Seshu and N. Balabanian, 
Linear Network Analysis, John Wiley & Sons, Inc., New York, 1959, pp. 101-112. 
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and suppose the initial values are such that 

(15) 

Then 

(16) 

The partial fraction expansion of I2(s) puts into evidence all of its 
poles. Some of these poles [the second term in (15)] are contributed by 
the exciting (source) function, whereas the remainder are contributed by 
the network. In the inverse transform we find terms that resemble the 
driving function and also other terms that are exponentials. There is an 
abundance of terminology relating to these terms that has been accumu
lated from the study of differential equations in mathematics, from the 
study of vibrations in mechanics, and from the study of a-c circuit theory, 
so that today we have a number of names to choose from. These are the 
following: 

1. Forced response—natural, or free, response; 
2. Particular integral—complementary function; and 
3. Steady state—transient. 

Perhaps you are most familiar with the terms "steady s ta te" and 
"transient." When the driving function is a sinusoid, as in our example, 
there will be a sinusoidal term in the response that continues indefinitely. 
In our example the other terms present die out with time; they are 
transient. Thus the sinusoidal term will eventually dominate. This leads 
to the concept of the steady state. If the driving function is not periodic 
the concept of the steady state loses its significance. Nevertheless, the 
poles of the transform of the driving function contribute terms to the 
partial-fraction expansion of the response transform, and so the response 
will contain terms due to these poles. These terms constitute the forced 
response. In form they resemble the driving function. The remaining 
terms represent the natural response. They will be present in the solution 
(with different coefficients) no matter what the driving function is, even 
if there is no driving function except initial capacitance voltages or 
initial inductance currents. This leads to the name "natural," or "free," 
response. The exponents in the natural response are called the natural 
frequencies. 
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In the illustrative example the exponents in the natural response, the 
natural frequencies, are negative real numbers. If there were positive 
exponents, or complex ones with positive real parts, then the natural 
response would increase indefinitely with time instead of dying out. A 
network with such a behavior is said to be unstable. We define a stable 
network as one whose natural frequencies lie in the closed left half s-plane; 
that is, in the left half-plane or on the j-axis.* Actually, some people 
prefer to exclude networks with j-axis natural frequencies from the class 
of stable networks. 

Let us now clearly define the various classes of response. The complete 
response of a network consists of two parts; the forced response and the 
natural, or free, response. The forced response consists of all those terms 
that are contributed by poles of the driving functions, whereas the free 
response consists of all the terms that are contributed by the natural 
frequencies [the zeros of Δ(s)]. If the driving function is periodic, the 
forced response is also called the steady state. If there are no j-axis 
natural frequencies, then the free response is also called the transient. 

2.2 L I N E A R G R A P H S 

As discussed briefly in the previous introductory section, the funda
mental " laws," or postulates, of network theory are the two laws of 
Kirchhoff and the relationships between the voltages and the currents of 
the components whose interconnection constitutes the network. Kirch
hoff's two laws express constraints imposed on the currents and voltages 
of network elements by the very arrangement of these elements into a 
structure. Network topology is a generic name that refers to all properties 
arising from the structure or geometry of a network. 

The topological properties of a network are independent of the types 
of components that constitute the branches. So it is convenient to 
replace each network element by a simple line segment, thereby not 
committing oneself to a specific Component. The resulting structure 
consists of nodes interconnected by line segments. There is a branch of 
mathematics, called the theory of linear graphs, that is concerned with 
the study of just such structures. 

We shall begin a thorough study of network analysis by focusing first 
on linear graphs and those of their properties that are important in this 
study. The discussion of linear graphs will not be exhaustive, and it will 

* This definition is applicable to all lumped, linear, time-invariant systems. More 
general and precise definitions of stability will be discussed in later chapters. 
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be necessary to consider rapidly the definitions of many terms without, 
perhaps, adequate motivation for their introduction. 

INTRODUCTORY DEFINITIONS 

A linear graph is defined as a collection of points, called nodes, and line 
segments called branches, the nodes being joined together by the branches. 
Sometimes it is convenient to view the nodes, which coincide with the 
end points of the branches, as parts of the branches themselves. At other 
times it is convenient to view the nodes as being detached from the 
branches. 

A correspondence between a network and a linear graph can imme
diately be made. Thus the graph associated with the network in Fig. 3a 
is shown in Fig. 3b. The nodes and branches are each numbered. In 

Fig. 3 . A network and its associated linear graph. 

(a) 
(b) 

what follows, we will use this graph to make some observations from 
which generalizations can be drawn. Also, properties to be defined will be 
illustrated with this graph as an example. 

Branches whose ends fall on a node are said to be incident at the node. 
In the example, branches 2, 4, and 5 are incident at node 2. 

Each branch of the graph in the example carries an arrow to indicate 
its orientation. A graph whose branches are oriented is called an oriented 
graph. The elements of a network with which a graph is associated have 
both a voltage and a current variable, each with its own reference. In 
order to relate the orientation of the branches of a graph to these refer
ences, we shall make the convention that the voltage and current of an 
element have the standard reference—voltage-reference " p l u s " at the 
tail of the current-reference arrow. The branch orientation of a graph will 
be assumed to coincide with the associated current reference. Of course, 
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the properties of the graph have nothing to do with those conventions 
related to a network. 

A subgraph is a subset of the branches and nodes of a graph. The 
subgraph is said to be proper if it consists of strictly less than all the 
branches and nodes of the graph. 

A path is a particular subgraph consisting of an ordered sequence of 
branches having the following properties: 

1. At all but two of its nodes, called internal nodes, there are incident 
exactly two branches of the subgraph. 

2. At each of the remaining two nodes, called the terminal nodes, there 
is incident exactly one branch of the subgraph. 

3. No proper subgraph of this subgraph, having the same two terminal 
nodes, has properties 1 and 2. 

In the example, branches 2, 5, and 6, together with all the nodes, consti
tute a path. Nodes 1 and 3 are the terminal nodes. Although three 
branches of the graph are incident at node 2, only two of these, 2 and 5, 
are members of the subgraph. 

A graph is connected if there exists at least one path between any two 
nodes. The example is a connected graph. The graph associated with a 
network containing a transformer could be unconnected. 

A loop is a particular connected subgraph of a graph at each node of 
which are incident exactly two branches of the subgraph. Thus, if the 
two terminal nodes of a path are made to coincide, the result (which can 
be called a closed path) will be a loop. In the example, branches 4, 5, and 6 
together with nodes 2, 3, and 4 constitute a loop. When specifying a 
loop, either the set of all the branches in the loop or (when no two branches 
are in parallel) the set of all nodes can be listed. Each of these will uniquely 
specify the loop. Thus, in the example, to specify the loop just described 
it is sufficient to list either the set of branches {4, 5, 6 } or the set of nodes 
{2, 3 , 4 } . 

A tree is a connected subgraph of a connected graph containing all the 
nodes of the graph but containing no loops. When specifying a tree, it is 
enough to list its branches. In the graph of the example, branches 2, 4, 
and 5 constitute a tree. The concept of a tree is a key concept in the 
theory of graphs. The branches of a tree are called twigs; those branches 
that are not on a tree are called links. Together they constitute the 
complement of the tree, or the cotree. This is not a unique decomposition 
of the branches of a graph. Figure 4 shows two trees for the graph of 
Fig. 3. In the first one, branches 2, 4, and 5 are twigs, so branches 1, 3, 
and 6 are links. In the second tree, branch 2 is still a twig, but branches 3 
and 6, which were previously links, are now twigs. Whether a particular 
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branch is a twig or a link cannot be uniquely stated for a graph; it makes 
sense to give such a designation only after a tree has been specified. 

Each of the trees in Fig. 4 has a special structure. In the first one, all 
the twigs are incident at a common node. Such a tree is called a starlike 
tree, or a star-tree for short. In the second one, the nodes can be so ordered 
that the tree consists of a single path extending from the first node to the 
last. Such a tree is called a linear tree. In a linear tree there are exactly 
two terminal nodes, whereas in a starlike tree all nodes but one are 
terminal nodes. 

3 

Fig. 4 . Two trees of a given graph. 

(a) (b) 

The number of branches on a tree of a graph is one less than the 
number of nodes of the graph. This result can be proved by induction. 
Thus for a graph with two nodes the number of twigs is 1. Suppose the 
result is true for a graph with k nodes; that is, suppose the number of 
twigs equals k — 1. Now consider a connected graph having k + 1 nodes 
and focus on a tree of this graph. There will be at least one node on this 
tree at which is incident exactly one twig. (If not, two or more twigs will 
be incident at each node, which is impossible, because this would require 
that the tree contain at least one loop.) Let the node and the single twig 
incident at this node be removed, leaving a tree having k nodes. By 
hypothesis, the number of twigs on this tree is k — 1. Replacing the 
removed node and twig leads to the result. For future convenience the 
number of nodes in a graph will be denoted by n + 1. Then, the number 
of twigs on a tree will be n. 

If a graph is unconnected, the concept corresponding to a tree for a 
connected graph is called a forest, which is defined as a set of trees, one for 
each of the separate parts. If p + 1 is the number of separate parts 
of an unconnected graph and n + 1 is the number of nodes, then a forest 
will contain n — p twigs. This can be proved as before for a connected 
graph. The complement of the forest is the coforest. 
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THE INCIDENCE MATRIX 

When a graph is given, say the example in Fig. 3, it is possible to tell 
completely which branches are incident at which nodes and what are the 
orientations, relative to the nodes. Conversely, the graph would be 
completely defined if this information (namely, which branches are 
incident at which nodes and with what orientation) is given. The most 
convenient form in which this incidence information can be given is in 
matrix form. 

For a graph having n + 1 nodes and b branches, the complete incidence 
matrix (or more completely, the complete node-branch incidence matrix) 
A a = [aîj] is an (n + 1 ) × b rectangular matrix whose elements have the 
following values: 

aij = 1 if branch j is incident at node i and oriented away from it; 
atj = — 1 if branch j is incident at node i and oriented toward it; 
aij = 0 if branch j is not incident at node i. 

The subscript a on A a stands for all nodes. 
For the example in Fig. 3, the complete incidence matrix is 

nodes branches 

( 1 7 ) 

In this example it is observed that each column contains a single + 1 
and a single — 1 . This is a general property for any linear graph because 
each branch is incident at exactly two nodes, and it must perforce be 
oriented away from one of them and toward the other. Thus, if all other 
rows are added to the last row, the result will be a row of zeros, indicating 
that the rows are not all independent. At least one of them can be elimi
nated, since it can be obtained as the negative sum of all the others. Thus 
the rank of A a can be no more than (n + 1 ) — 1 = n. 

The matrix obtained from A a by eliminating one of the rows is called 
the incidence matrix and is denoted by A. (For emphasis, it is sometimes 
called the reduced incidence matrix.) It is of order n × b. We shall now 
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discuss the rank of matrix A and how to determine its nonsingular 
submatrices. 

For a given graph, select a tree. In the incidence matrix arrange the 
columns so that the first n columns correspond to the twigs for the selected 
tree and the last b — n correspond to the links. 

In terms of the example, let A be obtained from (17) by eliminating 
the last row. Select the first tree in Fig. 4. Then the A matrix will become 

twigs links 

(18) 

In general terms, the matrix A can be partitioned in the form 

(19) 

where At is a square matrix of order n whose columns correspond to the 
twigs, and Aj is a matrix of order n × (b — n) whose columns correspond 
to the links. 

For the example, 

The determinant of this matrix is found to equal — 1 , and so the matrix is 
nonsingular. Hence, for this example, the A matrix is seen to be of rank n. 

We shall now show that this is a general result. Specifically, if a graph 
has n + 1 nodes, the rank of its incidence matrix equals n. This will be 
established by showing that an nth order submatrix of A whose columns 
correspond to the twigs for any tree is nonsingular. 

Proof. Given a connected graph and its complete incidence matrix A a , 
eliminate one row to get A and partition it in the form [At Al], where At 
is square, of order n, and its columns correspond to twigs. Since the tree 
is connected, there is at least one twig incident at the node corresponding 
to the eliminated row. The column in At corresponding to this twig 
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contains only one nonzero element (which equals + 1 ) . Hence det A t 

equals plus or minus the cofactor of this element. The matrix associated 
with this cofactor corresponds to a connected subgraph with n — 1 
branches; this matrix contains neither of the rows in which the eliminated 
column had nonzero elements. Since this subgraph is connected, it must 
contain at least one twig incident at one of the two eliminated nodes. The 
column in the matrix corresponding to this twig contains only one non
zero element. Hence its determinant equals plus or minus the correspond
ing cofactor, whose associated matrix is of order n — 2. Continue this 
process until a cofactor of order 1 remains. This corresponds to the last 
node, and, since the graph is connected, the cofactor is nonzero. As a 
conclusion, not only has det A t been found to be nonzero—and so A t is 
nonsingular—but its value has been found to be + 1 . And since an n × n 
submatrix of Aa is nonsingular, Aa is of rank n. 

The preceding is a very useful result. The converse is also true. That is, 
given an n × n nonsingular submatrix of the incidence matrix A, its 
columns correspond to the twigs for some choice of tree. The proof will 
be left as a problem. 

The preceding has also shown that the determinant of every n × n 
nonsingular submatrix of the incidence matrix equals + 1 or — 1. 

With the preceding result, it is now possible to find a measure of the 
number of trees in a graph. Since each nonsingular n × n submatrix of A 
corresponds to a tree, ail we have to do is to count ail such nonsingular 
submatrices. This implies evaluating the determinants of all n × n 
submatrices of A, which is quite tedious. The problem can be simplified 
by using the Binet-Cauchy theorem, which was discussed in Chapter 1 . 
According to this theorem, 

(products of corresponding majors of A and A') 

(ail nonzero majors of A ) 2 

number of trees. 

( 2 0 ) 

The second line foilows from the fact that a nonsingular submatrix of 
A' has the same determinant as the corresponding submatrix of A. Since 
each nonzero major equals + 1 , and there are as many nonzero majors as 
trees, the last line foilows. 

Thus, to find the number of trees of a graph, it is required only to 
evaluate det (AA'). For the example of Fig. 3, the incidence matrix was 
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given in (18). Hence the number of trees will be 

[Ch. 2 

* * * 

Given a graph, it is a simple matter to write the incidence matrix. 
The problem might often be the converse: given an incidence matrix (or 
complete incidence matrix), draw the graph. In an abstract sense, the 
incidence matrix defines the graph. It is one representation of the graph, 
whereas the drawing of lines joining nodes is another representation. It 
is desired to obtain this second representation from the first. 

The procedure is quite straightforward. Given the matrix A, place on 
the paper one more node than there are rows in A and number them 
according to the rows. Then consider the columns one at a time. There 
are at most two nonzero elements in each column; place a branch between 
the two nodes corresponding to the two rows having nonzero elements in 
that column. If there is only one nonzero element, the branch goes 
between the node corresponding to this row and the extra node. The 
orientations will be determined by the signs of the elements. 

To illustrate, let the given A matrix be 



Sec. 2.2] LINEAR GRAPHS 77 

Two different people studying network analysis were given this job, and 
each came up with a different-looking graph, as shown in Fig. 5. The 
apparent problem was that right at the start they placed the nodes on 
the paper in a different pattern. However, both graphs have as incidence 
matrix the given matrix. 

Fig. 5. Isomorphic graphs. 
(a) (b) 

We say two graphs are isomorphic if they have the same incidence 
matrix. This requires that they have the same number of nodes and 
branches, and that there be a one-to-one correspondence between the 
nodes and a one-to-one correspondence between the branches in a 
particular way—namely, in a way that leads to the same incidence matrix. 

THE LOOP MATRIX 

The incidence matrix gives information about the incidences of branches 
at nodes, but it does not explicitly tell anything about the way in which 
the branches constitute loops. This latter information can also be given 
conveniently in matrix form. For this purpose we first endow each loop 
of a graph with an orientation, which is done by giving its nodes a cyclic 
order. This order is most easily shown by a curved arrow, as in Fig. 6 
where two possible loops are shown. To avoid cluttering the diagram, it is 
sometimes necessary simply to list the set of nodes in the chosen order. 
For the loops shown in Fig. 6, this listing would be {1, 3, 2 } and {1, 2, 3, 4 } . 

For a graph having n + 1 nodes and b branches, the complete loop 
matrix (also sometimes called the complete circuit matrix) B a = [bij] is a 
rectangular matrix having b columns and as many rows as there are 
loops; its elements have the following values: 

bij = 1 if branch j is in loop i, and their orientations coincide; 
bij = —1 if branch j is in loop i, and their orientations do not coincide; 
bij = 0 if branch j is not in loop i. 
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Fig. 6. Loop orientations. 

The subscript a again stands for all the loops. 
Unlike the number of rows in the complete incidence matrix (equal to 

the number of nodes of the graph), the number of rows in Ba is not simply 
expressible in terms of n and b. For the example in Fig. 6 there are seven 
loops specified by the nodes as: 

The loop matrix will therefore be 

loops branches 

(21) 

The set of all loops in a graph is quite a large set, as illustrated by this 
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example. There is a smaller subset of this set of all loops; it has some 
interesting properties and will be discussed next. 

Given a graph, first select a tree and remove all the links. Then replace 
each link in the graph, one at a time. As each link is replaced, it will form 
a loop. (If it does not, it must have been a twig.) This loop will be charac
terized by the fact that all but one of its branches are twigs of the chosen 
tree. Loops formed in this way will be called fundamental loops, or f-loops 
for short. The orientation of an f-loop will be chosen to coincide with that 
of its defining link. There are as many f-loops as there are links; in a graph 
having b branches and n + 1 nodes, this number will be b — n. 

For the example, let the chosen tree be the second one in Fig. 4. The 
f-loops formed when the links are replaced one at a time are shown in 
Fig. 7. (Note the orientation.) In writing the loop matrix for the f-loops, 

Fig. 7 . Fundamental loops. 

(a) (b) (c) 

let the columns be arranged in the same order as for the reduced incidence 
matrix for the same tree; that is, with the twigs first, then the links. Also, 
let the order of the loops be the same as the order of the columns of the 
corresponding links. 

The matrix of f-loops will then be 

twigs links 

(22) 

The subscript f stands for fundamental. The square matrix formed by the 
last three columns corresponding to the links is seen to be a unit matrix; 
hence it is nonsingular, and the rank of B / for this example equals the 
number of links, b — n. 
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In general terms, the matrix of f-loops for an arbitrary connected graph 
can be partitioned in the form 

(23) 

The (b — n) × (b — n) square submatrix whose columns correspond to the 
links for a particular tree will be a unit matrix from the very way in 
which it is formed. Hence the rank of Bf will be b — n. 

Now the matrix of fundamental loops is a submatrix of the matrix of 
all loops. Hence the rank of B a is no less than that of Bf; namely, b — n. 
We shall next show that the rank of Ba is no more than b — n, and so it 
is exactly b — n. To do this, we shall use a result that is of great importance 
in its own right. 

Given a graph, let the columns of the two matrices Aa and B a be 
arranged in the same order. Then it will be true that 

(24) 

and 

(25) 

Of course, the second one will be true if the first one is, since BaA'a = 
(AaBa)'. The relationships in (24) and (25) are called the orthogonality 
relations and can be proved as follows. 

The matrices Aa and B'a will have the following forms: 

branches 

nodes 

loops 

branches 

Focus attention on any one of the columns of B'a and on any one of the 
rows of Aa; that is, focus attention on a loop and a node. Either the node 
is on the loop or not. If not, then none of the branches on the loop can be 
incident at the node. This means that corresponding to any nonzero 
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element in a column of there will be a zero element in the row of A α ; 
so the product will yield zero. If the node is on the loop, then exactly 
two of the branches incident at the node will lie on the loop. If these two 
branches are similarly oriented relative to the node (either both oriented 
away or both toward), they will be oppositely oriented relative to the 
loop, and vice versa. In terms of the matrices, if the elements in a row 
of Aa corresponding to two branches are both + 1 or both — 1 , the corre
sponding two elements in a column of B'a will be of opposite sign, and vice 
versa. When the product is formed, the result will be zero. The theorem 
is thus proved. 

With the preceding result it is now possible to determine the rank of 
Ra by invoking Sylvester's law of nullity, which was discussed in Chapter 
1. According to this law, if the product of two matrices equals zero, 
the sum of the ranks of the two matrices is not greater than the number 
of columns of the first matrix in the product. In the present case the 
number of columns equals the number of branches b of the graph. So, 
since the rank of a matrix is the same as the rank of its transpose, 

(26) 

The rank of Aa has already been determined to be n. Hence 

(27) 

Since it was previously established that the rank of Ba is no less than b — n 
and it is now found that it can be no greater than b — n, then the rank of 
B a is exactly b — n. 

Observe that the removal of any number of rows from A a or any 
number of rows from B a will not invalidate the result of (26) and (27). 
Let B be any submatrix of B a having b — n rows and of rank b — n. (One 
possibility is the matrix of f-loops, Bf.) Then the orthogonality relations 
can be written as 

(28) 

RELATIONSHIPS B E T W E E N SUBMATRICES OF A A N D B 

Let the columns of B be arranged, as were the columns of A earlier, 
with the twigs for a given tree first and then the links. The matrix can 
then be partitioned in the form 

(29) 
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where B l is square of order b — n. [If B is the matrix of f-loops, then B l is 
a unit matrix, as in (23).] We shall now show that, with B partitioned as 
shown, the submatrix B l , whose columns are links for a tree, will be 
nonsingular. 

To prove this, let A be partitioned as in (19) and use (28) to write 

(30) 

Since A t is nonsingular, 

(31) 

Finally matrix B becomes 

(32) 

Now let the same procedure be carried out starting at (30), but this 
time with the matrix B f of the f-loops for some tree, with B f partitioned 
in the form 

(33) 

the subscript f on B f t being used to avoid confusion. The details will be 
left for you to carry out; the result will be 

(34) 

By comparing this with (32), it foilows that 

(35) 

Since B and B f are both of rank b — n, then B l must be nonsingular. This 
foilows from (52) in Chapter 1. The result is thus proved. 

The converse is also true; that is, if the loop-matrix B is partitioned 
into two matrices as in (29), one of them being square of order b — n and 
nonsingular, the columns of this matrix will correspond to the links for 
some tree. The proof is left for you to carry out. (See Problem 6.) 

Since B l in (35) is nonsingular, the matrices B and B f are row-equivalent 
matrices. (For a discussion of equivalent matrices, see Chapter 7.) Hence, 
the rows of B are linear combinations of the rows of B f , and vice versa. 
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Additional useful results are obtained by solving (30) for A l . Since 
B l is nonsingular, we get 

(36) 

The last step follows because the transpose of a product equals the product 
of transposes in the reverse order. The preceding step follows because the 
operations of transpose and inverse are commutative for a nonsingular 
matrix. 

When this is inserted into the partitioned form of the A matrix, the 
result will be 

(37) 

This should be compared with (32), which gives the loop matrix in a 
similar form. 

CUT-SETS A N D THE CUT-SET MATRIX 

In the example of Fig. 3, suppose branches 1 and 5 are removed. The 
result is shown in Fig. 8a. (By "removing" a branch we mean deleting it 

Fig. 8. Removing branches for a graph. 

(a) (b) (c) 

or "open-circuiting" it, but leaving intact the nodes at which it is 
incident.) The graph is still a connected graph. Now if branches 3 and 4 
are also removed, the result becomes Fig. 8b. The graph is now uncon
nected: it has been " c u t " into two parts. This development leads to the 
notion of a cut set, which is defined as follows: A cut-set is a set of branches 
of a connected graph whose removal causes the graph to become unconnected 
into exactly two connected subgraphs, with the further stipulation that the 
removal of any proper subset of this set leaves the graph connected. 
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In the example, {1, 3, 4, 5 } was seen to be a cut-set. Set {1, 2, 3 } is 
also a cut-set. (A single isolated node, which is one of the two parts in 
this case, is considered to be a bona fide "part.") But {1, 2, 3, 6 } is not a 
cut-set even though the graph is cut into two parts, because the removal 
of the proper subset {1, 2, 3 } does not leave the graph connected. 

The cut-set classifies the nodes of a graph into two groups, each group 
being in one of the two parts. Each branch of the cut-set has one of its 
terminals incident at a node in one group and its other end incident at a 
node in the other group. A cut-set is oriented by selecting an orientation 
from one of the two parts to the other. The orientation can be shown on the 
graph as in Fig. 8c. The orientations of the branches in a cut-set will 
either coincide with the cut-set orientation or they will not. 

Just as the incidence matrix describes the incidences and the orienta
tions of branches at nodes, so a cut-set matrix can be defined to describe 
the presence of branches in a cut-set and their orientation relative to 
that of the cut-set. We define a cut-set matrix Q a = [qij] whose rows 
correspond to cut-sets and whose columns are the branches of a graph. 
The elements have the following values: 

qij = 1 if branch j is in cut-set i, and the orientations coincide; 
qij = —1 if branch j is in cut-set i, and the orientations do not coincide; 
qij = 0 if branch j is not in cut-set i. 

The subscript a stands for all cut-sets. 
Since cutting all branches incident at a node separates this node from 

the rest of the graph, this set of branches will be a cut-set, provided the 
rest of the graph is not itself cut into more than one part. In the graph shown 
in Fig. 9, cutting the set of branches incident at node 1 will separate 

Fig. 9. A hinged, or separable, graph. 

the graph into three parts, of which the isolated node 1 will be one part. 
So this set of branches is not a cut-set. 

However, the graph shown in Fig. 9 is a peculiar kind of graph, and 
node 1 is a peculiar node. We define a hinged graph as a graph in which 
there is at least one subgraph which has only one node in common with its 
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complement subgraph in the graph. A node having this property is called a 
hinged node. In a hinged graph the nodes can be grouped in two sets such 
that every path from a member of one set to a member of the other must 
pass through a hinged node. In Fig. 9, nodes 2, 3, and 4 form one set; and 
nodes 5 and 6, the other. If the branches incident at a hinged node are 
cut, there will be no path from a node in one set to a node in the other. 
Hence the remaining subgraph, not counting the hinged node, will not be 
connected; so the set of branches incident at a hinged node will not be a 
cut-set. For all other nodes, the set of branches incident there will be a 
cut-set. 

For nonhinged graphs the orientation of the cut-set that consists of all 
branches incident at a node is chosen to be away from the node. Thus 
the cut-set matrix will include the incidence matrix for nonhinged graphs. 

For the example of Fig. 3, in addition to the cut-sets consisting of the 
sets of branches incident at each node, there are three other cut-sets: 
{1, 3, 4, 5} , {2, 3, 5, 6 } , and {1, 2, 4, 6} . The cut-set matrix Q a is then 

cut sets branches 

where the first four rows are identical with Aa and the last three rows 
correspond to the cut-sets {1, 3, 4, 5} , {2, 3, 5, 6} , and {1, 2, 4, 6} , respec
tively. 

The cut-set matrix Q a of a graph is seen to have more rows than its inci
dence matrix. The question of the rank of the cut-set matrix then arises. To 
answer this question, consider a special kind of cut-set formed as follows. 
Given a connected graph, first select a tree and focus on a branch bk of 
the tree. Removing this branch from the tree unconnects the tree into two 
pieces. All the links which go from one part of this unconnected tree to 
the other part, together with bk, will constitute a cut-set. We call this a 
fundamental cut-set, or f-cut-set for short. For each twig, there will be 
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an f-cut-set, so for a graph having n + 1 nodes (hence, n twigs) there will 
be n fundamental cut-sets. The orientation of an f-cut-set is chosen to 
coincide with that of its defining twig. 

As an illustration, take the graph of Fig. 10. The tree is shown in 

Fig. 10. Example of fundamental cut-set. 

heavy lines. Each f-cut-set is uniquely determined. Let us write the 
cut-set matrix for the f-cut-sets, arranging the columns so that the first n 
of them correspond to the twigs and are arranged in the same order as 
the associated cut-sets. 

twigs links 

The subscript f stands for fundamental. The square submatrix corre
sponding to the first four columns is seen to be a unit matrix; hence it is 
nonsingular, and the rank of this cut-set matrix equals the number of its 
rows, or the number of twigs in a tree. 

This is, in fact, a specific illustration of a general result. In the general 
case let the columns of the f-cut-set matrix be arranged for a given tree 
with the twigs first, then the links, the twigs being in the same order as 
the cut-sets they define. The matrix can be partitioned in the form 

(38) 

From the very way in which it is constructed, the n × n submatrix Q T 

whose columns correspond to the twigs will be a unit matrix. Hence the 
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Q f matrix will be of rank n. This still does not tell us everything about 
the rank of Qa . But since the matrix of f-cut-sets is just a submatrix of 
Qa , the rank of Qa can be no less than that of Q f , or rank of Qa > n. 

When seeking to find the rank of B a , it became necessary to use the 
orthogonality relation A α B ^ = 0 . But Qa is a matrix that contains Aa 
as a submatrix, and it might be suspected that this same relationship is 
satisfied with Aa replaced by Qa.* This is true and can be proved in the 
same way as before. It is only necessary to establish that if a cut-set has 
any branches in common with a loop, it must have an even number. This 
fact can be readily appreciated by reference to Fig. 11, which shows a 

Fig. 1 1 . A cut-set has an even number of branches in common with a loop. 

cut-set separating a graph into two parts. Suppose branch 1 of the cut-set 
is in a loop. If we start at its P1 end and traverse the branch to P 2 , it will 
be necessary to return to P1 via another branch of the cut-set in order to 
form a closed path. The path need not be closed by only one excursion 
between P1 and P 2 , but any single excursion will use up two branches 
of the cut-set. If these two branches have the same orientation relative 
to the cut-set, they will have the opposite orientation relative to the 
loop, and vice versa. Hence, by the same reasoning used in obtaining (24), 
it follows that 

(39) 

The rank of Qa can now be determined. Using Sylvester's law of nullity 
and the known rank of B, it will follow that the rank of Qa is no greater 
than n. (You may carry out the details.) And since Q f is a submatrix of 
Qa having a rank of n, the rank of Qa is no less than n. Hence the rank of 
Qa is exactly n. 

Removal of any number of rows from Qa will not invalidate (39). Let 
Q be any n-rowed submatrix of Qa of rank n. (One possibility is the matrix 
of f-cut-sets, Q f.) Then 

(40) 

* This statement applies only for a nonhinged graph. 



88 GRAPH THEORY AND NETWORK EQUATIONS [Ch. 2 

In particular, let Q be Q f and let it be partitioned as in (38). Then 

or 

(41) 

and, finally, 

(42) 

Something very interesting follows from this expression. Comparing it 
with (37) shows that 

(43) 

Since A t is a nonsingular matrix, the incidence matrix of a graph is 
row equivalent to the fundamental cut-set matrix for some tree. Thus 
the rows of A are linear combinations of the rows of Q f , and vice versa. 

PLANAR GRAPHS 

All of the properties of graphs that have been discussed up to this 
point do not depend on the specifically geometrical or topological charac
ter of the graph, only on its abstract characteristics. We shall now discuss 
some properties that depend on the topological structure. 

Topological graphs can be drawn, or mapped, on a plane. Either they 
can be drawn so that no branches cross each other or they cannot. We 
define a planar graph as a graph that can be mapped on a plane in such a 
way that no two branches cross each other (i.e., at any point that is not 
a node). Figure 12 shows two graphs having the same number of nodes 
and branches; the first is planar; the second, nonplanar. 

The branches of a planar graph separate a plane into small regions; 
each of these is called a mesh. Specifically, a mesh is a sequence of branches 
of a planar graph that enclose no other branch of the graph within the 
boundary formed by these branches. In Fig. 12a, the set {1, 2, 3} is a 
mesh, whereas {1, 2, 4, 5 } is not. The outermost set of branches separates 
the plane into two regions: the finite region in which the remaining 
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branches lie and the infinite region. The infinite region can be looked upon 
as the "interior" of this set of branches. It is the complement of the 
finite region. Hence this set of branches can also be considered a mesh 
and is called the outside mesh. In Fig. 12a the outside mesh is {1, 2, 6, 
7, 8, 5} . However, when the meshes of a graph are enumerated, the outside 
mesh is not counted. 

(a) (b) 

Fig. 12. Planar (a) and nonplanar (b) graphs. 

The set of meshes of a planar graph is a special set of loops. A question 
arises as to whether the meshes can be the f-loops for some tree; or, 
stated differently, is it possible to find a tree, the f-loops corresponding to 
which are meshes? To answer this question, note that each f-loop contains 
a branch (a link) that is in no other f-loop. Hence any branches that are 
common between two meshes cannot be a link and must be a twig. A 
tree can surely be found for which the meshes are f-loops if the branches 
common between meshes form no closed paths. For some planar graphs 
it will be possible; and for others, not. To illustrate, Fig. 13 shows two 

Fig. 13. Meshes may or may not be f-loops for some tree. 

(a) (b) 

very similar planar graphs having the same number of nodes, branches, 
and meshes. The branches common between meshes are shown darkened. 
These must be twigs for a tree if the meshes are to be f-loops. However, 
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in the first graph, these branches form a loop, and so the desired result 
is not possible; whereas it is possible for the second graph. 

This completes the discussion of linear graphs as such. 

2.3 BASIC LAWS OF ELECTRIC NETWORKS 

Broadly, an electric network consists of an interconnection of two or 
more elements, or branches. These branches may consist of the compo
nents discussed in Chapter 1 or other, more general (nonlinear, time-
varying, etc.) components. Each branch has a voltage and a current 
variable, and these variables are related to each other by specific relation
ships. 

To tie in the analysis of networks with linear graphs, we shall make the 
following definition: 

An electric network is an oriented linear graph with each branch of 
which there are associated two functions of time t: the current i(t) and 
the voltage v(t). These functions are constrained by Kirchhoff's two 
laws and the branch relationships to be described. 

KIRCHHOFF'S CURRENT LAW 

Kirchhoff's current law (abbreviated as KCL) states that in any electric 
network the sum of all currents leaving a node equals zero, at each instant of 
time and for each node of the network. For a connected network (graph) 
having n + 1 nodes and b branches, the KCL equations can be written as 

(44) 

where ajk has the same definition as the elements of the incidence matrix. 
Hence, in matrix form, KCL becomes 

(45) 

where A is the incidence matrix, i(t) is a column matrix of branch currents, 
and I(s) is the column matrix of Laplace transforms of the branch currents. 

(46) 
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(Of course, it is also true that Aa i(t) = 0 if all the nodes are included.) 
Since the rank of A is n, all of the equations in this set are linearly 
independent. 

Let the incidence matrix be partitioned in the form A = [A t A l ] for 
some choice of tree, and let the matrix i be similarly partitioned as 

Then KCL yields 

(47) 

or 

(48) 

since A t is a nonsingular matrix. 
The message carried by this expression is that, given a tree, there is a 

linear relationship by which the twig currents are determined from the 
link currents. This means that, if the link currents can be determined 
by some other means, the twig currents become known from (48). Of all 
the b branch currents, only b — n of them need be determined indepen
dently. 

Using (48), the matrix of all currents can now be written as 

(49) 

Comparing the matrix on the right with the one in (34) and also using 
(35), there follows that 

(50α) 

(50b) 

Each of these equations expresses all the branch currents of a network in 
terms of the link currents for some tree by means of a transformation 
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that is called a loop transformation. The link currents for a tree are seen 
to be a basis for the set of all currents. We shall shortly discuss sets of 
basis currents other than the link currents for a tree. 

Other sets of equations equivalent to KCL in (45) can be obtained. 
(Recall that two sets of equations are equivalent if they have the same 
solution.) Consider a particular cut-set of a network. It will separate the 
network into two parts, P1 and P 2 . Write the KCL equations at all the 
nodes in one of the parts, say Pi , and consider the columns. If both ends 
of a branch are incident at nodes in P1, the corresponding column will 
have two nonzero elements, a + 1 and a — 1 . But if one end of a branch is 
incident at a node in P1 and the other end at a node in P 2 (i.e., if this 
branch is in the cut-set), this column will have but a single nonzero 
element. Now suppose these KCL equations are added; only the currents 
of the cut-set will have nonzero coefficients in the sum. The result will be 
called a cut-set equation. A cut-set equation is, then, a linear combination 
of KCL equations. The set of all such cut-set equations will be precisely 
Qai(t) = 0 , where Qa is the previously defined cut-set matrix for all 
cut-sets. But the rank of Qa is n, which is less than the number of equa
tions. These equations are thus not independent. Let Q be a cut-set 
matrix of n cut-sets and of rank n. (One possibility is the matrix off-cut
sets, Q f . ) Then 

( 5 1 ) 

will be equivalent to the KCL equations. 
In particular, if the matrix of f-cut-sets is partitioned in the form 

Q f = [ U Ql] then 

or 

( 5 2 ) 

which is the same as (48) in view of (43). This expression can be inserted 
into the partitioned form of the matrix of all currents as in the case of 
(48) to yield 

(53) 
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(The final step comes from the results of Problem 17.) This is again a 
loop transformation identical with (50a). Note that the matrix of the 
transformation is the transpose of the matrix of fundamental loops. 

We have seen that the link currents for a given tree are basis currents 
in terms of which all currents in a network can be expressed. Another set 
of basis currents are the loop currents, which are fictitious circulating 
currents on the contours of closed loops. This can best be illustrated by 
means of an example. Figure 14 is a redrawing of Fig. 13a, with the 
branches and nodes appropriately numbered. This graph is planar, but 
it is not possible to find a tree for which the meshes are f-loops, as discussed 
earlier. Let a loop matrix be written for the loops specified in the figure. 
(This set of loops is neither a set of f-loops nor a set of meshes.) The 
orientation of the loops is given by the ordering of the nodes; it is also 
shown by means of the arrows on the diagram. The B matrix will be 

loops 

branches 

(54) 

(This matrix is of rank 4 since the submatrix consisting of the last four 
columns is nonsingular.) Now suppose a set of circulating currents, im1, 
i m 2 , etc., is defined on the contours of the same loops for which the B 
matrix is written and having the same orientation. By inspection of the 
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Loops (specified by enumerating nodes) 

1—{1, 2, 5} 

2—{2, 3, 4, 5} 

3—{3, 4, 5} 

4—{1, 3, 2} 

Fig. 14. Illustrative example. 

graph, it is possible to express the branch currents in terms of these 
circulating currents as follows: 

(55) 

B y comparing the matrix of this transformation with the transpose of 
B in (54), it is seen that they are the same. 

This is a general result that follows by observing that each row of a B 
matrix tells the incidence of branches of the graph on the corresponding 
loop. Similarly, each column of B focuses on a branch; the entries in the 
column specify those loops on which that branch is incident and with 
what orientation. If circulating loop currents are defined on the same 
contours as the loops, and with the same orientation, then each column 
of B will specify the corresponding branch current in terms of the loop 
currents. 

In a graph having b branches and n + 1 nodes, let i m be a vector of loop 
currents defined by b — n loops for which the B matrix is of rank b — n. 
Then the branch-current matrix i is given in terms of i m by the transfor
mation 

(56) 
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For a planar network the currents defined by the meshes will be an 
adequate basis. (The proof of this is left as a problem.) For this case the 
transformation in (56) is called the mesh transformation. 

KIRCHHOFF'S VOLTAGE LAW 

The second of Kirchhoff's laws is Kirchhoff's voltage law (KVL), which 
states that in any electric network the sum, relative to the loop orientation, 
of the voltages of all branches on the loop equals zero, at each instant of time 
and for each loop in the network. For a connected network having b branches 
the KVL equations can be written as 

( 5 7 ) 

where bjk has the same definition as the elements of the loop matrix. In 
matrix form, KVL becomes 

( 5 8 ) 

where B is a loop matrix, v(t) is a column matrix of branch voltages, and 
V(s) is a column matrix of their Laplace transforms. 

( 5 9 ) 

If all the loops in the network are included, the coefficient matrix will be 
B a . However, the rank of Ba is b — n, and the equations in this set will 
not be independent. 

Let B have b — n rows and be of rank b — n. (One possibility is the 
matrix of f-loops.) It can be partitioned in the form B = [B t B l ] for 
some choice of tree. Let v also be partitioned conformally as 

Then KVL can be written as 
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from which 

(60) 

since B l is a nonsingular matrix. 
The message carried by this expression is that, given a tree of a graph, 

there is a linear relationship by which the link voltages are determined 
from the twig voltages. If the twig voltages can be determined by some 
other means, the link voltages become known by (60). Of all the b branch 
voltages, only n of them, those of the twigs, need be determined inde
pendently. 

Now let (60) be inserted into the partitioned form of the branch 
voltage matrix v(t). Then 

(61) 

The last step follows from (42). 
Another form is obtained by inserting (43) here. There results 

(62) 

If A t is a unit matrix, then 

Thus the branch-voltage matrix is expressed in terms of the twig-voltage 
matrix for some tree by means of a transformation. The matrix of the 
transformation can be the transpose of the f-cut-set matrix Q f or the 
transpose of the A matrix, provided A t is a unit matrix. (See Problem 5 
concerning the condition for which A t will be a unit matrix.) The twig 
voltages for a tree are seen to be a basis for the set of all voltages. Since 
a twig voltage is the difference in voltage between a pair of nodes, twig 
voltages are node-pair voltages. Not all node-pair voltages are twig 
voltages; Nevertheless, a suitable set of node-pair, but not necessarily 
twig, voltages may constitute a basis set of voltages. Let us consider this 
point further. 

If one of the two nodes of each node pair is a common node, then each 
node-pair voltage will simply equal the voltage of a node relative to that 
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of this common, or datum, node. These voltages are referred to as the 
node voltages. Since each branch of a graph is incident at two nodes, its 
voltage will necessarily be the difference between two node voltages (with 
the datum-node voltage being zero). Thus ail voltages of a graph are 
expressible in terms of only the node voltages, of which there are n. 

When writing the A matrix of a graph, one of the nodes is omitted. If 
this node is also taken as the datum node for the definition of node 
voltages, then the branch-voltage matrix can be expressed in terms of 
the node-voltage matrix v n as 

(64) 

This follows from the fact that each column of the A matrix pertains to a 
specific branch. The nonzero elements in a column specify the nodes on 
which that branch is incident, the sign indicating its orientation. Hence 
each column of A will specify the corresponding branch voltage in terms 
of the node voltages. 

The following example will illustrate this result. Figure 15 is the same 

Fig. 15. Branch voltages in terms of node voltages. 

graph as in Fig. 14, with a different branch numbering. The A matrix 
with node 5 omitted is 
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and 

(65) 

Now take node 5 as datum node and let vn1, vn2, vn3, and vn4 be the 
node voltages, the voltages of the other nodes relative to that of node 
5. By inspection of the graph, it is possible to express the branch voltages 
relative to the node voltages. Thus 

(66) 

The matrix of this transformation is seen to be the transpose of the A 
matrix. 

Note that the first 4 columns of A in (65) form a unit matrix. This 
agrees with Problem 5, since the tree consisting of branches 1 through 4 is 
a star tree. Hence, it happens that the node-pair voltages defined by a 
tree in this case are the same as the node voltages (relative to node 5 as 
datum). To allay any worries on this score, choose node 4 as datum. 
There is no star tree with node 4 as the common node. The A matrix will 
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be the same as that in (65) but with the last row replaced by [—1 —1 
—1 —1 0 0 0 0] . Whatever tree is now chosen, A t will not be a 
unit matrix, and (63) will not apply. However (64), in terms of the new 
node voltages, will still apply. You are urged to verify this. 

THE BRANCH RELATIONS 

Kirchhoff's two laws expressing constraints on the voltages and 
currents of the branches of a network are independent of the specific 
nature of the branches, whether capacitor, resistor, source, etc. They 
apply to nonlinear as well as to linear elements, and to time-varying as 
well as to time-invariant elements. They express constraints imposed by 
the topology of a network. 

However, the manner in which the voltage of a particular branch is 
related to its current does depend on the constituents of the branch. 
There is a considerable amount of flexibility in selecting the makeup of a 
network branch. One possibility is to let each element itself (resistor, 
capacitor, etc.) constitute a branch. This would require us to count as a 
node the junction between elements that are connected in series. It may 
sometimes be convenient to consider series-connected elements as a 
single branch or parallel-connected elements as a single branch. In the 
network of Fig. 16, the series connection of R a and La can be taken as a 
single branch or Ra and La can be considered as two separate branches. 

Fig. 16. Illustrating the v-shift and i-shift. 
(a) (b) 

There is similar flexibility in the manner in which sources are treated. 
Let a voltage source be said to be accompanied if there is a passive branch 
in series with it. Likewise, let a current source be said to be accompanied 
if there is a passive branch in parallel with it. In Fig. 16a, neither source 
is accompanied. For a passive branch, both the current and voltage are 
unknowns whose variations with time are to be determined. However. 
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either the voltage or the current of a source is known. Thus general 
statements about the number of unknowns in terms of the number of 
branches cannot be made if unaccompanied sources are treated as 
branches. For this purpose it is convenient to use some equivalences, 
which will now be discussed in order to remove unaccompanied sources 
from consideration. 

Consider the network in Fig. 16b. The source vg has been shifted 
through one of its terminals into each branch incident there, maintaining 
its proper reference and leaving its original position short-circuited. 
Applications of KVL to any loop show that these equations have not been 
changed. Now, however, each voltage source is accompanied; it is in series 
with a passive branch. In the case of the current source, it has been 
shifted and placed across each branch of a loop that contained the 
original source, maintaining the proper reference and leaving its original 
position op en-circuited. Application of KCL to all nodes will show that 
these equations have remained invariant. Thus the solutions for the 
other branch variables should be expected to be the same in this new 
network as in the old one. We shall refer to these two equivalences as 
the voltage shift (or v-shift) and the current shift (or i-shift), respectively. 
As a result it is always possible to make all sources accompanied sources. 
Sometimes it is convenient to treat all independent sources as accom
panied; and at other times, it is not. For the development of the loop 
and node equations, the former is the case. Hence in this chapter we will 
assume that all independent sources are accompanied. Later, when 
convenient, this requirement will be relaxed. 

As we start discussing the v-i relationships of branches, aside from 
independent sources, we shall first consider passive, reciprocal networks 
only. After the basic procedures have been established, active and 
nonreciprocal components will also be introduced. 

The most general branch will be assumed to have the form shown in 
Fig. 17, containing both a voltage source in series with a passive branch 

Fig. 17. A general branch. 

and a current source in parallel with this combination. (In Fig. 16b, for 
example, the left-hand current source can be considered to be in parallel 
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with the series connection of vg, Ra, and La.) Thus the current of this 
kth branch that is to be used in KCL will be ik — i g k . Likewise the voltage 
that is to be used in KVL will be vk — vgk. Hence (45) and (58) will be 
replaced by 

(67) 

(68) 

(69) 

where i g and ν g are column matrices of source currents and voltages. 
Similarly, the transformations from branch variables to loop currents 

or node voltages must be replaced by the following: 

(70) 

(71) 

(72) 

Since sources can be handled in this way independently of the passive 
parts of a branch, we shall henceforth concentrate on the passive compo
nents. When doing so, the sources will be made to vanish, which is done 
by replacing the voltage sources by short circuits and the current sources 
by open circuits. 

Now we can turn to a consideration of the relationships between 
voltage and current of the branches of a graph. At the outset, we shall 
make no special conventions regarding the manner in which branches are 
selected and numbered. We shall deal with the Laplace-transformed 
variables and assume that initial conditions have been represented as 
equivalent sources. The impedance and admittance of branch k will be 
represented by lower case z k and yk, respectively, whereas the corres
ponding matrices will be Z and Y . 

The branch relationships can be written as follows: 

Branch k Network 

(73) 
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Fig. 18. Illustrative example. 
(a) (b) 

The nature of these branch matrices can be illustrated with the example 
shown in Fig. 18. The two inductive branches 1 and 2 are mutually 
coupled. Now (73) with the branch-impedance matrix Z shown in detail 
can be written as follows: 

(74) 
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Note that, because of the way the branches were numbered—with each 
element a separate branch and with inductance first, then resistance, 
then capacitance—the matrix can be partitioned as shown, with obvious 
meanings for the submatrices. The resistance and inverse-capacitance 
matrices are diagonal because there is no coupling from one branch to the 
other. This is not the case for the hp matrix because of the inductive 
coupling. 

It is clear that these properties of the submatrices of the impedance 
matrix are quite general if the above numbering scheme for branches is 
used. Such a numbering scheme is useful, so we shall adopt it when 
convenient for the purpose of determining properties of the corresponding 
matrices. There will be times, however, when we will want greater 
flexibility and will number the branches differently. 

In the general case, then, if each element is counted as a separate 
branch and if the inductive branches are numbered first, then the resistive 
branches, and then the capacitive branches, the branch impedance and 
admittance matrices can be written as follows: 

( 7 5 ) 

where R P , G p , C p , and D P are diagonal matrices with G p = R P - 1 , D P = 
CP - 1 , and Tp = L - 1 . (The subscript p in these matrices stands for 
"partial.") They are called the partial branch-parameter matrices. In case 
there are perfectly coupled transformers in the network, L P will be 
a singular matrix and Γ P will not exist. 

Sometimes it is convenient in referring to the branch-parameter 
matrices to assume that each one extends over the total dimensions of 
the Z matrix; that is, we could write 

( 7 6 ) 

for the branch resistance matrix and similarly for the others. If this is 
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done, then the branch impedance and admittance matrices can be 
simply expressed as follows: 

(77a) 

and 

(77b) 

It should be observed that the order of each of the branch-parameter 
matrices equals the number of branches of the graph. For convenience in 
writing (77), we have increased the dimensions of these matrices. For 
computational purposes, the increased dimensions of the matrices will 
be a disadvantage. In this case it would be better to use the partial 
matrices. 

Although a special branch-numbering scheme was used in arriving at 
the branch-parameter matrices given by (76) and others like it, these 
matrices can be defined without using that numbering scheme. The only 
difference will be that the nonzero elements will not all be concentrated 
in a single submatrix as in (76). In a later chapter we shall investigate 
the properties of these parameter matrices and shall discuss their realiza-
bility conditions. 

2.4 LOOP, NODE, AND NODE-PAIR EQUATIONS 

The basic relationships presented in the last section are Kirchhoff's 
current law (KCL), Kirchhoff's voltage law (KVL), and the branch 
voltage-current relationships. For a network containing b branches and 
n + 1 nodes, there are n independent KCL equations and b — n inde
pendent KVL equations for a total of b. There are also b branch v-i 
relationships, which combined with the other b independent equations 
are sufficient to solve for the 2b branch variables, b currents and b vol
tages. However, solving 2b simultaneous equations is a substantial task, 
and anything that can be done to reduce the work will be of advantage. 

In the last section it was observed that the branch currents could all 
be determined in terms of a smaller subset—for example, the link currents 
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for a tree or the loop currents. Similarly, the branch voltages could all be 
determined in terms of a smaller subset of voltages. We shall now consider 
a number of procedures for utilizing these results to carry out an analysis 
of a network problem. The outcome depends on the order in which the 
three basic relationships are used. 

LOOP EQUATIONS 

Given a network, let us first apply KVL, arriving at (68) which is 
repeated here (in Laplace-transformed form). 

(78) 

Here B is of order (b — n) × b and of rank b — n. Into this expression we 
next insert the branch relations of (73), obtaining 

(79) 

Finally, we express the branch currents in terms of a set of b — n other 
currents, which may be loop currents or link currents for a tree—if B 
is the matrix of fundamental loops for that tree. Let us say the former; 
that is, we substitute for I(s) the loop transformation in (70). The result is 

(80a) 

or 

(80b) 

where E is shorthand for B {V g — Z I g } and 

(81) 

This matrix equation represents a set of b — n equations, called the 
loop equations, in the b — n loop-current variables. The coefficient matrix 
Z m (s) is called the loop-impedance matrix, not to be confused with the 
branch-impedance matrix Z. For a passive reciprocal network, Z is a 
symmetric matrix. Hence (see Problem 1.15) Z m is also symmetric. 

The loop-impedance matrix can be written explicitly in terms of the 
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branch-parameter matrices by inserting (77) into (81). Thus 

(82) 

where 

(83a) 

(83b) 

(83c) 

are the loop-parameter matrices. 
To illustrate (80), consider the network of Fig. 18 for which the branch-

impedance matrix was given in (74). Its graph is redrawn in Fig. 19 to 

Fig. 19. Illustrative example for loop equations. 

show the loops chosen. This is a planar graph, and perhaps the simplest 
loops would be the meshes. However, for illustrative purposes another 
set of loops is chosen. The B matrix for this choice is the following: 

Then the loop-impedance matrix becomes 
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By relating this matrix to the graph, it is observed that the elements 
of the loop-impedance matrix can be interpreted in the following straight
forward way. Each term on the main diagonal is the sum of the impe
dances of the branches on the corresponding loop, with due regard to the 
impedance coupled in from other loops by mutual coupling. Each off-
diagonal term is plus or minus the impedance of branches common 
between two loops; the sign is positive if the loop currents traverse the 
common branch with the same orientation, and negative if they traverse 
the common branch with opposite orientations. Verify the loop-impedance 
matrix for the example by using this interpretation. 

A similar interpretation applies to the loop-parameter matrices L m , 
R m , and D m . Thus from the Z m matrix we can write the loop-resistance 
matrix as follows: 

From the network we observe that the main diagonal elements in this 
matrix are simply the total resistance on the contour of the corresponding 
loop; the off-diagonal elements are plus or minus the resistance common 
to the corresponding loops: plus if the orientations of the two loops are 
the same through the common resistance, minus if they are opposite. 

The source vectors will be 
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Then Z I g has a nonzero entry only in the seventh row, and its value is 
— I0/sC7. Hence the right-hand side of (80) becomes 

The quantity Io/sC7 is the Thévenin equivalent voltage of the current 
source in parallel with C7. Thus the quantity E is the equivalent loop 
voltage-source vector whose entries are the algebraic sums of voltage 
sources (including Thévenin equivalents of current sources) on the contour 
of the corresponding loop, with the references chosen so that they are 
opposite to the corresponding loop reference. 

Once the loop equations have been obtained in the form 

( 8 4 ) 

the solution is readily obtained as 

( 8 5 ) 

This, of course, is essentially a symbolic solution in matrix form. The 
actual solution for the elements of I m requires a considerable amount of 
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further work. We shall postpone until the next chapter further considera
tion of this subject. 

In reviewing the preceding discussion of loop equations it should be 
noted that, at least for the example considered, less effort will be required 
to write the final loop equations if a straightforward scalar approach is 
used. In fact, it is possible to write the loop-impedance matrix Z m and 
the equivalent source matrix E by no more than inspection of the network, 
once a set of loops is chosen. We seem to have introduced a matrix pro
cedure that is more complicated than necessary. Three comments are 
appropriate to this point. In the first place, the general approach discussed 
here should not be used for writing loop equations for networks with a 
B matrix of relatively low rank. The general procedure becomes preferable 
when dealing with networks having large B matrices—with tens of rows. 
Secondly, the general approach using topological relationships is amenable 
to digital computation, which makes it quite valuable. Finally, the 
general form constitutes an "existence theorem"; it is a verification 
that loop equations can always be written for the networks under con
sideration. 

NODE EQUATIONS 

In writing loop equations, the branch v-i relationships were inserted 
into the KVL equations, after which a loop transformation was used to 
transform to loop-current variables. Now, given a network, let us first 
apply KCL, arriving at (67), which is repeated here: 

(86) 

Into this expression we next insert the branch relations in (73), getting 

(87) 

Finally, we express the branch voltages in terms of the node voltages 
through the node transformation in (72). The result is 

(88a) 

or 

(88b) 
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where J is shorthand for A(I g — YV g ) and where 

(89) 

This matrix equation represents a set of n equations, called the node 
equations, in the n node-voltage variables. The coefficient matrix Y n(s) is 
called the node-admittance matrix. 

This time the right-hand side, J, is the equivalent node current-source 
vector whose entries are algebraic sums of current sources (including the 
Norton equivalents of voltage sources) incident at the corresponding 
nodes, with the references chosen so that they enter the node. 

The node-admittance matrix can be written explicitly in terms of the 
branch-parameter matrices by inserting (77) into (89). The result will be 

(90) 

where 

(91a) 

(91b) 

(91c) 

are the node-parameter matrices. 
Once the node equations are available in the form 

(92) 

the solution is readily obtained by inverting: 

(93) 

Again, this is essentially a symbolic solution. In the next chapter we shall 
consider the details of the solution. 

Let us now illustrate the use of node equations with the example of 
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Fig. 18, which is redrawn as Fig. 20. Let node 5 be chosen as the datum 
node and as the node that is omitted in writing the A matrix. 

Fig. 20 . Illustrative example for node equations. 

The A matrix and the branch-admittance matrix will be 

where Δ = L11L22 — L12 L21. Then 
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The source matrices V g and Ig are the same as before. Hence we get 

The quantity G 5 V 0 is the Norton equivalent of the voltage source in 
series with G 5 . Thus, J is the equivalent current-source vector whose 
elements are the algebraic sum of current sources (including Norton 
equivalents of accompanied voltage sources) incident at the correspond
ing node, with the references chosen to be directed toward the node. 

As in the case of loop equations, the node equations can be written 
directly from the network by inspection, for networks without mutual 
coupling. The elements of the node-admittance matrix can be found as 
follows. Each element on the main diagonal is the sum of the admittances 
of branches incident at the corresponding node. Each off-diagonal element 
is the negative of the admittance common between two nodes. In this 
case all signs of off-diagonal terms are negative, unlike the loop-impedance 
case, because the voltage of a branch is always the difference between 
two node voltages, since the node voltage references are uniformly 
positive relative to the datum node. 

A similar interpretation applies to the node-parameter matrices C N , 
G n , and Γ n . Let us, for example, construct the node-capacitance matrix. 
From the diagram, there are two capacitors, C 4 and C 7 , incident at node 1, 
CQ being common between nodes 1 and 2, and C 7 being common between 
nodes 1 and 3. Hence the diagonal term in the first row of C N will be 
C 6 + C 7 , and the three off-diagonal terms will be — C 6 , — C 7 , and 0. 
Continuing in this fashion, C N is found to be 

This agrees with the node-capacitance matrix obtained from the previously 
found Y N matrix. 
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NODE-PAIR EQUATIONS 

The variables in terms of which the node equations are written are the 
voltages of the nodes all related to a datum node. This set of variables is 
a basis for all branch variables. It was observed earlier that the twig 
voltages for a given tree also constitute a basis for all branch voltages. 
Hence we should expect the possibility of another set of equations similar 
to the node equations, but with twig voltages for a tree as the variables; 
this expectation is fulfilled. 

Given a network, the first task is to select a tree and to apply KCL to 
the fundamental cut sets, arriving at (69), which is repeated here: 

(94) 

Here Q is of order n × b and of rank n. (The subscript f is omitted for 
simplicity.) Into this expression we next insert the branch relations of 
(73) getting 

(95) 

Finally, we express the branch voltages in terms of twig voltages through 
the transformation in (71). The result is 

(96σ) 

or 

(96b) 

where J t is simply shorthand for Q {I g — Y(s)Vg } and 

(97) 

Note that this expression is quite similar to the node equations given 
in (88), the difference being that the f-cut-set matrix Q replaces the 
incidence matrix A, and the variables here are not node voltages but 
node-pair voltages. We shall call these equations the node-pair equations. 

The coefficient matrix of the node-pair equations Y t(s) is called the 
node-pair admittance matrix; it can be written explicitly in terms of the 
branch-parameter matrices by inserting (77). The result will be 

(98) 
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where 
(99a) 

(99b) 

(99c) 

are the node-pair parameter matrices. 
The same example will be used (Fig. 18) to illustrate the node-pair 

equations as used earlier for the loop and node equations, except that it 
will be assumed there is no mutual coupling between branches 1 and 2. 
The diagram is repeated here as Fig. 21. The tree consisting of branches 

Fig. 21 . Example for node-pair equations. 

3, 4, 5, and 7 shown in heavy lines is selected. The branches in each cut 
set and the f-cut-set matrix for this tree are as follows: 

The order of the columns is the same as the original numbering of the 
branches, not the order for which Q can be partitioned into [U Q l ] . The 
reason for this is that the branch-admittance matrix was already written 
for that order when the node equations were written. Refer back to the 
branch-admittance matrix and note that L22/Δ is now replaced by 1 /L 1 , 
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and Ln/Δ by 1 /L 2 ; also the off-diagonal elements are zero, since there is 
no mutual coupling. The node-pair equations are found to be 
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Again we find that a simple interpretation can be given to the cut-set 
admittance matrix. By observing the network in Fig. 21, we see, for 
example, that sC7 + 1/L 1s + 1 /L 2 s , which is the (4, 4) term in Y t , is the 
sum of the admittances of the branches in cut-set 4. Similar interpretations 
apply to the other diagonal elements. We also observe that some of the off-
diagonal elements have positive signs, others, negative signs; for example, 
the (1, 3) element in Y t is 1 /L 2 s . This is seen to be the admittance of a 
branch common to cut-sets 1 and 3. The orientation of this common branch 
is the same relative to both cut-sets, so the sign of the term is positive. 

As a general rule, the elements of the cut-set admittance matrix Y t 

have the following interpretations. Each diagonal element is the sum of 
the admittances of branches which are in the corresponding cut-set. Each 
off-diagonal term is plus or minus the admittance of a branch common to 
two cut-sets. The sign is plus if the branch orientation is the same relative 
to both cut-sets, minus if it is not the same. You are urged to verify the 
Y t matrix of the example by using this interpretation. 

As for the source term, Q(I g — YV g ) , this is the equivalent cut-set 
current-source vector, each of whose entries is the algebraic sum of source 
currents (including Norton equivalent of voltage sources) that lie in the 
corresponding cut-set. 

2.5 DUALITY 

There is a striking parallelism between the loop and node systems of 
equations. This observation raises the following interesting question. 
Is it possible to find two networks such that the loop equations for one 
network are the same as the node equations of the other, except for the 
symbols? In other words, can the loop equations for one network become 
the node equations for the other if we interchange the symbols v and i 
throughout? To answer this question, note that the loop equations result 
when the branch relations are substituted into KVL, and then KCL is 
used (in the form of the loop transformation). On the other hand, the 
node equations result when this order is reversed; that is, the branch 
relations are inserted into KCL, and then KVL is used (in the form of the 
node transformation). On this basis we see that the question can be 
answered affirmatively if two networks N1 and N2 exist that satisfy the 
following two conditions: 

1. The KCL equations of N1 are a suitable set of KVL equations for 
N2 on replacing ij by vj for all j . 

2. The expression for branch voltage vj of N2 in terms of branch current 
ij becomes the expression for branch current ij of N1 in terms of branch 
voltage vj on interchanging ij and vj. 
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If these conditions are satisfied, N2 is said to be the dual of N1. In fact, 
it is easy to see that if N1 and N2 are interchanged, the above conditions 
will still be satisfied (if they were originally satisfied). Hence N1 is also 
the dual of N2. The property of duality is a mutual property; N1 and N2 

are dual networks. 
In matrix form, condition 1 can be stated as follows: Let A i = [aij] be 

the incident matrix of N1. Then 

(100) 

where B 2 is a loop matrix of N2. Clearly, the number of branches of the 
two networks must be equal, and the rank of A1 must equal the rank of 
B 2 . Thus 

(101a) 

(1016) 

where b1 and b2 refer to the number of branches; n1 + 1 and n2 + 1 refer 
to the number of nodes of the two networks, respectively. 

Evidently these relationships constitute conditions on the structure of 
the two networks. First, there must be a correspondence between the 
branches of the two networks, as defined by the ordering of the columns 
in the matrices A1 and B 2 to satisfy (100). Secondly, there must be a 
correspondence between the nodes of N1 (rows of A 1 ) and the loops of 
N2 (rows of B 2 ) . 

Two structures that are related by (100) are called dual graphs. We 
shall not discuss the abstract properties of dual graphs here but shall 
state some of the simpler results.* 

The basic result is that a network will have a geometrical (structural) 
dual if and only if it is planar. If two planar networks can be superimposed 
such that each junction but one of N1 lies inside a mesh of N2 and the 
references of corresponding branches are suitably oriented, then a row 
of A1 and the corresponding row of B 2 will be identical. Such a loop and 
node are shown in Fig. 22. The branches and loops of N2 are primed, and 
the branches and nodes of N1 are unprimed. Node 1 in N1 corresponds 
to loop 1' in N2. You should verify that the KCL equation at node 1 
has the same coefficients as those of the KVL equation for loop 1'. The 
coefficient of i2 in the KCL equation at node 2 is + 1 . In order to make the 

* For a more detailed account, see H. Whitney, "Nonseparable and Planar Graphs," 
Trans. Amer. Math. Soc, vol. 34, No. 2, pp. 339-362, 1932, and C. Kuratowski, "Sur 
le probleme des courbes gauches en topologie," Fundamenta Mathematicae, vol. 15, 
pp. 271-283, 1930. 
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Fig. 22. Dual loop and node. 

coefficient of v2 in the KVL equation for loop 2' the same, namely + 1 , 
loop 2' must be oriented as shown. By following through the entire graph 
in the same manner, it can be seen that all the loops must be oriented in the 
same sense (all clockwise if the branch references are as shown in the 
figure, or all counterclockwise if the branch references are reversed). 

If the meshes of a planar graph are chosen for writing KVL equations, 
and all loops are oriented in the same sense, then the off-diagonal terms in 
the loop equations will all carry negative signs, just as they do in node 
equations. 

The second condition of duality has to do with the branch relationships. 
Figure 23 shows dual pairs of v-i relationships. For mutual inductance there 
is no dual relationship. From the definition, then, only planar networks 
without mutual inductance have duals. 

Given such a network, say N1, construction of the dual network 

Fig. 23. Dual branches. 
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proceeds as follows. Within each mesh of N1 we place a node of what will 
be the dual network N2. An additional node, which will be the datum 
node, is placed outside Ni. Across each branch of N1 is placed the dual 
branch joining the two nodes located inside the two meshes to which that 
particular branch of N1 is common.* Finally, the branch references of N2 

are chosen so that the matrix of KVL equations for N1 (with all loops 
similarly oriented) is the same as the matrix of KCL equations for N2. 
Because the two networks are mutually dual, the node-admittance 
matrix of one network equals the loop-impedance matrix of the other, 
and vice versa; that is, 

(102α) 

and 

(102b) 

Since these matrices are equal, their determinants and cofactors will be 
equal. 

As an illustration, consider the diagram in Fig. 24a. A node is placed 

Fig. 24. Construction of a dual. 

(a) 

(b) 

(e) 

* In this process it is convenient to consider the sources as separate branches for the 
purpose of constructing the dual. 
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within each mesh, and an additional one is placed outside. In part (b) 
of the figure, dashed lines are used to represent dual branches crossing 
each of the branches of N1. Finally, the dual is shown in part (c). You 
should verify (100) and (102) for this example. 

2.6 NONRECIPROCAL AND ACTIVE NETWORKS 

The coefficient matrices of the loop equations and the node equations 
are, respectively, BZB' and AYA'. The success of carrying out a loop 
analysis or node analysis in this general form, then, depends on the 
existence of a branch-impedance matrix Z or a branch-admittance 
matrix Y. For the passive, reciprocal networks dealt with up to this 
point, both of these matrices exist. (This statement must be qualified for 
a perfectly coupled transformer, for which Y does not exist.) 

Now we shall consider networks containing active and/or nonreciprocal 
devices, in addition to passive ones having more than two terminals. 
Table 1 shows such components, together with their representations. 

There are two points to consider when dealing with these components. 
One has to do with how the graphs of such multiterminal components are 
to be represented. This will influence the number of KCL and KVL 
equations and, hence, matrices A and B. The other point concerns the 
existence of a branch representation that can be used in a loop or node 
analysis. We shall initially take up the former point and consider the 
graphs of the components. 

Each of the components shown in Table 1 has four terminals. However, 
the terminals are always taken in pairs, so that it is more appropriate to 
consider them as having two pairs of terminals. It is possible, of course, 
to identify (connect together) one terminal from each pair without 
influencing the v-i relationships of the components. Thus each component 
can be looked upon as a three-terminal component. The behavior of each 
component in the table is specified by two relationships among two pairs 
of variables—two currents and two voltages. This is a special case of a 
general condition; namely, that the behavior of an n-terminal component 
can be completely specified in terms of n — 1 relationships among n — 1 
pairs of voltage and current variables. (This condition is, in effect, a 
postulate and, as such, not susceptible to proof.) 

For a component with one pair of terminals, described by one voltage 
and one current, the graph is represented by a single branch. The compo
nents in Table 1 have two pairs of terminals, and two voltages and 
currents; their graph will be represented by two branches across the 
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Table 1 

Type of 
Represen-

Device Symbol Equations tation a Graph 

Voltage-
controlled 
current-source 

Admittance 

Current-
controlled 
voltage-source 

Impedance 

Voltage-
controlled 
voltage-source 

Hybrid g 

Current-
controlled 
current-source 

Hybrid h 

Gyrator 

Impedance 

or 

admittance 

Negative 
converter 

Hybrid h 

or 

Hybrid g 

Ideal 
transformer 

Hybrid h 

or 

Hybrid g 

a Each of these components also has a chain matrix representation. 
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pairs of terminals, as shown in Fig. 25. If one terminal from each pair is 

Fig. 25. Two-port and its terminal graph. 

(a) (b) 

a common terminal, the corresponding branches of the graph will also 
have a common terminal. 

The above discussion has related to general three- and four-terminal 
components. But the components in Table 1 have certain degeneracies, 
as shown by the number of zeros in their characterizing equations. For 
the controlled sources the input pair of terminals is either open or shorted. 
It will support either an arbitrary voltage with zero current or an arbi
trary current with zero voltage. There is a row of zeros in the v-i rela
tionship. This means that only one representation exists for each type 
of component. To write loop (node) equations, however, requires an 
impedance (admittance) representation. If loop (node) equations are to 
be written for networks containing any of these components, it will, 
therefore, be necessary to make some preliminary adjustments. 

This can be done in the manner illustrated by the following example. 
The subnetwork of Fig. 26 contains a controlled source. The graph of 
the subnetwork is also shown, the heavy lines representing the two 
branches of the controlled source. Branch 3 of the graph does not even 
physically appear in the network; there, it is simply an open circuit. 
However, the voltage of this branch, v3, is nonzero; and, since it appears 
explicitly in the branch equations of the component, it cannot simply be 
disregarded. But observe that v3 can be expressed in terms of other branch 
voltages; in this example, v3 = vi — v2. Hence, if this relationship is 
inserted for v3 in the branch relationship, neither v3 nor i3 will appear any 
longer. Consequently, branch 3 can simply be removed from the graph. 
Thus the controlled source is now represented by a single branch (branch 
4) in the graph, and its branch equation becomes 

( 1 0 3 ) 
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Fig. 26. Subnetwork with v-controlled i-source. 
(a) (b) 

The preceding example dealt with a single component of the seven 
listed in Table 1. Since each of them has a different type of representation, 
somewhat different approaches are appropriate for each. Let us now 
examine them systematically to see how an impedance and/or admittance 
representation can be obtained for each. 

First consider the gyrator; it has both an admittance and an impedance 
representation. Hence there need be no special techniques for carrying 
out a loop or a node analysis. As an illustration, consider the network 
containing a gyrator shown in Fig. 27. The graph of the gyrator will 

Fig. 27. Network with gyrator and its graph. 

have the two branches shown in heavy lines. The branch-impedance 
matrix of the entire network, including the gyrator, is easily written. 

With the branch and loop numbering schemes shown, the B matrix and 
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the branch-impedance matrix become the following: 

and 

From these the loop-impedance matrix follows: 

(Verify these relationships.) Notice how the gyrator parameter enters to 
make both the branch- and loop-impedance matrices nonsymmetric. 

Since the gyrator also has an admittance representation, node equations 
can be readily written. With node 5 as the datum node, the incidence 
matrix, the branch-admittance matrix, and, from these, the node-
admittance matrix are 
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You are urged to verify these. The presence of a gyrator, then, requires 
nothing special for writing loop and node equations. 

Next let us consider the v-controlled i-source. This was already done 
in the illustration in Fig. 26. We saw that the input branch of the graph 
of this device can be eliminated when the controlling voltage is expressed 
in terms of other branch voltages. The device is then represented by a 
single branch, and a branch-admittance matrix is easily written, leading 
to a successful node analysis. 

If a loop analysis is required, however, a problem will arise. Loop 
equations require an impedance representation of the components. In 
Fig. 26, what is needed is to write an expression for v4 explicitly in terms 
of currents. Since v4 does not appear explicitly in (103), which is the 
pertinent branch equation, we appear to be at an impasse. However, a 
remedy can be found if branch 4', which is in parallel with 4 in Fig. 26, 
is lumped together with 4 into a single branch. If i4 is the current of the 
combined branch, then the following equation will replace (103): 

(104) 

Now it is possible to solve for v4, after each of the other voltages has been 
eliminated by inserting its branch relationship. Thus 

(105) 
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The branch-impedance matrix can now be completed. 
What has happened to the graph in carrying out the preceding? The 

one branch that was left representing the controlled source has been 
eliminated by combining it with a parallel branch. Clearly, this required 
that the controlled source be accompanied, which can always be arranged 
by using the i-shift. 

The i-controlled v-source can be handled in a completely dual way. 
Here, the input branch of the graph of the device can be eliminated when 
the controlling current is expressed in terms of other branch currents. 
The branch-impedance matrix can then be written, and a loop analysis 
can be carried out. This time, however, if a node analysis is required, it 
will become necessary to combine into a single branch the controlled 
source and an accompanying branch. An accompanying branch can 
always be provided by the v-shift. After this step, the branch relation 
can be inverted, and an admittance representation can be written. The 
details of this development will be left to you. 

This leaves us in Table 1 with four components that have only a 
hybrid representation. Before an impedance or admittance representation 
can be found, the branches of these components must be combined with 
accompanying branches, and the controlling voltages or currents must 
be expressed in terms of other branch currents. 

Let us illustrate these comments by considering the network of Fig. 28, 

Fig. 28. Network with ideal transformer, and its graph. 

(a) (b) 

(c) 
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which contains an ideal transformer. The ideal transformer can be 
replaced by an equivalent consisting of two controlled sources, as shown. 
This step is not essential; all further steps can be carried out with reference 
to the graph, without considering this equivalent network. In the graph 
of the network, the branches representing the transformer are the heavy 
ones. Note that each of the controlled sources is accompanied. The voltage 
across the left-hand branch, Va, is the same as the voltage across its 
accompanying branch, V3. Similarly, the current in the right-hand 
branch, Ib, is the same as the current in its accompanying branch, I4. 
The transformer equations are 

( 1 0 6 ) 

Now let us write the branch relations for the transformer, this time 
combining them with their accompanying branches. Let the sum of Ia 

and the current in branch 3 be written I3, and the sum of Vb and the 
voltage across branch 4 be V4. Then 

(107a) 

(107b) 

These equations can be rewritten to provide either an impedance or an 
admittance representation. The results are 

Impedance Representation Admittance Representation 

As a consequence of the preceding steps, branches a and b in the graph 
merge with their accompanying branches and disappear from the graph. 
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(Node 5 also disappears.) The branch impedance will now be 

(180) 

You can complete the problem by determining the loop-impedance 
matrix Z m . 

The preceding discussion makes it clear that the presence of certain 
four-terminal devices presents some problems in the writing of loop or 
node equations, but the problems are not insurmountable. If we insist 
on writing such equations, it can be done, with some preliminary mani
pulations. These manipulations involve the lumping of certain branches, 
with a corresponding effect on the graph. Although the graphs of these 
devices are represented in general by two branches, we have sometimes 
found ourselves discarding these branches as soon as we have put them 
in. The controlling branches of the controlled sources were removed 
(after appropriately expressing the controlling voltage or current). The 
controlled branches were also removed from the graph whenever it was 
desired to carry out an analysis that did not fit the natural representation 

Fig. 29. Potentially singular impedance matrix. 
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of the device. In later work, we shall find other ways of dealing with the 
branches of the graphs of these devices. 

The comment should be made that for low-order networks the general 
systematic formulation we have carried out requires more effort than 
needed to write loop or node equations using a straightforward scalar 
approach. Furthermore, the work is increased by the requirement that 
the components be represented in a fashion that is not natural to them. In 
the next section we shall consider an alternative approach, which utilizes 
the hybrid representation directly. 

One final point: the presence of nonreciprocal and/or active devices in 
a network may mean that a unique solution cannot be found for certain 
values of network parameters. This is illustrated by the network in 
Fig. 29, which contains a v-controlled v-source. For this network the 
node-admittance matrix will be singular if G1 = (k — 1)G 2 . Hence a 
solution will not exist in this case. Verify this. 

2.7 MIXED-VARIABLE EQUATIONS 

We observed in the last section that the desire to write loop or node 
equations for networks containing multiterminal elements meets with 
some difficulty for certain kinds of elements. The success of writing loop 
or node equations depends on the existence of an impedance or admittance 
representation for the branch relationships. When a multiterminal 
device has no such representation, certain preliminary manipulations and 
combinations of branches can be performed in order to write the desired 
equations. 

We shall now discuss a scheme that avoids these preliminary manipula
tions and permits all branch relationships to appear in their natural form. 
This desirable result must be purchased at a price, however, as will be 
evident as we proceed. 

Of all the elements in our arsenal, some (including R, L, C, and gyrators) 
have both impedance and admittance representations; one (the v-
controlled i-source) has only an admittance; one (the i-controlled v-source) 
has only an impedance; and some (transformer, NC, v-controlled 
v-source and i-controlled i-source) have only a mixed, or hybrid, repre
sentation. Whatever scheme we come up with must accommodate this 
fact. We should also recall that twig voltages form a basis set of voltages 
in terms of which all branch voltages can be expressed. Similarly, link 
currents form a basis set of currents in terms of which all branch currents 
can be expressed. 



132 GRAPH THEORY AND NETWORK EQUATIONS [Ch. 2 

With these thoughts in mind, given a network, we first choose a tree. 
Instead of expressing the branch relationships as V = ZI or I = YV, we 
write mixed branch relationships in the following form: 

(109) 

or 

(110a) 

(110b) 

(The orders of the submatrices are as indicated.) The notation for the 
coefficient matrices is chosen as an aid to the memory. For uniformity 
the first submatrix in the first row should be written H 1 1 , and the second 
one in the second row should be H 2 2 . But since they have the dimensions 
of admittance and impedance, respectively, the simpler and more sugges
tive notation was chosen. 

In these equations we express twig currents and link voltages in terms 
of a mixed set of variables consisting of twig voltages and link currents. 
Here we see the possibility of accommodating hybrid branch representa
tions if the branches having such representation are chosen as links or 
twigs appropriately. This point will be amplified shortly. 

There remain KVL and KCL to apply. Let us assume that KVL is 
applied to the fundamental loops for the given tree, and KCL is applied 
at the f-cut-sets. Using (68) and (69) for KVL and KCL; partitioning the 
B and Q matrices in the usual manner, with B = [B t U] and Q = [U Q l ] ; 
and remembering that B t = —Ql' from (41), we get 

(111a) 

and 

(111b) 
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(The f subscript, denoting "fundamental," has been omitted for simpli
city.) The first of these can be solved for V l , the second can be solved for 
I t , and the result can be inserted into (110). After rearranging, the result 
will be 

(112) 

This is a set of equations in mixed voltage and current variables; namely, 
twig voltages and link currents. There are as many variables as there 
are branches in the graph, which is the price we have to pay. On the 
right-hand side, the Q matrix can also be partitioned, and B t can be 
replaced by — Q j . Thus, for a given problem, it is enough to form Q and 
to write the V-I relationships as in (109). From these, Q l and submatrices 
of the branch-parameter matrix H are identified; then the final equations 
in (112) follow. 

Note that when multiterminal elements are not present in the network, 
H 1 2 = 0 and H 2 1 = 0. Then, after the matrix equation (112) is expanded 
into two separate equations, substituting the second equation into the 
first will lead to the node-pair equations; and substituting the first into 
the second will lead to the loop equations. The truth of this is left for you 
to demonstrate. 

The forms of the equations in (110) are guides to the proper selection of 
a tree. Any R, L, or C branch has both an impedance and an admittance 
representation and can be chosen as either a twig or a link. (Refer to 
Table 1.) The gyrator also has either representation, so its two branches 
can be either twigs or links. However, since the voltage of one branch is 
related to the current of the other, both branches must be twigs or links 
together. 

Since the i-controlled v-source has only an impedance representation, 
both of its branches must be links. Just the opposite is true for the 
v-controlled i-source; it has only an admittance representation, so both 
of its branches must be twigs. In the case of the ideal transformer and 
negative converter, only hybrid representations exist, but there are two 
possibilities: hybrid h or hybrid g; so that input voltage and output 
current can be expressed in terms of output voltage and input current, 
or vice versa. Hence one of the two branches must be a twig, the other a 
link, and it does not matter which is which. Finally, the v-controlled 
v-source and the i-controlled i-source each have only one hybrid repre
sentation. For the first of these, the controlling branch current is expli
citly specified (to be zero), and so the branch must be a twig; the con
trolled branch voltage is specified, so it must be a link. The situation is 
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just the opposite for the i-controlled i-source. These results are summarized 
in Table 2. 

Table 2 

Twig or Link 

Device 
Type of 

Representation 
Controlling 

Branch 
Controlled 

Branch 

Gyrator Admittance 
or 

impedance 

Twig 
or 

link 

Twig 
or 

link 

Voltage-controlled 
current source 

Admittance Twig Twig 

Current-controlled 
voltage source 

Impedance Link Link 

Ideal transformer 
or NC 

Hybrid h 
or g 

Twig 
or 

link 

Link 
or 

twig 

Voltage-controlled 
voltage source 

Hybrid g Twig Link 

Current-controlled 
current source 

Hybrid h Link Twig 

Since there are limitations on the nature of what is permitted (twig or 
link) for the branches of some of the multiterminal components for some 
networks, it might be impossible to find a tree that permits each branch 
to become what Table 2 decrees. In this case the present approach will 
fail. 

However, observe that there was no a priori reason for choosing to 
write the branch relationships in the form of (109). We can instead write 
them in the inverse form, as follows: 

(113) 

In this case, the twig and link designations in the last two columns of 
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Table 2 will have to be reversed. It turns out that the equation corres
ponding to (112) using the G system will be somewhat more complicated. 
The details of obtaining this equation will be left as a problem. In any 
case, if one of these hybrid representations fails, the other one might 
succeed.* 

To illustrate the mixed-variable equations, consider again the network 
of Fig. 28, which is redrawn here as Fig. 30. A possible tree is shown in 
the graph by heavy lines. For purposes of comparison, the same branch 
numbering is made as before, but this is not the natural one for the tree 
selected; care must be exercised about the ordering of branches when 
writing the equations. The matrix off-cut sets, taken in the order 1, a, 
4, 5, is found to be 

To write the V-I relations in the form of (109), the twig and link 
variables are listed in column matrices in the same order as for Q. Thus 

* Matters can be salvaged, even if both fail, by a modification that uses two trees. 
It should be clear, however, that failure of both representations can occur only in net
works having a proliferation of controlled sources in peculiar connections. Hence the 
need for such a modification is so rare that further discussion is not warranted. 
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Fig. 30. Example for mixed-variable equations. 

Now the H matrix is filled in. The only branches that will yield off-
diagonal terms are those of the transformer. The appropriate equations 
are Vb = Va/n, and Ia = —Ib/n. The result will be 

From this expression the H submatrices are easily identified. 
As for the sources, assume there are no initial currents in the inductors; 

so I g = 0, and V g is nonzero only in the first element, which is a twig. 
Hence B V g reduces to B t V g t = —Q'lV g t , which, with the Q l previously 
found, becomes 

Now all the submatrices that make up (112) are determined. Putting 
everything together leads to 
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(You should verify this result.) This is a seventh-order matrix equation. 
However, it is not as bad as it looks, since the coefficient matrix is sparse; 
that is, many entries are zero. 

Let us consider one more example. In the network in Fig. 31, let the 
transistor have the simple model of a current-controlled current source 
shown in Fig. 31b. The heavy lines in the graph designate the tree, as usual. 

Fig. 31. Mixed variable equations for transistor network. 

(a) (b) 

Branch 7 is the controlling branch of the source. According to Table 2, 
this branch must be a link, and the controlled current branch (branch 5) 
must be a twig. For the ideal transformer one branch must be a twig; and 
the other, a link. Once the branches of the multiterminal components 
have been assigned their appropriate character, the other branches of 
the tree are selected. The branch relationship and the Q matrix can now 
be written. 
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As for the sources, assume that the capacitors have initial voltages 
v40 and v60, respectively. These can be represented as voltage sources 
v40/s and v60/s. The source matrices are, therefore, 
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Hence QI g becomes I g t = [Ig 0 0 0 0]' , and B V g becomes — Q/V g t + 
V g l = [v60/s v40/s 0 0]' . 

When all of the above are inserted into (112), the final equations become 

Again the size of the matrix may appear to be excessively large but again 
it is quite sparse. 

To summarize the features of the mixed-variable equations, after a 
tree has been selected, the V-I relationships of the branches are written 
as a single matrix equation in which twig currents and link voltages are 
expressed in terms of twig voltages and link currents. Next, KCL applied 
to the f-cut-sets for the chosen tree and KVL applied to the f-loops are 
used to eliminate the twig currents and link voltages from this expression. 
The result is rearranged to give a set of equations in the twig-voltage and 
link-current variables. The number of equations equals the number of 
branches, which is the same as the sum of the number of loop equations 
and node equations. This is the major drawback of the approach. The 
virtue is the fact that multiterminal elements can be accommodated 
quite naturally. 

One other observation should be made here. In selecting a tree the 
only restrictions involve the branches of multiterminal components. No 
special pains are taken in assigning two-terminal elements to the tree or 
the cotree, because the equations require no special distinctions among 
capacitors, inductors, or resistors. As we shall see in a later chapter, this 
is not the case when dealing with the state equations, and there are 
reasons for assigning capacitors and inductors uniquely to the tree or 
cotree. 
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PROBLEMS 

1. When writing the state equations for the bridge network in Fig. 2, the 
branch relations were inserted into KVL to eliminate all branch 
voltages except that of the capacitor. Then KCL was used to eliminate 
some of the branch currents. 
Instead, start with KCL and use the branch relations to eliminate 
appropriate currents. Then use KVL to eliminate some of the branch 
voltages. The final result should be the same as (10). 

2. Let A t be an nth order nonsingular submatrix of the incidence matrix 
of a connected linear graph, where n + 1 is the number of nodes. Prove 
that the columns of A t correspond to twigs for some tree. (This is the 
converse of the theorem on p. 74). 

3. Suppose a set of branches of a linear graph contains a loop. Show that 
the corresponding columns of the A matrix are linearly dependent. 

4. Prove that any set of n branches in a connected graph that contains no 
loops is a tree. 

5. The incidence matrix of a graph can be partitioned as A — [A t A l ] , 
where the columns of A t correspond to twigs and the columns of A l 

correspond to links for a given tree. The submatrix A t is nonsingular; 
in some cases it will be a unit matrix. What must be the structure of 
the tree for which A t = U? Prove and illustrate with an example. 

6. Let B l be a (b — n)th order nonsingular submatrix of a loop matrix B 
that is of order (b — n) × b. Prove that the columns of B l correspond 
to the links for some cotree of the graph which is assumed to be 
connected. 

7. A linear graph has five nodes and seven branches. The reduced incidence 
matrix for this graph is given as 

(a) It is claimed that branches {1, 3, 4, 5} constitute a tree. Without 
drawing the graph, verify the truth of this claim. 
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(b) For this tree write the matrix of f-loops, B f (again, without drawing 
a graph). 
(c) For the same tree determine the matrix of f-cut-sets, Q f . (No 
graphs, please.) 
(d) Determine the number of trees in the graph. 
(e) Draw the graph and verify the preceding results. 

8. Repeat Problem 7 for the following incidence matrices and the specified 
branches: 

(a) branches: {2, 3, 4} 

(b) branches: {1, 3, 5, 6} 

9. Prove this statement: In a linear graph every cut-set has an even 
number of branches in common with every loop. 

10. With A = [At Al] and B f = [B t U], it is known that B t = —(At-1Al)'. 
Thus, to find B f , it is necessary to know A t

— 1 . The following matrices 
are specified as candidates for A t

— 1 . State whether or not they are 
suitable. 

(a) (b) 

(c) 

11. Let A = [A t A l ] , where A t is nonsingular. Prove that the nonzero 
elements in each row of A t

— 1 must have the same sign. 
12. Define a path matrix P = [pij] of a tree as follows: 
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pij = + l [ - l ] if branch j is in the (unique) directed path in the tree 
from node i to the datum node and its orientation agrees [disagrees] 
with that of the path, and pij = 0 otherwise. 

The path matrix P is a square matrix whose rows correspond to paths 
from the corresponding nodes to the datum node and whose columns 
correspond to branches; for example, the nonzero entries in, say the third 
column, specify the paths on which branch 3 lies; and the nonzero entries 
in, say the fourth row, specify the branches that lie on the path from 
node 4 to datum. Write the path matrix for each of the indicated trees in 
the graph of Fig. P-12. 

Fig. P-12 

13. When forming B f or Q f from the incidence matrix, it is necessary to find 
the inverse of A t . A simple method of doing this is required. Prove that 
A t

- 1 = P', where P is the path matrix of the tree whose branches are 
the columns of A t . 

14. Use the result of Problem 13 to find A t

_ 1 for the trees of Fig. P-12. 
Verify by evaluation of A t P'. For each case verify the result of Problem 
11. 

15. (a) Two branches are in parallel in a graph. Determine the relationship 
of the columns corresponding to these two branches in the Q f matrix, 
(b) Repeat if the two branches are in series. 

16. Let Q f = [U Q l]. Suppose a column of Q l , say the jth, has a single 
nonzero entry, and this is in the kth row. What can you say about the 
structure of the graph as it relates to branches j and k? 

17. Let Qf= [U Q l] and B f = [B t U]. Suppose the Q f matrix of a graph 
is given, (a) Determine the B f matrix for this graph; (b) discuss the 
possibility of determining the A matrix of the graph and the uniqueness 
of this graph from a given Q f matrix or a given B f matrix. 
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18. In the graphs of Fig. P-18 determine the number of trees 

3 

Fig. P - 1 8 

(a) (b) 

19. Prove that a graph contains at least one loop if two or more branches 
are incident at each node. 

20. For a connected planar graph of b branches and n + 1 nodes show that 
the B matrix of the meshes is of rank b — n. This will mean that the 
mesh currents will be an adequate basis for expressing all branch 
currents. 

21. Using the concept of duality, show that KVL equations written for the 
meshes of a planar graph are linearly independent. 

22. Let a branch t of a graph be a twig for some tree. The f-cut-set 
determined by t contains a set of links l1, l2, ... for that tree. Each of 
these links defines an f-loop. Show that every one of the f-loops formed 
by links l1, l2, etc. contains twig t. 

23. For the graph in Fig. P-23, let B be the loop matrix for the meshes. 

Fig. P - 2 3 

(a) Form B'(B l

- 1 ) ' and verify that the branch currents are correctly 
given in terms of the link currents for the tree shown. 
(b) For the same tree determine B f directly and verify that 
B j = B ' ( B l - 1 ) ' . 
(c) Verify the mesh transformation. 
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2 4 . In the graph of Fig. P-18b, branches {2, 3, 7, 6} form a loop. Verify the 
result of Problem 3 for this set of branches. 

2 5 . In the graph of Fig. P-18b, branches {2, 4, 5, 6} form a tree. Partition 
the A matrix into [A t A l] by using this tree. From this, letting 
B F = [ B T U] and Q F = [U Q L ] , determine B T and Q L and verify that 
B T = - Q ' L . 

2 6 . It is possible for two f-loops of a graph for a given tree to have twigs 
and nodes in common. Prove that it is possible for two f-loops to have 
two nodes in common only if the path in the tree between the nodes is 
common to the two loops. 

2 7 . In Fig. P-27 the following loops exist: 
loop 1: α, e, g, b 
loop 2: d, c, g,f 
loop 3: α, d, f, j , h, b 
loop 4: e, c, h, j 

Fig. P-27 

(a) Do the KVL equations for these loops constitute an independent set? 
(b) Either (1) find a set of links that form f-loops that are meshes of 
the graph or (2) prove that there is no such set. 

2 8 . In a linear network let the power in branch j be defined as pj(t) = 
Vj(t) ij(t), with standard references for the variables. 

(a) For a given network assume that KCL and KVL are satisfied. Show 
that Σ pj(t) = v(t)' i(t) = 0, where the summation is over all branches of 
the network. The result v'i = 0 is called Tellegen's theorem. 
(b) Next assume that Tellegen's theorem and KVL are both true. Show 
that KCL follows as a consequence. 
(c) Finally, assume that Tellegen's theorem and KCL are both true. 
Show that KVL follows as a consequence. 

This problem demonstrates that, of the three laws, KCL, KVL and 
Tellegen's theorem, any two can be taken as fundamental; the third 
will follow as a consequence. 
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29. Construct the duals of the networks in Fig. P-29. The numbers shown 
are values of R, L, or C. 

Fig. P - 2 9 

(a) (b) 

(c) (d) 

30. (a) If two branches are parallel or in series in a graph, how are the 
corresponding branches in the dual graph related? Verify in terms of 
Fig. P-29. 
(b) Figure P-30 represents, the network in Fig. P-29b. Within the box 

Fig. P - 3 0 

is a bridged-tee. In the dual network how is this bridged-tee modified? 
(c) What kind of structure is the dual of the bridge network in 
Fig. P-29c? 

31. For the networks in Fig. P-29 (a) write the loop equations by using the 
meshes for loops and the mesh currents as a set of basis currents. For 
which of these networks do the meshes constitute f-loops for some tree? 
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(b) Choose some tree [different from part (a)] and write loop equations 
for the f-loops. 

32. For the networks of Fig. P-29 choose the lowest node as datum and 
write a set of node equations. 

33. For the networks of Fig. P-29 choose a tree and write a set of node-
pair equations with the twig voltages for this tree as basis variables. 

34. For the network in Fig. P-34 (a) write a set of node-pair equations for 
the tree shown, (b) Write a set of node equations using a convenient 
node for datum. 

Fig. P - 3 4 

35. For the network in Fig. 29 in the text write a set of node equations 
and verify that the node-admittance matrix will be singular when 
G1 = (k-1)G2. 

36. Fig. P-36 shows a network having a potentially singular node-
admittance or loop-impedance matrix. Determine conditions among the 
parameters that will make it singular 

Fig. P - 3 6 
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37. For the network in Fig. P-37 set up in matrix form (a) the node 
equations; (b) the mixed-variable equations, and (c) for the latter, show 
all possible trees of the graph. 

38. For the network of Fig. P-38 set up (a) the loop equations, (b) the 
mixed-variable equations (use the usual small-signal linear equivalent 
for the triode), and (c) for the latter, show all possible trees. 

Fig. P-38 

39. Find all possible trees for which mixed-variable equations can be 
written for the network in Fig. 31 in the text. 

40. Show that the loop-impedance matrix Zm = B f ZB'f can be written as 
Z l + Q'lZ tQ l, where Q f = [U Q l] and Z is conformally partitioned. 

41. Show by doing it that, for RLC networks, the mixed-variable equations 
in (112) can be converted into loop equations or node-pair equations. 

The next six problems involve the preparation of a computer program to help 
in implementing the solution of some problems. In each case prepare a program 
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flow chart and a set of program instructions, in some user language like 
FORTRAN IV, for a digital computer program to carry out the job specified 
in the problem. Include a set of user instructions for the program. 

*42. Prepare a program to identify a tree of a connected network when each 
branch and its orientation in the graph are specified by a sequence of 
triplets of numbers: The first number identifies the branch, the second 
number identifies the node at the branch tail, and the third number 
identifies the node at the branch head. The program must also renumber 
the branches such that twigs are numbered from 1 to n and links are 
numbered from n + 1 to b. An example of a typical set of data is given 
in Fig. P—42 for the network graph shown there. 

Fig. P-42 

*43. Prepare a program to determine a reduced-incidence matrix of a 
connected network using, as input data, the output data from Problem 
42. 

*44. Prepare a program to determine the following: 

(a) An f-loop matrix by using (34). 
(b) An f-cut-set matrix by using (43). 

The output data from Problem 43 should be taken as the input data for 
this problem. 

*45. Prepare a program to determine the number of trees in a network by 
(20) with pivotal condensation used to evaluate the determinant. 
Specify the input data format. 

*46. Prepare a program to determine the (a) node-admittance matrix, 
(b) loop-impedance matrix, and (c) node-pair-admittance matrix of an 
RLC network by evaluating the (1) node-parameter matrices of (91), 
(2) loop-parameter matrices of (83), and (3) node-pair-parameter 
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matrices of (99), respectively. Assume the input data is presented as a 
sequence of quintuplets of numbers: The first identifies the branch, 
the second identifies the node at the branch tail, and the third identifies 
the node at the branch head, the fourth identifies the branch type 
according to the following schedule, and the fifth is the value of the 
branch parameter. Assume also that (1) a reduced-incidence matrix, (2) an 
f-loop matrix, and (3) an f-cut-set matrix have already been evaluated by 
the programs of Problems 43 and 44. 

Fourth 
Number 

Branch 
Type 

Fourth 
Number 

Branch 
Type 

1 Capacitor 
2 Resistor 
3 Inductor 

*47. Combine the programs of Problems 43, 44, and 46 to create a single 
program that will determine at the program user's option the node-
admittance matrix, loop-impedance matrix, and/or node-pair-admittance 
matrix of an RLC network. 



. 3 . 

NETWORK FUNCTIONS 

In the last chapter we described a number of systematic methods for 
applying the fundamental laws of network theory to obtain sets of 
simultaneous equations: loop, node, node-pair, and mixed-variable 
equations. Of course, these formal procedures are not necessarily the 
simplest to use for ail problems. In many problems involving networks of 
only moderate structural complexity, inspection, Thévenin's theorem, 
and other shortcuts may doubtless provide answers more easily than 
setting up and solving, say, the loop equations. The value of these 
systematic procedures lies in their generality and in our ability to utilize 
computers in setting them up and solving them. 

The equations to which these systematic methods lead are differential 
or integrodifferential. Classical methods for solving such equations can 
be employed, but we have so far assumed that solutions will be obtained 
by the Laplace transform. With this in mind, the formulation was often 
carried out in Laplace-transformed form. 

Assuming that a network and the Laplace-transformed equations 
describing its behavior are available, we now turn to the solution of 
these equations and the network functions in terms of which the network 
behavior is described. 

3.1 DRIVING-POINT AND TRANSFER FUNCTIONS 

Given a linear, time-invariant network, excited by any number of 
independent voltage-and-current sources, and with arbitrary initial 
capacitor voltages and inductor currents, (which can also be represented 

150 
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as independent sources) a set of loop, node, or node-pair equations can be 
written. The network may be nonpassive and nonreciprocal. In matrix 
form these equations will all be similar. Thus 

( l a ) 

(lb) 

( l c ) 

The right-hand sides are the contributions of the sources, including the 
initial-condition equivalent sources; for example, J = [ J i ] , where Ji is 
the sum of current sources (including Norton equivalents of accompanied 
voltage sources) connected at node i, with due regard for the orientations. 

The symbolic solution of these equations can be written easily and is 
obtained by multiplying each equation by the inverse of the corresponding 
coefficient matrix. Thus 

(2a) 

(2b) 

(2c) 

Each of these has the same form. For purposes of illustration the second 
one will be shown in expanded form. Thus 

(3) 

where Δ is the determinant of the node admittance matrix and the Δ j k 

are its cofactors. The expression for just one of the node voltages, say 
Vk, is 

(4) 
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This gives the transform of a node voltage as a linear combination of the 
equivalent sources. The J's are not the actual sources; for example, in 
Fig. 3.1 suppose there are no initial conditions. The J-matrix will be 

Fig. 1. Illustration for equivalent sources. 

When the appropriate expressions in terms of actual sources are substi
tuted for the J's, it is clear that (4) can be arranged to give Vk(s) as a 
linear combination of the actual sources. Thus for Fig. 1 the expression 
for Vk would become 

(5) 

As a general statement, then, it can be said that any response transform 
can be written as a linear combination of excitation transforms. The 
coefficients of this linear combination are themselves linear combinations 
of some functions of s. These functions are ratios of two determinants, 
the denominator one being the determinant of Z m , Y n , or Y t , and the 
numerator one being some cofactor of these matrices; for example, in 
(5) the denominator determinant is det Y n , and the coefficient of Ig2 is 
the difference between two such ratios of determinants. 

Once the functions relating any response transform (whether voltage 
or current) to any excitation transform (V or I) are known, then the 
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response to any given excitation can be determined. Thus in (5) know
ledge of the quantities in parentheses is enough to determine the response 
Vk(s) for any given values of Vgl, Ig2, and Ig3. 

We shall define the general term network function as the ratio of a 
response transform to an excitation transform. Both the response and 
the excitation may be either voltage or current. If the response and 
excitation refer to the same terminals (in which case one must be a voltage, 
the other a current), then the function is called a driving-point function, 
either impedance or admittance. If the excitation and response refer to 
different terminals, then the function is a transfer function. 

DRIVING-POINT FUNCTIONS 

To be more specific, consider Fig. 2a, in which attention is focused 

Fig. 2 . Driving-point functions. 
(a) (b) (c) 

on one pair of terminals to which external connections can be made. We 
assume that the network (1) contains no independent sources, and (2) is 
initially relaxed. 

By the "driving-point impedance" and the "driving-point admittance" 
of a network at a pair of terminals we mean 

( 6 ) 

where V\ and 1\ are the transforms of the terminal voltage and current 
with the references as shown in Fig. 2. In making this definition nothing 
is said about how the terminals are excited or what is connected to them. 
The implication is that it makes no difference. (Is this completely intuitive 
or does it require proof?) The conditions of no independent sources and 
zero initial conditions are essential to the definition. Clearly, if the network 
contains independent sources or initial conditions, then Z or Y can take 
on different values, depending on what is connected at the terminals; 
thus it will not be an invariant characteristic of the network itself. 
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Another factor to be noted is that no assumption has been made about 
the nature of the time functions v1(t) and i1(t). Whatever they may be, 
the definition of Z or Y involves the ratio of their Laplace transforms. 

Now let us turn to an evaluation of Z and Y for a network and let us 
initially assume that the network contains no nonpassive, nonreciprocal 
devices. Since it makes no difference, suppose the network is excited with 
a current source, as in Fig. 2b. Let us write a set of node equations. We 
choose one of the two external terminals as the datum node in order that 
the source appear in only one of the node equations. Under these circum
stances the solution for V\ can be obtained from (4), in which only 
J1 is nonzero and its value is I 1 . Hence for the impedance we find 

(7) 

where Z is the driving-point impedance at the terminals of the network. 
The notation y is used on the determinants to indicate that Δ is the 
determinant of the node equations. 

A dual formula for the driving-point admittance Y can be obtained, 
quite evidently, by considering that the network is excited by a voltage 
source, as in Fig.2c; a set of loop equations are then written. The loops 
are chosen such that the voltage source appears only in the first loop; 
thus V1 will appear in only one of the loop equations. The solution for 
the loop equations will be just like (3), except that the sources will be the 
equivalent voltage sources Ek (of which all but the first will be zero in 
this case and this one will equal V1) and the variables will be the loop 
currents. Solving for I1 then gives 

(8) 

where Y is the driving-point admittance and the notation z means that Δ 
is the determinant of the loop impedance matrix. 

Expressions 7 and 8 are useful for calculating Z and Y, but it should be 
remembered that they apply when there are no controlled sources or 
other such devices. They may also apply in some cases when controlled 
sources are present, but not always. 

As an illustration of a simple case in which (7) and (8) do not apply 
when a controlled source is present, consider the grounded-grid amplifier 
shown in Fig. 3a. The linear model is shown in Fig. 3b, in which a voltage-
controlled voltage source appears. Since this does not have either an 
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Fig. 3 . Grounded grid amplifier. 

(a) (b) 

(c) 

impedance or an admittance representation, let us express the control-
ling voltage V in terms of a branch current; from Fig. 3b the proper 
expression is V= RkI5 — V1. W^̂ th this expression replacing the control
ling voltage, the controlling branch is not even shown in the graph of 
Fig. 3c. The V-I relation of the controlled branch (branch 2 in the graph) 
is V2 = μV= μRkI5 — μV1. This gives an impedance representation of 
the branch. (μV 1 is simply an independent accompanying source and 
will appear in the source-voltage matrix.) The tree in solid lines is chosen 
so that the exciting source appears in only one loop. The loop matrix B, 
the branch impedance matrix Z, and the source-voltage matrix V g can 
be written as follows: 
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The loop equations (BZB'I m = BV g ) now become 

The driving-point admittance is I5/V1. This can be found by solving the 
loop equations for I5. The result is 

Thus, even though we were careful to choose only one loop through the 
exciting source, the source voltage V1 appears in both loop equations, 
and the final result differs from (8). It may be concluded that one should 
not rely on special formulas such as (7) and (8) but should go to definitions 
such as (6). 

TRANSFER FUNCTIONS 

In the definition of a network function, when the excitation and re
sponse are at different terminals, the function is a transfer function. Let 
the response be the voltage or current of some branch. We can focus 
attention on the branch by drawing it separately, as in Fig. 4. For the 
notion of transfer function to be meaningful, we continue to assume that 
there are no internal independent sources and the network is initially 
relaxed. In Fig. 4a, four different transfer functions can be defined with 

Fig. 4 . Transfer functions. 
(a) (b) (c) 

either VL(S) or Iz,(s) as the response and either V1(s) or I1(s) as the exci
tation. Again, in making these definitions there is no stipulation as to 
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the manner in which the network is excited. Since it makes no difference 
let us apply a current source, as shown in Fig. 4b, and use node equations. 
The solutions for the node voltages are given by (4). The only things left 
to settle are the sources. Even though there is only one actual source, 
this may appear in more than one node equation if the network contains 
controlled sources. Hence let us temporarily assume there are no controlled 
sources. Then all the J's in (4) are zero except Ji, which equals Ii. The 
result will be 

From these, and from the fact that I L = Y L Vz,, each of the transfer 
functions Vz,/V1, VL/Ii, IL/V1, and IL/I1 can be obtained. In a similar 
manner, by assuming a voltage source is applied, as shown in Fig. 4c, 
the loop equations may be written. The resulting expressions from both 
the node and loop equations will be 

Transfer impedance: 

(9a) 

Transfer admittance: 

(9b) 

Voltage gain, or transfer voltage ratio: 

(9c) 

Current gain, or transfer current ratio: 

(9d) 

Let us emphasize that— 

1. These formulas are valid in the absence of controlled sources and 
other nonpassive, nonreciprocal devices. 
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2. The transfer impedance is not the reciprocal of the transfer admit
tance. 

3. The references of voltage and current must be as shown in Fig. 4. 
When controlled sources are present, these particular formulas may not 
apply. Nevertheless, the transfer functions will still be linear combinations 
of similar ratios of determinants and cofactors. 

3.2 MULTITERMINAL NETWORKS 

In our study of electric networks up to this point we have assumed that 
the internal structure of the network is available and that an analysis 
is to be carried out for the purpose of determining the currents and voltages 
anywhere in the network. However, very often there is no interest in all 
the branch voltages and currents. Interest is limited to only a number of 
these; namely, those corresponding to terminals to which external con
nections to the network are to be made. As far as the outside world is 
concerned, the details of the internal structure of a network are not 
important; it is only important to know the relationships among the 
voltages and currents at the external terminals. The external behavior of 
the network is completely determined once these relationships are known. 

Consider the network, shown in Fig. 5a, having six terminals to which 

Fig. 5. Six-terminal network. 

(a) (b) 

external connections can be made. Exactly how should the voltage-and-
current variables be defined? Consider Fig. 5b. Should the voltages he 
defined so that each terminal voltage is referred to some arbitrary datum 
or ground, such as V2? Should they be defined as the voltages between 
pairs of terminals, such as V12, or V46? Should the currents be the ter-
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minal currents, such as I3, or should they be like the loop current J1 

shown flowing into one terminal and flowing out another? In fact, each 
of these may be useful for different purposes, as we shall observe. 

In many applications external connections are made to the terminals 
of the network only in pairs. Each pair of terminals, or terminal-pair, 
represents an entrance to, and exit from, a network and is quite de
scriptively called a port. The six-terminal network of Fig. 5 is shown as a 
three-port in Fig. 6a and as a five-port in Fig. 6b. Note that no other 

Fig. 6. Six-terminal network connected (a) as a three-port and (b) as a five-port. 

(a) 

(b) 

external connections are to be made except at the ports shown; for 
example, in Fig. 6a no connection is to be made between terminals 1 
and 3 or 1 and 5. Connections must be so made that the same current 
enters one terminal of the port as leaves the network through the second 
terminal of the port. The port voltages are the voltages between the pairs 
of terminals that constitute the port. 

There is a basic difference (besides the number of ports) between the 
two types of multiport network shown in Fig. 6. In Fig. 6b, one of the 
terminals of each port is common to all the ports. The port voltages are 
therefore the same as the terminal voltages of all but one terminal, 
relative to this last one. Such a network is called a common-terminal, or 
grounded, multiport. In the first network in Fig. 6 there is no such 
identified common ground. 

It is possible that other kinds of external connections may be required 
to a multiterminal network besides the terminal-pair kind. In such a 
case a port description is not possible. An alternative means of descrip
tion, which will be necessary in this case, will be discussed in Section 
3.6. 
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3 . 3 TWO-PORT NETWORKS 

At this point it is possible to proceed by treating the general multiport 
network and discussing sets of equations relating the port variables. After 
this is done, the results can be applied to the special case of a two-port. 
An alternative approach is to treat the simplest multiport (namely, the 
two-port) first. This might be done because of the importance of the two-
port in its own right, and because treating the simplest case first can lead to 
insights into the general case that will not be obvious without experience 
with the simplest case. We shall take this second approach. 

A two-port network is illustrated in Fig. 7. Because of the application 

Fig. 7. Two-port network. 

of two-ports as transmission networks, one of the ports—normally the 
port labeled 1—is called the input; the other, port 2, is called the output. 
The port variables are two port currents and two port voltages, with the 
standard references shown in Fig. 7. (In some of the literature the refer
ence for I2 is taken opposite to our reference. When comparing any 
formulas in other publications, verify the references of the port para
meters.) External networks that may be connected at the input and 
output are called the terminations. We shall deal throughout with the 
transformed variables and shall assume the two-port to be initially 
relaxed and to contain no independent sources. 

The discussion that follows may appear somewhat unmotivated, since 
in restricting ourselves to analysis we have lost much of the motivation 
for finding various ways of describing the behavior of two-port networks. 
The need for these various schemes arises from the demands made by 
the many applications of two-ports. The usefulness of the different 
methods of description comes clearly into evidence when the problem is 
one of synthesizing or designing networks—filters, matching networks, 
wave-shaping networks, and a host of others. A method of description 
that is convenient for a power system, say, may be less so for a filter 
network, and may be completely unsuited for a transistor amplifier. For 
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this reason we shall describe many alternative, but equivalent, ways of 
describing two-port behavior. 

In the problem of synthesizing a network for a specific application, it 
is often very convenient to break down a complicated problem into 
several parts. The pieces of the overall network are designed separately 
and then put together in a manner consistent with the original decompo
sition. In order to carry out this procedure it is necessary to know how 
the description of the behavior of the overall network is related to the 
behavior of the components. For this reason we shall spend some time on 
the problem of interconnecting two-ports. 

Many of the results obtained in this section require a considerable 
amount of algebraic manipulation that is quite straightforward. We shall 
not attempt to carry through all the steps, but shall merely outline the 
desired procedure, leaving to you the task of filling in the omitted steps. 

OPEN- A N D SHORT-CIRCUIT PARAMETERS 

To describe the relationships among the port voltages and currents of 
a linear multiport requires as many linear equations as there are ports. 
Thus for a two-port two linear equations are required among the four 
variables. However, which two variables are considered "independent" 
and which "dependent" is a matter of choice and convenience in a given 
application. To return briefly to the general case, in an n-port, there will 
be 2n voltage-and-current variables. The number of ways in which these 
2n variables can be arranged in two groups of n each equals the number 
of ways in which 2n things can be taken n at a time; namely, (2n)!/(n!)2. 
For a two-port this number is 6. 

One set of equations results when the two-port currents are expressed 
in terms of the two-port voltages: 

(10) 

It is a simple matter to obtain interpretations for these parameters by 
letting each of the voltages be zero in turn. It follows from the equation 
that 

(11) 
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Dimensionally, each parameter is an admittance. Setting a port voltage 
to zero means short-circuiting the port. Hence the y's (for which the 
lower case letter y will be reserved) are called the short-circuit admittance 
parameters (the y-parameters for short). The matrix of y's is designated 
Y s c and is called the short-circuit admittance matrix. The terms y11 and 
y22 are the short-circuit driving-point admittances at the two ports, and 
y21 and y12 are short-circuit transfer admittances. In particular, y21 is the 
forward transfer admittance—that is, the ratio of a current response in 
port 2 to a voltage excitation in port 1—and y12 is the reverse transfer 
admittance. 

A second set of relationships can be written by expressing the port 
voltages in terms of the port currents: 

(12) 

This time interpretations are obtained by letting each current be zero 
in turn. Then 

(13) 

Dimensionally, each parameter is an impedance. Setting a port current 
equal to zero means open-circuiting the port. Hence the z's (for which the 
lower case letter z will be reserved) are called the open-circuit impedance 
parameters (the z-parameters for short). The matrix of z's is designated 
Z o c and is called the open-circuit impedance matrix. The elements z11 
and z 2 2 are the driving-point impedances at the two ports, and z 2 1 and 
Z12 are the transfer impedances; z 2 1 is the forward transfer impedance, 
and z12 is the reverse transfer impedance. 

It should be clear from (10) and (12) that the Y s c and Z o c matrices are 
inverses of each other; for example, 

(14) 

From this it follows that 

(15) 

Demonstration of this is left as an exercise. 
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The results developed so far apply whether the network is passive or 
active, reciprocal or nonreciprocal. Now consider the two transfer 
functions y21 and y12. If the network is reciprocal, according to the 
definition in Section 1.4, they will be equal. So also will z 1 2 and z 2 1 ; that 
is, for a reciprocal network 

(16) 

which means that both Y s c and Z o c are symmetrical for reciprocal net
works. 

HYBRID PARAMETERS 

The z and y representations are two of the ways in which the relation
ships among the port variables can be expressed. They express the two 
voltages in terms of the two currents, and vice versa. Two other sets 
of equations can be obtained by expressing a current and voltage from 
opposite ports in terms of the other voltage and current. Thus 

(17) 

and 

(18) 

The interpretations of these parameters can be easily determined from 
the preceding equations to be the following: 

(19) 
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Thus we see that the h- and g-parameters are interpreted under a mixed 
set of terminal conditions, some of them under open-circuit and some 
under short-circuit conditions. They are called the hybrid h- and hybrid 
g-parameters. From these interpretations we see that h11 and g22 are 
impedances, whereas h22 and g11 are admittances. They are related to 
the z's and y's by 

( 2 0 ) 

The transfer g's and h's are dimensionless. The quantity h21 is the forward 
short-circuit current gain, and g12 is the reverse short-circuit current gain. 
The other two are voltage ratios: g21 is the forward open-circuit voltage 
gain, whereas h12 is the reverse open-circuit voltage gain. We shall use H 
and G to represent the corresponding matrices. 

By direct computation we find the following relations among the 
transfer parameters: 

( 2 1 a ) 

(21b) 

In the special case of reciprocal networks these expressions simplify to 
h12 = —h21 and g12 = —g21. In words this means that for reciprocal 
networks the open-circuit voltage gain for transmission in one direction 
through the two-port equals the negative of the short-circuit current 
gain for transmission in the opposite direction. 

Just as Z o c and Y S C are each the other's inverse, so also H and G are 
each the other's inverse. Thus 

( 2 2 ) 

You should verify this. 
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CHAIN PARAMETERS 

The remaining two sets of equations relating the port variables express 
the voltage and current at one port in terms of the voltage and current 
at the other. These were, in fact, historically the first set used—in the 
analysis of transmission lines. One of these equations is 

(23) 

They are called the chain, or ABCD, parameters. The first name comes 
from the fact that they are the natural ones to use in a cascade, or tandem, 
or chain connection typical of a transmission system. Note the negative 
sign in —I2, which is a consequence of the choice of reference for I2. 

Note that we are using the historical symbols for these parameters 
rather than using, say, aij for i and j equal 1 and 2, to make the system of 
notation uniform for all the parameters. We are also not introducing 
further notation to define the inverse parameters obtained by inverting 
(23), simply to avoid further proliferation of symbols. 

The determinant of the chain matrix can be computed in terms of z's 
and y's. It is found to be 

(24) 

which is equal to 1 for reciprocal two-ports. 
The preceding discussion is rather detailed and can become tedious if 

one loses sight of the objective of developing methods of representing 
the external behavior of two-ports by giving various relationships among 
the port voltages and currents. Each of these sets of relationships finds 
useful applications. For future reference we shall tabulate the inter
relationships among the various parameters. The result is given in Table 1. 
Note that these relationships are valid for a general nonreciprocal two-
port. 

TRANSMISSION ZEROS 

There is an important observation that can be made concerning the 
locations of the zeros of the various transfer functions. This can be seen 
most readily, perhaps, by looking at one of the columns in Table 1; for 
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example, the column in which all parameters are expressed in terms of 
the y-parameters. We see that 

(25a) 

(25b) 

Except for possible cancellations, all of these transfer functions will have 
the same zeros. We use the generic term transmission zero to refer to a 
value of s for which there is a transfer-function zero, without having to 
specify which transfer function—whether current gain, transfer admit
tance, or any other. 

Example 

As an illustrative example of the computation of two-port parameters, 
consider the network shown in Fig. 8, which can be considered as a 

Fig. 8. Example for calculating two-port parameters. 

model for a vacuum triode under certain conditions. (The capacitances 
are the grid-to-plate and plate-to-cathode capacitances.) Let us compute 
the y-parameters for this network. The simplest procedure is to use the 
interpretations in (11). If the output terminals are short-circuited, the 
resulting network will take the form shown in Fig. 9. As far as the input 
terminals are concerned, the controlled source has no effect. Hence y11 is 
the admittance of the parallel combination of Rg and C 1 : 
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Fig. 9. Network with output terminals shorted. 

To find y21, assume that a voltage source with transform V1(s) is applied 
at the input terminals. By applying Kirchhoff's current law at the node 
labeled 1 in Fig. 9, we find that I2 = g m V 1 — sC1V1. Hence y21 becomes 

Now short-circuit the input terminals of the original network. The 
result will take the form in Fig. 10. Since V\ is zero, the dependent source 

Fig. 10 . Network with input terminals shorted. 

current is also zero. It is now a simple matter to compute y22 and y12: 

We see that y12 is different from y21, as it should be, because of the 
presence of the controlled source. 

If the y-parameters are known, any of the other sets of parameters 
can be computed by using Table 1. Note that even under the conditions 
that C1 and C2 are zero and Rg infinite, the y-parameters exist, but the 
z-parameters do not (z11, z22, and z21 become infinite). 



Sec. 3.4] INTERCONNECTION OF TWO-PORT NETWORKS 169 

3.4 INTERCONNECTION OF TWO-PORT NETWORKS 

A given two-port network having some degree of complexity can be 
viewed as being constructed from simpler two-port networks whose 
ports are interconnected in certain ways. Conversely, a two-port network 
that is to be built can be designed by combining simple two-port struc
tures as building blocks. From the designer's standpoint it is much easier 
to design simple blocks and to interconnect them than to design a complex 
network in one piece. A further practical reason for this approach is that 
it is much easier to shield smaller units and thus reduce parasitic capaci
tances to ground. 

CASCADE CONNECTION 

There are a number of ways in which two-ports can be interconnected. 
In the simplest interconnection of 2 two-ports, called the cascade, or tan
dem-connection, one port of each network is involved. Two two-ports are 
said to be connected in cascade if the output port of one is the input port 
of the second, as shown in Fig. 11. 

Fig. 1 1 . Cascade connection of two-ports. 

Our interest in the problem of "interconnection" is, from the analysis 
point of view, to study how the parameters of the overall network are 
related to the parameters of the individual building blocks. The tandem 
combination is most conveniently studied by means of the ABCD-
parameters. From the references in the figure we see that 

Hence for the ABCD system of equations of the network Nb we can 
write 
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Furthermore, if we write the ABCD system of equations for the network 
Na and substitute in the last equation, we get 

Thus the ABCD-matrix of two-ports in cascade is equal to the product of the 
A BCD-matrices of the individual networks; that is, 

(26) 

Once the relationships between the parameters of the overall two-port 
and those of the components are known for any one set of parameters, it 
is merely algebraic computation to get the relationships for any other set; 
for example, the open-circuit parameters of the overall two-port can be 
found in terms of those for each of the two cascaded ones by expressing 
the z-parameters in terms of the ARCD-parameters for the overall 
network, using (26) and then expressing the ABCD-parameters for each 
network in the cascade in terms of their corresponding z-parameters. The 
result will be 

(27) 

The details of this computation are left to you. 
A word of caution is necessary. When it is desired to determine some 

specific parameter of an overall two-port in terms of parameters of the 
components in the interconnection, it may be simpler to use a direct 
analysis than to rely on relationships such as those in Table 1. As an 
example, suppose it is desired to find the expression for z21 in Fig. 11. 
The term z21 is the ratio of open-circuit output voltage to input current: 
z21 = V2/I1. Suppose a current source I1 is applied; looking into the 
output terminals of Na, let the network be replaced by its Thévenin 
equivalent. The result is shown in Fig. 12. By definition, z21b = V2/I1b 
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Fig. 12 . Replacement of network Na by its Thévenin equivalent. 

with the output terminals open. Now I1b can easily be found from the 
network in Fig. 12 to be 

Hence 

Finally, 

(28) 

which agrees with (27). 
An important feature of cascaded two-ports is observed from the 

expressions for the transfer impedances in (27). The zeros of z21 are the 
zeros of z 2 1 a and z21b. (A similar relationship holds for z12.) Thus the 
transmission zeros of the overall cascade consist of the transmission 
zeros of each of the component two-ports. This is the basis of some 
important methods of network synthesis. It permits individual two-ports 
to be designed to achieve certain transmission zeros before they are 
connected together. It also permits independent adjustment and tuning 
of elements within each two-port to achieve the desired null without 
influencing the adjustment of the cascaded two-ports. 

PARALLEL A N D SERIES CONNECTIONS 

Now let us turn to other interconnections of two-ports, which, unlike 
the cascade connection, involve both ports. Two possibilities that imme
diately come to mind are parallel and series connections. Two two-ports 
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are said to be connected in parallel if corresponding (input and output) 
ports are connected in parallel as in Fig. 13a. In the parallel connection 

Fig. 13. Parallel and series connections of two-ports. 

(a) (b) 

the input and output voltages of the component two-ports are forced to 
be the same, whereas the overall port currents equal the sums of the 
corresponding component port currents. This statement assumes that 
the port relationships of the individual two-ports are not altered when 
the connection is made. In this case the overall port relationship can be 
written as 

That is, the short-circuit admittance matrix of two-ports connected in parallel 
equals the sum of the short-circuit admittance matrices of the component two-
ports : 

(30) 

The dual of the parallel connection is the series connection. Two 
two-ports are connected in series if corresponding ports (input and output) 
are connected in series, as shown in Fig. 13b. In this connection the input 
and output port currents are forced to be the same, whereas the overall 
port voltages equal the sums of the corresponding port voltages of the 
individual two-ports. Again, it is assumed that the port relationships of 
the individual two-ports are not altered when the connection is made. In 
this case the overall port relationship can be written as 
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(31) 

That is, the open-circuit impedance matrix of two-ports connected in series 
equals the sum of the open-circuit impedance matrices of the component two-
ports: 

(32) 

Of these two—parallel and series connections—the parallel connection 
is more useful and finds wider application in synthesis. One reason for 
this is the practical one that permits two common-terminal (grounded) 
two-ports to be connected in parallel, the result being a common-terminal 
two-port. An example of this is the parallel-ladders network (of which the 
twin-tee null network is a special case) shown in Fig. 14. 

Fig. 14. Parallel-ladders network. 

On the other hand, the series connection of two common-terminal 
two-ports is not a common-terminal two-port unless one of them is a 
tee network. Consider two grounded two-ports connected in series, as in 
Fig. 15a. It is clear that this is inadmissible, since the ground terminal of 
Na will short out parts of Nb, thus violating the condition that the indi
vidual two-ports be unaltered by the interconnection. The situation is 
remedied by making the common terminals of both two-ports common 
to each other, as in Fig. 15b. In this case the resulting two-port is not a 
common-terminal one. If one of the component two-ports is a tee, the 
series connection takes the form shown in Fig. 15c. This can be redrawn, 
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as in Fig. 15d, as a common-terminal two-port. That the last two net
works have the same z-parameters is left for you to demonstrate. 

Fig. 15. Series connection of common-terminal two-ports. 

(a) (b) (d) 

Variations of the series and parallel types of interconnections are 
possible by connecting the ports in series at one end and in parallel at the 
other. These are referred to as the series-parallel and parallel-series con
nections. As one might surmise, it is the h- and g-parameters of the indi
vidual two-ports that are added to give the overall h- and g-parameters, 
respectively. This also is left as an exercise. 

PERMISSIBILITY OF INTERCONNECTION 

It remains for us to inquire into the conditions under which two-ports 
can be interconnected without causing the port relationships of the 
individual two-ports to be disturbed by the connection. For the parallel 
connection, consider Fig. 16. A pair of ports, one from each two-port, is 

Fig. 16. Test for parallel-connected two-ports. 

(a) (b) 
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connected in parallel, whereas the other ports are individually short-
circuited. The short circuits are employed because the parameters 
characterizing the individual two-ports and the overall two-port are the 
short-circuit admittance parameters. If the voltage V shown in Fig. 16 
is nonzero, then when the second ports are connected there will be a 
circulating current, as suggested in the diagram. Hence the condition 
that the current leaving one terminal of a port be equal to the current 
entering the other terminal of each individual two-port is violated, and 
the port relationships of the individual two-ports are altered. 

For the case of the series connection, consider Fig. 17. A pair of ports, 

Fig. 17. Test for series-connected two-ports. 

(a) (b) 

one from each two-port, is connected in series, whereas the other ports 
are left open. The open circuits are employed because the parameters 
characterizing the individual two-ports and the overall two-port are the 
open-circuit impedance parameters. If the voltage V is nonzero, then 
when the second ports are connected in series there will be a circulating 
current, as suggested in the diagram. Again, the port relationships of the 
individual two-ports will be modified by the connection, and hence the 
addition of impedance parameters will not be valid for the overall network. 

Obvious modifications of these tests apply to the series-parallel and 
parallel-series connections. The preceding discussion of the conditions 
under which the overall parameters for interconnected two-ports can be 
obtained by adding the component two-port parameters has been in rather 
skeletal form. We leave to you the task of supplying details. 

When it is discovered that a particular interconnection cannot be 
made because circulating currents will be introduced, there is a way of 
stopping such currents and thus permitting the connection to be made. The 
approach is simply to put an isolating ideal transformer of 1 : 1 turns 
ratio at one of the ports, as illustrated in Fig. 18 for the case of the parallel 
connection. 
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Fig. 18. Isolating transformer to permit interconnection. 

3 . 5 MULTIPORT NETWORKS 

The preceding section has dealt with two-port networks in considerable 
detail. Let us now turn our attention to networks having more than two 
ports. The ideas discussed in the last section apply also to multiports with 
obvious extensions. 

Consider the n-port network shown in Fig. 19. The external behavior 

Fig. 19. Multiport network. 

of this network is completely described by giving the relationships among 
the port voltages and currents. One such relationship expresses all the 
port voltages in terms of the port currents: 

(33a) 
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or 

(33b) 

By direct observation, it is seen that the parameters can be interpreted 
as 

(34) 

which is simply the extension of the open-circuit impedance representa
tion of a two-port. The matrix Z o c is the same as that in (12) except that 
it is of order n. 

The short-circuit admittance matrix for a two-port can also be directly 
extended to an n-port. Thus 

(35a) 

where 

(35b) 

If we now think of extending the hybrid representations of a two-port, 
we encounter some problems. In a hybrid representation the variables are 
mixed voltage and current. For a network of more than two ports, how 
are the "independent" and "dependent" variables to be chosen? In a 
three-port network, for example, the following three choices can be made: 

as well as their inverses. In these choices each vector contains exactly 
one variable from each port. It would also be possible to make such 
selections as 
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where each vector contains both the current and voltage of one particular 
port. The former category are like the hybrid h and hybrid g representa
tions of a two-port. The latter has some of the features of the chain-
matrix representation. It is clearly not very productive to pursue this 
topic of possible representations in the general case. 

Just as in the case of two-ports, it is possible to interconnect multiports. 
Two multiports are said to be connected in parallel if their ports are 
connected in parallel in pairs. It is not, in fact, necessary for the two 
multiports to have the same number of ports. The ports are connected in 
parallel in pairs until we run out of ports. It does not matter whether we 
run out for both networks at the same time or earlier for one network. 
Similarly, two multiports are said to be connected in series if their ports 
are connected in series in pairs. Again, the two multiports need not have 
the same number of ports. 

As in the case of two-ports, the overall y-matrix for two n-ports 
connected in parallel equals the sum of the y-matrices of the individual 
n-ports. Similarly, the overall z-matrix of two n-ports connected in 
series equals the sum of the z-matrices of the individual n-ports. This 
assumes, of course, that the interconnection does not alter the parameters 
of the individual n-ports. 

3 .6 THE INDEFINITE ADMITTANCE MATRIX 

The port description of networks is possible only when external con
nections are to be made to the terminals of the network taken in pairs. 
More generally, the terminals need not be paired into ports. In such a case 
it would be useful to have a description of the external behavior as a 
multiterminal network rather than a multiport network. In this section 
we shall introduce such a description. 

Let us return to Fig. 6. The six-terminal network shown there is viewed 
as a common-terminal five-port by defining the voltages of five of the 
terminals with reference to the voltage of the sixth one as a datum. For 
any such common-terminal multiport, suppose the datum for voltage is 
taken as an arbitrary point external to the network, as shown for an 
n-terminal network in Fig. 20. We assume that the network is connected, 
implying that none of the terminals is isolated from the rest of the network. 

The currents are not port currents but terminal currents. Clearly, they 
satisfy Kirchhoff's current law, so that 
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Fig. 20. Definition of terminal variables. 
(a; (b) 

Since the network is linear, currents can be expressed as a linear combi
nation of the terminal voltages to yield 

(36) 

The elements of the coefficient matrix of this equation are, dimensionally, 
admittance. They are, in fact, short-circuit admittances. Figure 20b shows 
all terminals but one grounded to the arbitrary datum; to the kth terminal 
is connected a voltage source. Each of the terminal currents can now be 
found. The parameters of the matrix will be 

(37) 

They are almost like the y-parameters of a multiport. We shall examine 
the relationships below. 

The coefficient matrix in (36) is called the indefinite admittance matrix 
and is designated Yi . A number of the properties of this matrix will now 
be established. 

First, suppose the scalar equations represented by the matrix equation 
36 are all added. By Kirchhoff's current law, the sum of the currents is 
zero. Hence 
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The quantity within each pair of parentheses is the sum of the elements 
in a column of Yi . The terminal voltages are all independent. Suppose all 
terminals but one, say the kth one, are short-circuited. This expression 
then reduces to 

(38) 

Since Vk ≠ 0, this means the sum of elements in each column of the 
indefinite admittance matrix equals zero. Thus the columns are not all 
independent and Yi is a singular matrix. 

What is true of the columns is also true of the rows. This can be shown 
as follows. Suppose all but the kth terminal are left open, and to the kth 
is applied a voltage source Vk. Assuming, as we did, that none of the 
terminals is isolated, the voltages of all other terminals will also equal 
Vk. All terminal currents will be zero—obviously, ail but Ik because the 
terminals are open, and Ik because of Kirchhoff's current law. With ail 
the voltages equal in (36), the jth current can be written as 

Since Vk ≠ 0, the sum of elements in each row of Y i equals zero. 
To make a common-terminal n-port out of a network with n + 1 

terminals is simple once the indefinite admittance matrix is known. If 
the terminal that is to be common to the n-ports, say terminal n + 1, 
is taken as the arbitrary datum, its voltage will be zero. Hence the last 
column of Y i in (36) can be removed, since its elements are the coefficients 
of this voltage, which is zero. Also, the current at this terminal is redun
dant, by Kirchhoff's current law, and hence the last row of Y i can also be 
removed. Thus, to make one of the terminals of a network the common 
terminal of a grounded n-port, simply delete the row and column of the 
indefinite admittance matrix corresponding to that terminal. 

The converse operation permits the formation of a Y i matrix from the 
short-circuit admittance matrix of a grounded n-port; that is, given the 
short-circuit admittance matrix of a common-terminal n-port, add to the 
matrix another row each of whose elements is the negative sum of all 
elements in the corresponding column. Then add another column, each 
of whose elements is the negative of the sum of all elements in the corre
sponding row. 

Let us illustrate this process with the common-terminal two-port shown 
in Fig. 21a. The port voltages that would normally be labeled V± and V2 

are labeled Vac and Vbc to emphasize the two terminals of each port. 
In Fig. 21b the voltage datum is taken as a point other than one of the 
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Fig. 21. Grounded two-port represented as three-terminal network. 

(a) (b) 

terminals. Let us first write the two-port y-equations; then replace Vac 

by Vi - V3 and Vbc by V2 - V3 : 

By Kirchhoff's current law, I3 in Fig. 21b equals —(Ii + I2). When this 
equation is added to the previous two the result becomes 

( 3 9 ) 

The coefficient matrix of these equations is Y i . Notice how it could have been 
formed immediately from the original Y s c -matrix by the process of add
ing a row and column, using the zero-sum property of rows and columns. 

The preceding discussion provides a method for taking the Y s c -matrix 
of a common-terminal multiport with one terminal as the common termi
nal and from it easily writing the Y s c -matrix of the common-terminal 
multiport with any other terminal taken as the common ground. 
This is especially useful in obtaining, say, the grounded-grid representa
tion of a triode amplifier from the grounded-cathode representation or 
the common-base representation of a transistor amplifier from the 
common-emitter representation. To illustrate the approach, consider 
the common-terminal two-port shown in Fig. 22a. The short-circuit 
admittance matrix of this two-port is the following: 
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Fig. 22. Indefinite admittance matrix for electronic amplifier. 

(a) (b) 

(The letters at the top and the end identify the columns and the rows 
with specific terminals.) From this the indefinite admittance matrix is 
immediately written as 

(40) 

To find the short-circuit admittance matrix of the grounded-grid confi
guration shown in Fig. 22b, all that is necessary is to delete the row and 
column corresponding to the grid terminal, which is the first one in (40). 
Of course, it should be ensured that the order of the rows and columns 
that remain correspond to the desired order of input and output—in this 
case, cathode-plate. Hence 

Once the indefinite admittance matrix of a multiterminal network is at 
hand, the results of further manipulations on the network easily show up 
as changes in the Y i-matrix. Some of these will now be discussed. 

CONNECTING TWO TERMINALS TOGETHER 

Suppose two terminals of an n-terminal network are connected together 
into a single external terminal. The two external currents are replaced by 
one, equal to the sum of the original two. The two voltages are now 
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identical. Hence the Y i-matrix of the resulting (n — 1) terminal network is 
obtained by adding the two corresponding rows and columns of the 
original Y i-matrix. (This sum replaces the original two rows and columns.) 
The extension to more than two terminals is obvious. 

SUPPRESSING TERMINALS 

Suppose one of the terminals is to be made an internal terminal to 
which external connections are not to be made. This procedure is called 
suppressing a terminal. The current at that terminal, say the nth one, 
will be zero. The equation for In = 0 can be solved for Vn (assuming 
ynn ≠ 0) and the result substituted into the remaining equations. This 
will eliminate Vn and will leave n — 1 equations in n — 1 voltages. This 
can be extended in matrix form to more than one terminal as follows. 
With I = Y i V, partition the matrices as follows: 

or 

(41) 

where I b and V b correspond to the terminals that are to be suppressed; 
that is, vector I b = 0. From the second equation solve for V b and sub
stitute into the first equations. The result will be 

(42) 

The new indefinite admittance matrix is 

(43) 

NETWORKS IN PARALLEL 

The indefinite admittance matrix of two networks connected in 
parallel equals the sum of the Y i matrices of each. By "connected in 
parallel" we mean that each terminal of one network is connected to a 
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terminal of the other and both have a common datum for voltage. It is 
not necessary that the two networks have the same number of terminals. 
If they do not, then rows and columns of zeros are appended to the Y i -
matrix of the network having the fewer terminals. In particular, a 
simple two-terminal branch connected across two terminals of a multi
terminal network can be considered to be connected in parallel with it. 
Note that the indefinite admittance matrix of a branch having admittance 
Y is 

THE COFACTORS OF THE DETERMINANT OF Y i 

A very interesting property of the determinant of the indefinite 
admittance matrix results from the fact that the sum of elements of each 
row or column equals zero. Suppose det Y i is expanded along the jth row. 
The result is 

where Δ j k is the (j, k)th cofactor of det Y i . Because the elements of the 
jth row sum to zero, we can write one of the elements as the negative 
sum of all the others. Thus 

When this is inserted into the preceding equation and terms are collected, 
the result becomes 

The determinant equals zero because Y i is singular. Furthermore, it is 
zero no matter what the values of the elements yjk may be. Hence the 
last equation can be satisfied only if each of the parenthetical terms are 
zero; that is, 

(44) 

This means all cofactors of elements of any row are equal. 
The same procedure, starting with an expansion of det Y i along a 

column, will yield a similar result concerning the equality of cofactors of 
elements of any column. Since each row and column has a common 
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element, the cofactor of this element equals ail cofactors of that row and 
column. The conclusion is that all (first) cofactors of the indefinite 
admittance matrix are equal. This property has led to the name equi-
cofactor matrix for Y i . 

Example 

Let U S now illustrate with an example how the indefinite admittance 
matrix can be used for certain network calculations. Consider the network 
shown in Fig. 23a. It is desired to find the short-circuit admittance matrix 
of the common-terminal two-port shown. We shail do this by (1) finding 
the indefinite admittance matrix of the four-terminal network in Fig. 23b, 
(2) adding to it that of the single branch, (3) suppressing terminal 3, and 
finally (4) making terminal 4 the datum. 

Fig. 23. Finding short-circuit admittances by using Y i . 
(a) (b) (c) 

To find Y i in Fig. 23b, we shall first treat that network as a common-
terminal three-port with terminal 4 as datum. The y-parameters of this 
three-port can be found from the definitions; for example, apply a voltage 
to the left-hand port and short-circuit the other two, as in Fig. 24. Three 

Fig. 24. Calculating Y s c for the three-port. 

of the y-parameters are easily found from the diagram shown there. The 
remaining y's are found in a similar way, with the result 
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The indefinite admittance matrix is easily found by adding a row and 
column whose elements are determined by the zero-sum property of rows 
and columns. To this is added the Y i-matrix of branch 5. Since it is 
connected between terminals 2 and 4, its nonzero elements appear in 
those two rows and columns. The overall Y i-matrix is 

The next step is to suppress terminal 3. For this purpose we interchange 
rows and columns 3 and 4 in order to make 3 the last one. Then we 
partition as follows, in order to identify the submatrices in (41): 

Then 
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The new indefinite admittance matrix with terminal 3 suppressed, using 
(43), is 

Finally, terminal 4 is made the common terminal by deleting the last row 
and column. The desired y-matrix of the two-port is 

It may appear that a conventional approach would have required less 
work. It is true that more steps are involved here, but each step is almost 
trivial; many of them are simply written by inspection. Also, the last 
row and column of Y i n e w need not be calculated; it is done here only for 
completeness. 

3 . 7 THE INDEFINITE IMPEDANCE MATRIX 

After learning about the indefinite admittance matrix, natural curiosity 
probably impels you to think of a dual, which might be called an indefinite 
impedance matrix. All our notions of duality dispose us favorably to such 
an idea. 

Look back at Fig. 20, in terms of which the notion of Y i was developed. 
The important condition that led to the zero-sum property of rows and 
columns is the fact that the sum of all terminal currents equals 0, by 
Kirchhoff's current law. Clearly, for the dual situation we would need to 
find that the sum of some set of voltages equals zero, by Kirchhoff's 
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voltage law. Obviously, the terminal voltages are not such a set of 
voltages, since Kirchhoff's voltage law is satisfied only on a closed path, 
and the terminal voltages are not a set of voltages encountered on a closed 
path. However, if we choose as variables the voltages between adjacent 
pairs of terminals (as in Fig. 25a), we see that they do satisfy Kirchhoff's 
voltage law. There will be as many of these voltage variables as there are 
terminals. 

Fig. 25. Variables for the indefinite impedance matrix. 

(a) (b) 

For the linear networks with which we are concerned, linear relations 
expressing these voltage variables in terms of the terminal currents can 
be written. However, it is more convenient to define a set of currents 
other than the terminal currents, as shown in Fig. 25b. The currents Jk 

are external loop currents between pairs of terminals. There is a simple 
linear relationship between the terminal currents and these loop currents; 
namely, Ik = Jk— Jk+i- Hence a linear relationship expressing the volt
ages in terms of these loop currents can be written just as readily as one 
expressing them in terms of the terminal currents. Such a relationship will be 

(45) 

The matrix of these equations is designated Z i and is called the in
definite impedance matrix. 

Exactly as for the Y i-matrix, it is possible to show that the sum of the 
elements of each row and column of Z i equals zero. This is done for the 
columns by adding the equations and using Kirchhoff's voltage law. It is 
done for the rows by setting all voltages but one equal to zero and apply
ing a current source between the terminals associated with that voltage. 
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This implies shorting all terminals together, which makes (1) the last 
voltage also zero, by Kirchhoff's voltage law, and (2) all the external 
loop currents equal. The details of these steps are left to you. Then, as for 
Y i , the indefinite impedance matrix is singular. 

Recall that the indefinite admittance matrix was simply related to the 
short-circuit admittance matrix of the common terminal (n — 1) port 
derived by short-circuiting one terminal of the network in Fig. 20 to the 
datum. The corresponding situation here is: The indefinite impedance 
matrix Z i is simply related to the open-circuit impedance matrix Z o c of 
the (n — 1) port derived by opening one pair of terminals of the network 
of Fig. 25. (The open-circuit impedance matrix thus established will be 
called the common-loop open-circuit impedance matrix.) In fact, Z i is 
obtained by first adding a row to Z o c , each element of that row being the 
negative sum of all elements in the corresponding column, and then adding 
a column to the resulting matrix, each element of that column being the 
negative sum of all the elements in the corresponding row. 

For the Y i-matrix the zero-sum property of rows and columns led to the 
equicofactor property. In the same way the (first) cofactors of the indefinite 
impedance matrix are all equal. 

Because common-terminal port relations are often encountered, let us 
examine the relation of a common-terminal open-circuit impedance 
matrix to a common-loop open-circuit impedance matrix. In Fig. 25, 
suppose terminal n is to be the common terminal and the voltage variables 
for the port representation are to be the terminal voltages taken with 
respect to terminal n as datum. Thus Vn = 0. Since the sum of the 
terminal currents equals zero, by Kirchhoff's current law, one of them is 
redundant. Since each terminal current is the difference between two 
external loop currents, the terminal currents will not change if all the 
external currents are increased or reduced by the same amount. Suppose 
Jn is taken to be zero. This is equivalent to subtracting Jn from each 
external current, so the terminal currents remain unchanged. From 
Fig. 25, we can write the following: 

The equations for the J's can be written 

(46) 
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where M is the lower triangular matrix of order n — 1. 

(47) 

A similar development applies for the voltages. The port voltage Vk is 
the voltage of terminal k relative to that of terminal n. These port voltages 
are expressible as 

(48) 

The details are left for you. 
Since Jn = 0, the last column in Z i in (45) can be deleted. Similarly, 

the last row can be deleted because Vn1 does not appear in (48). In this 
way we obtain the common-loop open-circuit impedance matrix Z o c ( l ) . 
Hence, using (48), (46), and (45) with the last row and column deleted, 
we get 

(49) 

(Keep in mind that Z 0 C(Z) here is the Z i of (45) with its last row and column 
removed.) This equation relates the port voltages to the port currents. 
Hence the common-terminal open-circuit impedance matrix Z o c is 

(50a) 

and 

(50b) 

The last follows from the fact that a triangular matrix with nonzero 
diagonal terms is nonsingular. The relationship here is seen to be much 
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more complicated than the corresponding one relating the common-
terminal short-circuit admittance matrix Y s c to Y i . Given Z i , (50a) 
permits finding Z o c after first writing Z o c ( l ) . Conversely, given Z o c for a 
common-terminal (n — 1) port, (50b) gives Z o c ( l ) . From this, Z i is obtained 
by adding a row and column, using the zero-sum property of rows and 
columns. 

3 .8 TOPOLOGICAL FORMULAS FOR NETWORK FUNCTIONS 

Let us pause briefly and review what has been done in this chapter. 
In the first section we defined network functions as the ratios of Laplace 
transforms of a response to an excitation. These may be driving-point 
functions or transfer functions; but for linear, lumped networks they will 
all be rational functions of the complex frequency variable s. Expressions 
for any of these functions can be found by solving the loop or node 
equations. In all cases the network functions can be expressed in terms of 
ratios of the determinant of the node admittance matrix and its cofactors 
or the loop impedance matrix and its cofactors. The subsequent sections 
of the chapter were devoted to a discussion of different ways of describing 
the external behavior of networks. These descriptions all entail sets of 
network functions defined under various conditions imposed on the 
terminals (open-circuit impedance, short-circuit admittance, etc.). Any 
of these functions can be evaluated according to the discussion in the 
first section. They all boil down to calculating a determinant and its 
cofactor. 

We shall now turn our attention to the task of finding relatively simple 
means for evaluating determinants. The usual methods of evaluating 
determinants (e.g., cofactor expansion or pivotal condensation) require 
that many terms be multiplied together and then added. In this process 
many terms eventually cancel, but only after extensive calculations have 
been made. It would be of tremendous value to know which terms will 
cancel in the end. The method we shall now discuss achieves exactly this 
result. 

DETERMINANT OF THE NODE ADMITTANCE MATRIX 

We start by considering the node equations Y n(s)V n(s) = J(s), where 

(51) 

in which A is the incidence matrix and Y is the branch admittance 
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matrix. In this section we shall restrict ourselves to passive reciprocal 
networks without mutual coupling; that is, to RLC networks with no 
transformers. Our interest is in evaluating det (AYA'). To this task we 
shall apply the Binet-Cauchy theorem, which we have used with profit 
before. According to this theorem 

products of corresponding majors of (AY) and A'. 

(52) 

We have here taken the product AY as one of the two matrices of the 
theorem. 

You should here recall some of the properties of A and Y. Remember 
that the branch admittance matrix Y for the networks to which we are 
here limited is diagonal; denote the diagonal elements by yj for j = 1, 
2, ..., b. Remember also that the nonsingular submatrices of A correspond 
to trees and that their determinants equal + 1 . 

The matrix AY has the same structure as A except that the j t h column 
is multiplied by yj. Hence the nonsingular submatrices of AY still 
correspond to trees of the network, but the value of each nonzero major is 
no longer + 1 but plus or minus the product of branch admittances on 
the corresponding tree. As discussed in the previous chapter, a submatrix 
of A' is simply the transpose of the corresponding submatrix of A. A 
nonsingular submatrix of A' will have the same determinant ( + 1) as 
the corresponding submatrix of A. Consequently, each term in the sum
mation in (52) will simply be the product of admittances of all twigs of 
a tree, which we shall call a tree admittance product and designate T(y). 
Hence 

tree admittance products. (53) 

This is a very interesting result, first developed by Maxwell. It says 
that to calculate the determinant of the node admittance matrix of a 
network we must first locate all the trees of the network, multiply 
together the branch admittances of each tree, then add the resulting 
products for all trees. (For simplicity we shall often say "tree products " 
instead of "tree admittance products.") 

To illustrate this result, consider the example shown in Fig. 26. We 
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Fig. 26. Example for evaluation of det AYA'. 

shall assume the network is to be excited across R6 with a current source. 
There are four nodes in the network, so each tree will have three twigs. 
The trees are the following: 

124 134 145 234 245 346 456 
125 135 156 235 246 356 
126 136 236 

Note that, in this example, locating all the trees may not be a difficult 
job. Nevertheless, it is worthwhile to tackle the problem systematically. 
Since each tree contains n twigs, in a network having n + 1 nodes, one 
procedure is to list all combinations of b branches taken n at a time. From 
this set are then eliminated all those combinations that form a loop and 
hence cannot be a tree. 

To return to the example, once the trees are listed, the tree admittance 
products are formed. In fact, this can be done in such a way that terms 
with like powers of s are written together. The result will be 

SYMMETRICAL COFACTORS OF THE NODE ADMITTANCE MATRIX 

Next we turn to the cofactors of det AYA'. We shall treat these in two 
groups: the symmetrical cofactors, like Δ ; j , and the unsymmetrical ones 
like Δ j k . We consider first the symmetrical ones. 
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The cofactor Δ j j is obtained from the node admittance matrix by delet
ing row j and column j . The same result is obtained if, in AYA', we delete 
row j of the first matrix and column j of the last one. But column j of A' 
is row j of A. Let us denote by A_ j the matrix A with row j deleted. Hence 

( 5 4 ) 

How is A-j related to the network? Since each row of A corresponds to 
a nondatum node, deleting a row means short-circuiting the corresponding 
node to the datum node. If the original network is labeled N, let the 
network that results by short-circuiting node j to the datum node d be 
labeled N_j. Then A_ j is simply the incidence matrix of network N_j, 
Consequently, 

( 5 5 ) 

This expression can be used to find Δ j j ; but it would be even more useful 
to relate Δ j j to the original network N. 

Now N_j has one less node than N; hence, one less twig in a tree. A tree 
of N_j cannot be a tree of N, and it cannot contain a loop of N. This 
statement is an obvious consequence of the fact that a tree of N_j contains 
no closed path in N_j and, thus, cannot contain one in N. Then, since a 
tree of N_j has one less twig than a tree of N, it must be contained in a 
tree of N. Let T_j denote a tree of N_j and let it be contained in T, a tree 
of N. Clearly, T_j is a two-part subgraph of T. (This does not contradict 
the fact that it is a one-part subgraph of N_j. Why?) Since node j and 
the datum node d are short-circuited in T_j as a subgraph of N_j, there is 
no path between them in T_j as a subgraph of T. Hence nodes j and 
d are each in a different part of T-j as a subgraph of T. Such a structure 
is called a two-tree. Specifically, in a network of n + 1 nodes, a two-tree is 
a set of n — 1 branches that forms no loops and separates some tree of the 
network into two connected parts. The product of branch admittances 
constituting a two-tree is called a two-tree admittance product and is 
labeled 2T(y). Subscripts are used to indicate the nodes that are required 
to be in different parts. Thus 2Tj,d(y) means a two-tree admittance 
product in which nodes j and d are in separate parts. 

For the example in Fig. 26, the network N_i is formed by short-
circuiting nodes 1 and 4 together, as shown in Fig. 27. Branch sets 13, 
34, 45, and 24 are four of the trees of this network. In the original network 
N these branch sets have the configurations shown in Fig. 28. Each of 
these is a two-tree with nodes 1 and 4 in different parts. In some of them 
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Fig. 27. Network N— j corresponding to N of Fig. 26. 

node 1 or 4 is isolated; in another, not. Besides these, there are four other 
two-trees (12, 15, 23, and 35) in which nodes 1 and 4 are in different parts. 
(Verify them.) All of these contribute to Δ11. 

Fig. 28. Some two-trees (1, 4) of N in Fig. 26. 

With the introduction of the concept of a two-tree, the expression for 
the cofactor Δ j j in (55) can be rewritten as 

admittance products, (56) 

where d is the datum node. 
With formulas for both Δ and a symmetrical cofactor available, we 

are now in position to evaluate driving-point functions. Let the network 
N in Fig. 29 be a passive, reciprocal network without transformers and 

Fig. 29. Calculation of driving-point function. 
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assume that it is excited by a current source. Let the lower terminal of 
the source (labeled 0) be chosen as a datum for node voltages. The 
driving-point impedance from (7) is 

(57) 

Substituting for Δ and Δ 1 1 from (53) and (56) leads to 

(58) 

This is truly a powerful result. It permits the evaluation of driving-
point functions of simple networks and even those of moderate complexity 
essentially by inspection, without extensive analysis. Furthermore, it 
provides an approach by which the digital computer can be applied in 
more extensive networks, first for searching out all the trees and two-trees 
and, second, in forming the required products. 

Let us apply the formula to the high-pass filter network in Fig. 30 

Fig. 30. High-pass filter network. 

for which it is desired to find the driving-point function. There are four 
nodes, hence three twigs in a tree and two branches in a two-tree. The 
trees and two-trees (1 ,0 ) are the following: 

Trees Two-trees (1 ,0) 

(Branch 1 connects the two input nodes, so it can immediately be ruled 
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out of a two-tree.) The admittance products are now formed. They can be 
written in any order, of course, but we can note the powers of s to which 
each tree or two-tree will lead and can group those with like powers of s, 
as we have actually done in the listing. The result will be 

( 5 9 ) 

From the preceding development, and as illustrated in the examples, 
the topological formulas that we have developed can be called minimum-
effort formulas. There is no subtraction of terms; every term that is 
evaluated appears in the final result. 

UNSYMMETRICAL COFACTORS OF THE NODE ADMITTANCE MATRIX 

As far as the node admittance matrix is concerned, there remains only 
for us to discuss the unsymmetrical cofactors of the form Δ i j . Now 
Δ i j = (—1 ) i

+ j M i j , where Mij is the corresponding minor. To form Mij 

we delete row i and column j from the node admittance matrix. Hence 
we need to examine det (A_ iYA'-j). By the Binet-Cauchy theorem, 

products of corresponding majors of A_ i Y and A'_ 

(60) 

As before, a nonzero major of A_ i Y corresponds to a two-tree in which 
nodes i and datum are in separate parts. Similarly, a nonzero major of 
A-j (which equals + 1 ) corresponds to a two-tree in which nodes j and 
datum are in separate parts. Since, to be of interest, each factor of the 
product in (60) must be nonzero, the subnetworks that contribute to 
Δ i j must be two-trees with nodes i and d, as well as j and d, in separate 
parts. Since there are only two parts to a two-tree and d is in one of them, 
we conclude that both i and j must be in the same part. Thus two-trees 
with nodes i and j in one part and the datum node in the other are the 
only ones that contribute to Δ i j . Such two-tree products are designated 
2Tij>d(y). The only reservation lies in the sign. Since A — i and A_ j are 
different, there is no assurance concerning the signs of corresponding 
majors of A - i Y and A'_j. However, it turns out* that the sign of the 

* For a proof see S. Seshu and M. B. Reed, Linear Graphs and Electric Networks 
Addison-Wesley, 1961. 
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product is ( — 1 ) i + j . Hence the final result becomes 

(61) 

With this result it is now possible to evaluate some transfer functions. 
Consider the situation in Fig. 31. It is desired to find the transfer voltage 

Fig. 31. Calculation of the transfer function. 

ratio V23(s)/V1(s). Suppose a current source is applied as shown and 
node 0 is taken as datum. The node equations can be solved for node 
voltages V1, V2, and V3. Since V23 = V2 — V3, we get 

(62) 

As a specific example, look back at the network in Fig. 30. Let the 
output voltage be the voltage across branch 5. The 2 T 1 , 0 ( y ) products 
were already determined and given as the numerator in (59), so let us 
concentrate on the numerator two-tree products in (62). For the two-tree 
containing both nodes 1 and 2, branch 4 must be present. Branch 1 con
nects nodes 0 and 1; branch 2 connects nodes 0 and 2. Neither of these 
branches can be present in 2 T 1 2 , 0(y). Similarly, in order for nodes 1 and 
3 to be in one connected part, branches 4 and 5 must both be present. 
Since the two-tree has only two branches, no others are possible. Hence 

(63a) 

(63b) 

The transfer function, therefore, is 

(64) 
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The occurrence of something very interesting can be observed here. 
There is a common term in the two-trees in (63) that cancels when they 
are substituted into (62). Hence that is not a minimum-effort formula. 
Another interesting observation can be made by comparing the two-tree 
products in (63) with 2 T

1 , 0(y), which is the denominator of (64); 2T1, 0(y) 
contains both 2T12, 0(y) and 2T13, 0(y) entirely. These observations moti
vate the following discussion. 

Consider a two-tree (j, d) and a node i. This node must be in either the 
part containing j or the part containing d. Thus the sum of 2 Tij, d(y) and 
2Tj, di(y) must contain all the terms contained in 2Tj, d(y); that is, 

( 6 5 ) 

This relationship can be used to write the following identities: 

( 6 6 a ) 

Note that they have some common terms. When these are inserted into 
(62), the result becomes 

( 6 7 ) 

In contrast with (63), this is a minimum-effort formula, since nodes 2 and 
3 are in separate parts in both of the two-tree products in the numerator. 
This also makes it evident that the load admittance cannot appear in the 
numerator. 

As a final illustration, let us use this formula to compute the transfer 
voltage ratio V23/V14 for the network in Fig. 26. In this example node 4 
plays the role of node 0. The two-trees (1, 4) were discussed in connection 
with Fig. 28. As for the other two-trees, there are very few of them. In 
fact, 

and so 
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THE LOOP IMPEDANCE MATRIX A N D ITS COFACTORS 

From notions of duality one would expect that what has been done for 
the node admittance matrix can also be done for the loop impedance 
matrix. This is true, with some characteristic differences, as we shall now 
discuss. One of these differences is that determinants of nonsingular 
submatrices of the loop matrix B do not necessarily equal + 1 . They do, 
however, if B is the matrix of fundamental loops. Hence we shall make 
the assumption that fundamental loops have been chosen in writing the 
B matrix. 

The beginning point here is the loop impedance matrix BZB'. Again 
the Binet-Cauchy theorem is applied. This time the nonsingular sub
matrices (of B) correspond to cotrees (complements of trees) instead of 
trees. We define a cotree impedance product as the product of link impe
dances for some tree. We use the symbol C[T(z)] to indicate this product. 
B y following the same kind of proof as for the node admittance matrix 
(whose details you should supply) we find that 

(68) 

that is, to find the determinant Δ, we must locate all the trees, from which 
we find all the cotrees, multiply together the link impedances of each 
cotree, and then add the resulting products. 

The question no doubt has occurred to you as to whether there is any 
relationship between the determinants of the loop impedance matrix and 
the node admittance matrix. We shall now examine this question. Suppose 
a tree admittance product is multiplied by the product of all the branch 
impedances of the network. The twig impedances will cancel with the 
twig admittances, leaving a cotree impedance product. If we do this 
for all the tree admittance products and add, the result will be a sum of 
all cotree impedance products; that is to say 

(69) 

Since the branch impedance matrix Z is diagonal, the product of impe
dances in this expression is simply the determinant of Z. Hence it can be 
rewritten as 

( 7 0 ) 
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This is a very significant result. It states that the loop and node 
determinants, although arising from different matrices (which are, in 
general, of different orders), are related in a very simple way. In particular, 
if we take each R, L, and C to be a branch of the network, the two deter
minants can differ at most by a multiplicative factor ksp. This means the 
loop and the node determinants always have the same zeros, except 
possibly at s = 0; that is, the nonzero natural frequencies of a network 
are independent of whether the loop or the node basis is chosen for 
analysis. (In this form, the relationship applies also when mutual induc
tance and transformers are present.) 

It must be emphasized that this relationship between the determi
nants applies when they refer to the same network. There is the possibility 
of going astray on this point when different sources are applied to a network. 
Consider the situation in Fig. 32a. Suppose a voltage source is applied 

1 

Fig. 32. Importance of terminal conditions. 

(a) (b) 

at the terminals a and b. As far as the loop impedance matrix is concerned, 
the voltage source is a short circuit, and the appropriate network for 
evaluating Δ | z is the one in part (b). This even has one less node and hence 
one less twig in a tree than the original. It would be a mistake to imagine 
that Δ|y for Fig. 32a is related to Δ | z for Fig. 32b by (70). If the first 
network is labeled N, then the second one is obtained by short-circuiting 
node a to node b. This is what we called network N_a. 

Now let us turn to the cofactors of Δ | 2 and consider first the symmetrical 
cofactor Δ j j = det B _ j ZB'_ j , where B _ j is the matrix obtained from B 
when row j is deleted. Deleting row j from the matrix means destroying 
loop j in the network. To destroy a loop, we must simply open it, without 
at the same time opening any other loop. This is possible if loop j contains 
a branch that no other loop contains. Since we are assuming f-loops, this is 
the case, and so opening loop j alone is possible. The resulting network 
when loop j is opened has one less loop than the original. The determinant 
Δ j j is simply the determinant of the loop impedance matrix of this new 
network. Hence (68) applies for its evaluation, except that the network 
is the new one with one loop less. 
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The ideas in the preceding development should become clearer as we 
use them in finding the driving-point impedance of the network in Fig. 33. 

Fig. 33. Driving-point function. 

Let N be the network when the terminals are open; that is, when loop 1 
is opened. Then, with a voltage source applied, the resulting network is 
N—1, since the source is just a short circuit for the evaluation of deter
minants. This means Δ | z is evaluated from (68) for network N—1. Recall 
that tree admittance products for N—1 are two-tree admittance products 
for N. Hence cotree impedance products for N—1 are co-two-tree impedance 
products for N. 

The driving-point admittance at the terminals of N is given by (8) 
as Y(s) = Δ 1 1 / Δ | z , where Δ 1 1 is the determinant of the network N that 
results when loop 1 in network N—1 is opened. Then, since Z(s) = 1/Y(s), 
we find from (68) that 

(71) 

The notation appears cumbersome, but the ideas are simple. Thus 
C[2T1, 0(z)] is a blueprint for certain operations. It says: Find a two-tree 
in which nodes 1 and 0 are in separate parts; take the branches that are 
not in the two-tree (they are in the complement of the two-tree, the co-two-
tree) and multiply together their impedances. The numerator of (71) is 
simply the sum of such terms for all two-trees (1, 0). 

Note that this result could have been anticipated from the expression 
for the impedance in (58) arrived at from the node admittance matrix. 
Suppose numerator and denominator of that expression are multiplied 
by det Z. As discussed above, each term, which consists of a product of 
admittances of certain branches, is converted to a product of impedances 
of the complements of those branches. Hence (71) follows. 

FinaUy we turn to the unsymmetrical cofactors of the loop impedance 
matrix. Specifically, we look back at Fig. 31 with the change that a 
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voltage source is applied instead of a current source. We assume that 
the source and load ZL do not lie on any other loops except loops 1 and 2, 
respectively. The transfer functions V23/VL, V23/I1, I2/VL, and I2/I1 all 
contain Δ 1 2 in the numerator. One would intuitively expect that the 
topological formula for Δ 1 2 | z will be the dual of that obtained for the 
corresponding cofactors of the node admittance matrix. This turns out 
to be the case, the result being 

(72) 

in which the complements are computed without the load Z L * 
Consider, for example, the transfer voltage ratio for Fig. 31. In terms 

of the loop equations, this is given by 

(73) 

An expression for this voltage ratio was previously given in (67). Suppose 
the numerator and denominator of that expression are multiplied by 
det Z for the network with loop 1 open. (Why is det Z for this particular 
network used?) Now ZL, is a factor of det Z. Since Y L did not appear in 
the numerator, Z L will not cancel in any term of the numerator. Hence it 
can be factored out. The result will be 

(74) 

in which the complements in the numerator are computed without ZL. 
Comparison of this result with (73) leads to the formula for Δ 1 2 given in 
(72). The above, in fact, constitutes a proof of the formula. 

TWO-PORT PARAMETERS 

Since short-circuit admittance and open-circuit impedance parameters 
of a two-port are frequently used, it would be of value to have available 
topological formulas for their evaluation. We shall rapidly develop such 
formulas here, not pausing for detailed examination of all the steps. 

* For a lengthy proof, see Seshu and Reed, op. cit. 
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The prototype two-port is shown in Fig. 34. Terminal 0 is chosen as 

Fig. 34, References and datum node used in calculation of two-port parameters. 

a datum for defining node voltages. Note that the port voltage V2 is the 
difference between node voltages V20 and V30. Assume that current 
sources are applied at the input and output ports. The node equations 
will be 

(75) 

Next we solve for node voltages Vi, V20, and V30 : 

(16a) 

(76b) 

(76c) 

Observing that V2 = V20 — V30, the open-circuit equations become 

(77) 

To find the short-circuit admittance matrix we must invert Z o c . Let 
Δ o c be the determinant of Z o c . From (77), this determinant is 

(78) 



Sec. 3.8] TOPOLOGICAL FORMULAS FOR NETWORK FUNCTIONS 205 

This expression can be simplified by using Jacobi's theorem,* which says 
that 

(79) 

where Δ i i j k is the cofactor formed by deleting rows i and j , and columns 
i and k from Δ. When these identities are used (78) becomes 

(80) 

With this the inverse of (77) can now be written as 

(81) 

We have topological formulas for all the cofactors except those with 
four subscripts. Let us define a three-tree of a graph having n + 1 nodes 
as a set of three unconnected subgraphs having a total of n — 2 branches and 
containing no loops. We denote a three-tree with the symbol 3T together 
with subscripts indicating which nodes are in the separate parts. Now 
just as Δ was shown to equal the sum of the admittance products over all 
trees of the graph and Δ i j was shown to equal two-tree (ij, d) admittance 
products over all two-trees of the type in which i and j are in one part 
and d in the other, in the same way it can be shown that 

(82) 

where 3T1, 2, 0(y) is a three-tree admittance product with nodes 1, 2, and 
0 in separate parts, and the other three-trees have similar interpretations. 
But 

(83) 

* See, for example, A. C. Aitken, Determinants and Matrices, 9th ed., Interscience 
Publishers, New York, 1956. 
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Using the last two sets of equations, we find that 

( 8 4 ) 

Before inserting the topological formulas for the cofactors into (81), 
note also that it is possible to simplify the expression for the first element 
in the matrix there. Thus 

Hence 

( 8 5 ) 

When all the above is collected and inserted into (77) and (81), the 
results are 

where ~ 3I\y) is defined in (84). Note that the numerators of the transfer 
impedances and of the transfer admittances differ in sign only. This 
verifies our earlier observation that these functions have the same zeros— 
unless there is a cancellation with the denominators. 

As an illustration, the network of Fig. 30 is redrawn as a two-port in 
Fig. 35. Let us find Y s c . For this network the two-trees (1,0) were already 
listed under (58). We shall repeat them here together with the other 
required two-trees: 

two-trees (1, 0): 23, 25, 26, 34, 35, 45, 46, and 56 
two-trees (12, 30): 34 and 46 
two-trees (13, 20): None 
two-trees (2, 3): 12, 13, 14, 16, 24, 34, and 46 
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Fig. 35. Example of two-port parameter calculation. 

In this example there are four nodes. Hence a three-tree has only one 
branch. The three-trees are, therefore, easily determined. They are 

three-trees (1, 2, 30): 3 and 6 
three-trees (13, 2, 0): None 
three-trees (12, 3, 0): 4 
three-trees (1, 3, 20): 2 

The denominator of the short-circuit admittance parameters, therefore, is 

The parameters themselves are 

As a final observation we should note that, although the development 
of the topological formulas was couched in terms of the node equations 
and the loop equations, we do not write these equations when applying 
the formulas. Given a network, what we do is to enumerate trees, two-trees, 
and three-trees and then form products of branch impedances or admit
tances. Thus what looked like unnecessary complications when we were 
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setting up loop and node equations in the last chapter, requiring exten
sive matrix multiplications to obtain AYA' and BZB' turns out to be of 
great value, because the Cauchy-Binet theorem permits some further 
mathematical derivations culminating in some simple formulas that 
require no matrix operations. 

PROBLEMS 

1. In the network of Fig. PI solve for the voltage-gain function V2(s)/Vi(s). 
Do this by (a) using mixed-variable equations; (b) using node equations 
after expressing Iχ in terms of appropriate voltages. 

Fig. PI 

2. Figure P2 shows an amplifier together with appropriate linear equiva
lents. It is desired to find the output impedance Z0 for both cases shown, 
when the output is taken from the plate and when it is taken from the 
cathode. 

(a) Do this by using node equations and an admittance representation 
for the controlled source. 
(b) Repeat by using loop equations. (How many are there?) 
(c) Repeat by using mixed-variable equations. 

3. Repeat Problem 2 for the amplifier of Fig. P3. 
4. The diagram in Fig. P4 shows a difference amplifier. Assume that each 

transistor can be represented by the linear equivalent circuit shown. It 
is desired to find values for RL, Rf, and Re in order that the output 
voltage V0, will equal approximately K(I2 — Ii). Use any convenient 
set of equations. 

5. The diagram in Fig. P5 is an approximate hybrid π model of a transistor. 
Find the h-parameters. 
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Fig. P2 

(a) (b) 

(c) 

Fig. P3 

(a) (b) 

(c) 
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Fig. P4 

Fig. P5 

6 . The two-port shown in Fig. P6 is a potential negative converter. 

(a) Find the hybrid h-parameters. 
(b) Specify the ratio R 2/R1 in terms of β to make h12h21 = 1. 
(c) Comment on the relative values of R± and R2 for β = 50. (β = 50 is 
an easily realizable current gain.) 
(d) Is this a voltage or a current negative converter? 

7. The two-port of Fig. P7 is a potential negative converter. 

(a) Find the hybrid h-parameters. 
(b) Find the ratio of R2/Ri in terms of β to make h12h21 = 1. 
(c) Draw an equivalent network based on the hybrid g-parameters for 
this two-port. Show all component values using the condition found 
in(b). 
(d) Let β = 50. Design possible compensating networks to be placed 
in series or shunt at the ports in order to convert this two-port to an 
ideal negative converter. 
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Fig. P6 

Fig. P7 

8. (a) Find the h-parameters of the two-port in Fig. P8. 
(b) Let β1 = 1. Can you find values of β, R2 and R1 to make the two-
port an ideal negative converter? 

Fig. P8 

9. In Fig. P9a, a common-terminal gyrator has terminal 3 as the common 
terminal. 

(a) Determine the short-circuit admittance matrix of the two-port 
obtained by making terminal 1 common instead. 
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(b) Repeat if terminal 2 is made common. 
(c) The symbol for the gyrator is sometimes drawn as in Fig. P9b. 
Comment on the appropriateness of this symbol, in view of (a) and (b). 

Fig. P9 

(a) (b) 

10. A certain nonreciprocal network can be represented by the network 
shown in Fig. PlOα. It is desired to connect a resistor Ri as shown in 
Fig. PlOb in order to stop reverse transmission (from right to left). 
Determine the required value of Ri. 

Fig. P10 

(a) (ò) 

11. Figure PI 1 shows a two-port network terminated in an impedance Z^. 
Show that 

12. Verify that det Y s c = 1/det Z o c for a two-port. 

13. Show that the two-ports in Fig. 15c and d have the same open-circuit 
impedance parameters. 
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Fig. P11 

14. Two two-ports Na and Nb are connected in cascade, as in Fig. P14. 
Using a direct analysis, determine the overall short-circuit transfer 
admittance y21(s) in terms of the short-circuit parameters of Na and 
Nb. 

Fig. P14 

15. Repeat Problem 14 with a voltage negative converter cascaded between 
Na and Nb, as in Fig. P15. 

Fig. P15 

Voltage 
negative 
converter 

16. Figure P16 shows an interconnection of two-ports, one of which is a 
current negative converter. Obtain an expression for the voltage transfer 
ratio V2(s)/V1(s) in terms of the y parameters of Na and Nb and the 
conversion ratio k of the negative converter. Compare, if the negative 
converter is not present. 

17. An ideal transformer is cascaded with a two-port in the two possible 
ways shown in Fig. P17. Write the open-circuit impedance parameters 
of the combination in terms of n and the z-parameters of the two-port. 
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Fig. P16 

Fig. P17 

(a) (b) 

18. Show that the Y s c matrix of the two-port shown in Fig. P18a, consider
ing each transistor as an ideal current-dependent current source as 
shown in Fig. P18b, is 

where G = R/Re1Re2 and g = G + 1 /R e l , under the assumption that 
R e 2 / β 1 << R ^ β 2 R e 2 . Verify that the two-port in Fig. P18c is equiva
lent to this two-port. 

19. The hybrid h-matrix of a two-port device has one of the following 
forms: 

This two-port is terminated in an impedance Z/,. Find the impedance 
at the other port. (The device is called a general converter.) 
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Fig. P18 

(a) (b) (c) 

20. Find the hybrid h-matrices for each of the networks in Fig. P20. 
(Replace each transistor by the simplest possible small-signal equivalent.) 

Fig. P20 
(a) (b) 

21. In Fig. P21, the two-port is a general converter having the hybrid 
h-matrix shown. Find the impedance Z. 

22. For the diagram of Fig. P22, show that the voltage transfer ratio is 

(Observe that the conductances Gi, G2, and G3 can account for the input, 
output, and feedback impedances of an actual amplifier of which the 
controlled source is the idealization.) 
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Fig. P21 

Fig. P22 

23. For each of the networks in Fig. P23 find the short-circuit current-gain 
function h21. Use the y-parameters of the two-port N. 

24. Find the voltage transfer ratio for the two networks in Fig. P24 in 
terms of the y-parameters of the two-ports Na and Nb, and the amplifier 
gain μ. Verify for Fig. P24b that the limiting value as μ -> ∞ is 
V2/Vi= — y 2 1 b / y 2 1 a . 

25. Find the open-circuit impedance parameters of the feedback amplifier 
shown in Fig. P25 in terms of g and of the z-parameters of two-port Na. 
The limiting values as g -> oo should be 

26. A two-port Nc with a resistance R across both its input and output ports 
is shown in Fig. P26a. The resulting two-part is denoted Nb, and the 
z-parameters of Nb are z l l b , z 1 2 b , z 2 1 b , and z 2 2 b . The network Nc, 
after introducing either a series or shunt resistance R at its ports, is to 
be cascaded with the feedback amplifier of Problem 25. The two cascade 
configurations to be considered are shown in Fig. P26b and c. Show that 



PROBLEMS 217 

Fig. P23 

(a) (b) 

(c) (d) 

Fig. P24 

(a) (b) 

the open-circuit transfer impedance in both cascade cases is given by 

as g -> ∞. (Nf denotes the entire feedback structure of Fig. P25.) 
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Fig. P25 

Fig. P26 

(a) 

(b) (c) 

27. Let a transmission zero of a two-port be defined as a zero of the short-
circuit transfer admittance y21(s). Show that the output current or 
voltage of the terminated two-port in Fig. P27 will be zero with either 
a voltage or current excitation, even if yn or y22 also have a zero at 
this frequency, leading to a cancellation in (25) and causing z21, h21, 
or g21, or all three to be nonzero. Comment on the appropriateness of 
the term " transmission zero ". 

28. (a) For the series-parallel and parallel-series connections of two-ports 
in Fig. P28, show that the h- and g-parameters of the components are 
added to give the overall h- and g-parameters, respectively. 
(b) State and prove conditions under which the series-parallel and 
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Fig. P27 

parallel-series connections can be made without violating the condition 
that the same current leave one terminal of a port as enters the other 
terminal. 

Fig. P28(a) Series-parallel connection; (b) parallel-series connection. 

(a) (b) 

29. Find the chain matrix of the two-ports in Fig. P29. The transformers 
are perfect. 

Fig. P29 

(a) (b) 

30. Treat the bridged-tee network of Fig. P30 first as the parallel connection 
of 2 two-ports and then as the series connection of 2 two-ports to find 
the overall y-parameters. (The answers should be the same.) 

31. Find the y-parameters of the two-ports in Fig. P31 by decomposing 
them into suitable parallel-connected two-ports. 
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Fig. P30 

Fig. P31 
(a) (b) 

32. The short-circuit admittance matrix of the π network in Fig. P32 with 
terminal 3 as the common terminal is 

Find the short-circuit admittance matrices when each of the other 
terminals is made the common terminal of a two-port. 

Fig. P32 
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33. Figure P33a shows a common-terminal three-port with terminal 4 as the 
common terminal. The short-circuit admittance matrix of this configura
tion is the one given. (Take the elements of the matrix to be values of 
conductance.) It is desired to reconnect this network as a two-port, as 
shown in Fig. P33b, the input port being 3, 2; the output port 1, 2. 
Find the corresponding short-circuit admittance matrix. 

Fig. P33 

(a) (b) 

34. Figure P34a shows a four-terminal network connected as a common-
terminal three-port. The short-circuit equations of this three-port are as 
shown. It is desired to connect a unit capacitor between terminals 1 
and 2, as shown in Fig. P34b. Find the short-circuit admittance matrix 
of the network when it is considered as a two-port with the ports 
shown in Fig. P34b. 

Fig. P34 
(a) (b) 
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35. The n-terminal network shown in Fig. P35 is linear, lumped, and 
time invariant. It is represented by I = Y iV, where Y i is the indefinite 
admittance matrix, and the currents and voltages are defined on the 
diagram. It is proposed to retain the first k terminals as terminals and 
to connect the remaining ones to ground through impedances, as shown. 
Let Z be the diagonal matrix whose diagonal elements are the impe
dances Zj. Find an expression relating the new terminal currents to the 
voltages in terms of Z, Y i , and submatrices thereof. 

Fig. P35 

(a) 

(b) 

36. The diagram in Fig. P36 is a linear RLC network with no transformers. 
Determine a relationship for the voltage transform V(s) using topologi
cal expressions for the determinant of the node admittance matrix and 
its cofactors, taking node 5 as the datum. Simplify as much as 
possible. 

Fig. P36 
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37. Figure P37 is an RLC network without transformers. Find an expression 
for the voltage transform V(s) in terms of the node admittance 
determinant and appropriate cofactors, carefully specifying the precise 
network structure to which this matrix is pertinent. Write the result in 
terms of topological formulas and simplify as much as possible. 

Fig. P37 

38. Discuss the modification in the indefinite impedance matrix Z i when 
(a) two terminals are connected together and (b) a terminal is suppressed. 
Compare with Y i . 

39. Given the indefinite impedance matrix for an n-terminal network, with 
n = 3 and n = 4, find the open-circuit impedance matrix of the common 
terminal multiport resulting when terminal n is made the common 
terminal. 

40. Find the driving-point admittance of each of the networks in Fig. P40 
by using topological formulas. Do it twice, once with the node admit
tance matrix and once with the loop impedance matrix. 

Fig. P40 
(a) (b) 

41. In the networks of Fig. P41 find the driving-point admittance at the 
left-hand port by using topological formulas. Do it twice, once with 
the node admittance matrix and once with the loop impedance matrix. 
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Fig. P41 
(a) (b) 

42. In the networks of Fig. P41, find the transfer voltage ratio V2/V1 by 
using topological formulas. 

43. For a common-terminal two-port the topological formulas for Y s c and 
Z o c will simplify to some extent. Find these simplified formulas. 

44. For the networks in Fig. P44, find the open-circuit impedance matrix 
Z o c using topological formulas. 

Fig. P44 

(a) (6) (c) 

(d) (e) 

45. (a) Prove that the impedance of an RLC network without mutual 
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inductance will have a pole at s = 0 if and only if there is an all-
capacitor cut-set that separates the two terminals. 
(b) Prove that the impedance will have a pole at infinity if and only 
if there is an all-inductor cut-set separating the terminals as in (a). 

4 6 . (a) Prove that the admittance of an RLC network without mutual 
inductance will have a pole at s = 0 if and only if there is an all-
inductor path between the terminals. 
(b) Prove that the admittance will have a pole at infinity if and only 
if there is an all-capacitor path between the terminals. 

4 7 , Let 

be the open-circuit parameters of an RLC two-port without mutual 
inductance. 
(a) Using topological formulas show that 

This means that if a power of s is present in the numerator of z21, it 
must also be present in the numerators of both zn and z22. Further
more, the coefficients in zn and z22 will he positive and greater than the 
magnitude of the corresponding coefficients in z21. which can be negative. 
(b) What further conclusions can you draw if the two-port is a 
common-terminal one? 
(c) Suppose the three functions given refer to yll9 y22, and —y 2 1 . 
What is the corresponding result? 
These conditions on the coefficients are called the Fialkow condition. 

4 8 . (a) For the network of Fig. P48 find the short circuit admittance 
parameters by direct application of the definition. Fialkow's condition 
is apparently not satisfied. 
(b) Find the parameters again, using topological formulas and compare 
the two answers. State a condition that must be assured in order for 
Fialkow's condition to be valid. 
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Fig. P48 

49. Let the hybrid h-matrix for a transistor in the common-emitter con
nection be 

Find the h-matrix of the transistor in the common-base and common-
collector configurations through the agency of the indefinite admittance 
matrix. 

50. The diagram in Fig. P50 is a passive, reciprocal network in which the 
resistor Rk is shown explicitly. The driving-point impedance of the 
network is Z(s). Suppose the branch containing Rk is opened and the 
terminals so formed constitute the input port of a two-port whose other 
port is the original pair of terminals of the network. Let g21k(s) be the 
forward voltage-gain function of this two-port. Show that, if the net
work contains n resistors, 

Fig. P50 

51. Consider a reciprocal two-port N that is both structurally and electri
cally symmetrical. Its z- and y-parameters are denoted by z11 = z 2 2 , 
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z12 and y11 = y 2 2 , y12, respectively. If we consider bisecting the two-
port at its structural line of symmetry, a number of terminals (two 
or more) will be created at the junction between the two halves. Assume 
that none of the leads from which these terminals are formed are 
crossed. Now consider the two cases shown in Fig. P51 in which these 
terminals are left open and short-circuited, respectively. The input 
impedance and input admittance are designated z l l h and y l l h in the two 
cases, respectively, where the subscript h stands for "half." Show that 

or 

(Hint: Apply voltages V1= V2 = V at the terminals of the original 
network and show that no current will flow across the structural line of 
symmetry. Then apply voltages V1 = — V2 = V and show that the 
voltage at each point on the structural line of symmetry will be the 
same.) This result is known as Bartlett's bisection theorem. 

Fig. P51 

52. The current and voltage variables in the loop, node and node-pair 
equations in (1) are Laplace transforms. The solution, say, for one of 
the node voltages is as given in (4). 

Now suppose the excitations are all exponentials, so that the ith 
equivalent current source is Ii e j ω 0 t . Ii is a complex number, called a 
phasor. Assume that s k =jω0 is not a natural frequency of the network 
and assume the network is initially relaxed. The forced response to the 
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exponential excitation will also be exponential and the forced component 
of the node voltage vk(t) will be 

where Uk is also a phasor. 
Find an expression for U k . Compare it with the expression for Vk(s) 

above, in which the excitation is arbitrary. 
53. A two-port has the following hybrid V-I relationship. 

Fig. P53 

Design compensating networks to be placed in series or shunt at the 
ports in Fig. P53 in order to convert the two-port to an ideal negative 
converter. 

54. Repeat Problem 53 for the two-ports having the following V-I relation
ships. 

(a) 

(b) 

(c) 



. 4 . 

STATE EQUATIONS 

In Chapter 2 we developed loop-current, node-voltage, and mixed variable 
representations of electrical networks. In the general case each scalar 
loop or node equation is an integrodifferential equation of the second order. 
Each scalar mixed-variable equation, on the other hand, is of the first 
order. However, unless care is exercised in the selection of a tree, some 
of the mixed-variable equations may contain integrals, rather than deri
vatives, of the variables. 

There are some distinct advantages in describing the network in such 
a way that first-order differential equations, without integrals, result. 
When expressed in matrix form the result is a first-order vector differen
tial equation that governs the dynamical behavior of the network. 
Some of the reasons for seeking such a network description are the 
following: 

1. There is a wealth of mathematical knowledge on solving such equa
tions and on the properties of their solutions that can be directly applied 
to the case at hand. 

2. The representation is easily and naturally extended to time-varying 
and nonlinear networks and is, in fact, the approach most often used in 
characterizing such networks. 

3. The first-order differential equation is easily programmed for 
computer solution. 

In this chapter we shall formulate and solve the first-order vector 
differential equations that are known as state equations. We shall be 

229 
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limited here to linear, time-invariant networks that may be passive or 
nonpassive, reciprocal or nonreciprocal. In preceding chapters we con
sidered only the Laplace-transformed equations. In this chapter we shall 
revert to the basic equations with the variables expressed as functions of 
time. This may require a reorientation in your patterns of thought; for 
example, if in the present context we say an equation is algebraic, we 
mean that no derivatives of the variables appear in the equations. In 
terms of the Laplace-transformed equations this would mean that the 
coefficients are independent of the complex frequency variable. 

4.1 ORDER OF COMPLEXITY OF A NETWORK 

Related to the network description (state equations) we shall develop 
in this chapter is a question we shall discuss first. The number of indepen
dent Kirchhoff's current law (KCL) and Kirchhoff's voltage law (KVL) 
equations in a network, n and b — n, respectively, is determined only by 
the graph of the network, and not by the types of the branches. The same 
is true of the number of independent node-voltage variables (n) and loop-
current variables (b — n). These numbers would not be influenced if the 
branches were all resistors, or if some were capacitors or inductors. How
ever, in an all-resistor network the loop or node equations would be 
algebraic, with no variation in time; that is to say, static. On the other 
hand, when capacitors or inductors are present, the equations will be 
dynamic. The question arises as to how many dynamically independent 
variables there are; that is, how many variables are there such that, when 
these variables are determined (as a function of time), the remaining 
variables can be found purely algebraically? 

We know that each capacitor and each inductor introduces a dynamic 
variable, since the v-i relationship of each contains a derivative. We also 
know that all initial voltages and currents in a network become known if 
the initial capacitor voltages and inductor currents are specified. The 
maximum number of initial conditions that can be specified independently, 
therefore, equals the number of independent energy-storing branches 
(capacitors plus inductors). This motivates us to introduce the notion of 
order of complexity by the following definition: 

The order of complexity of a network is equal to the number of independ
ent initial conditions that can be specified in a network. 

This is also the number of arbitrary constants appearing in the general 
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solution of the network equations. Hence it is equal to the number of 
natural frequencies, if we count each one according to its multiplicity; 
for example, suppose the free response of a network consists of the 
following: 

(1) 

The natural frequency s2 is of multiplicity two; hence the total number of 
natural frequencies is stated to be five. This is also the order of complexity. 

Clearly the order of complexity cannot exceed the number of energy-
storing elements. Suppose, however, that there is an algebraic constraint 
relationship among capacitor voltages or inductor currents. Such con
straints can be caused by loops containing only capacitors or only 
capacitors and independent voltage sources, and cut-sets containing 
only inductors or only inductors and independent current sources.* 

In the first case, KVL applied around the loop will give a linear relation
ship among the capacitor voltages, and in the second case, the KCL 
equation for the cut-set will give a linear relationship among the inductor 
currents. In Fig. 1 there are five energy-storing elements. However, in 

Fig. 1. Network with an all-capacitor loop and an all-inductor cut-set. 

this network there is an all-capacitor loop consisting of two capacitors 
and a voltage source. There is also an all-inductor cut-set consisting of 
two inductors. Thus the capacitor voltages and inductor currents will be 
restricted by the following constraints: 

(2a) 

(2b) 

* To avoid repetition, we shall use the term "all-capacitor loop" to mean a loop con
taining only capacitors or only capacitors and independent voltage sources. Likewise, we 
shall use the term "all-inductor cut-set" to mean a cut-set containing only inductors or 
only inductors and independent current-sources. 
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(with appropriate orientation of the variables). This means that initial 
values of both v2 and v6 cannot be prescribed independently, nor can initial 
values of both i5 and i9. 

Each such constraint relationship reduces the number of independent 
initial conditions by one. In a network having only two-terminal com
ponents, the component equations cannot introduce additional algebraic 
relationships between capacitor voltages or inductor currents. We conclude, 
therefore, that: 

The order of complexity of an RLC network equals the total number of 
reactive elements, less the number of independent all capacitor loops and 
the number of independent all-inductor cut-sets. 

In the network of Fig. 1 the order of complexity is 5 — 1 — 1 = 3. 
The question might arise as to the influence of loops containing 

inductors only or cut-sets of capacitors only. Consider, for example, the 
network in Fig. 2, which contains an all-inductor loop; KVL around the 
loop leads to 

(3) 

Fig. 2. Network with an all-inductor loop. 

Integration of this expression from 0 to t leads to 

(4) 

where we understand t = 0 to mean 0 + . It might appear that this also 
represents a constraint on the inductor currents. However, the constant K 
is not specified. In fact, its determination requires an independent rela
tionship. This is provided by the principle of conservation of flux linkages, 
which states that — Ljij over any closed loop is continuous. (This prin
ciple cannot be derived from Kirchhoff's laws.) The continuity condition 
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requires that the value of flux linkage just before t = 0 (i.e., at 0—) 
equal its value just after t = 0. Thus 

(5) 

The 0— values of all three inductor currents can certainly be independ
ently specified, without violating Kirchhoff's laws; such specification will 
fix the 0 + value of the flux linkage. Hence we conclude that an all-
inductor loop does not reduce the number of initial conditions that can be 
independently specified and so has no influence on the order of complexity. 

A similar conclusion follows concerning an all-capacitor cut-set; 
namely, that it will have no influence on the order of complexity. An 
equation like (5) will be obtained for an all capacitor cut-set except that 
the terms will be Cjvj = g j (charge) rather than flux linkage. In this case, 
the role analogous to the principle of conservation of flux linkage is the 
principle of conservation of charge, which, applied to a network, states that 
— CjVj = _ α j summed over any cut-set is continuous. 

Although all-capacitor cut-sets and all-inductor loops do not influence 
the number of natural frequencies, they do influence the values of natural 
frequencies. In Fig. 2, for example, suppose i3(t) is the desired response. 
It is clear that a constant current can circulate around the all-inductor 
loop. Hence one of the terms in i3(t) will be a constant, which corresponds 
to a natural frequency s = 0. Thus an all-inductor loop leads to a zero 
natural frequency. A similar conclusion follows for an all-capacitor cut
set. However, natural frequencies at s= 0 are somewhat peculiar in that 
whether or not the corresponding term appears in the response depends on 
(1) what specific variable constitutes the response and (2) the location 
of the excitation. In Fig. 2, if the response is v3(t) rather than i3(t), a 
constant term will not appear, since v3 = di3/dt, and differentiation will 
remove the constant. All other natural frequencies will contribute to v3, 
since the derivative of an exponential is proportional to that exponential. 

The preceding discussion indicates that what may be of interest in some 
cases is not the total number of natural frequencies but the number of 
nonzero natural frequencies. This can be obtained from the total number 
by subtracting the number of all-capacitor cut-sets and all-inductor loops. 
Hence 

The number of nonzero natural frequencies equals the order of com
plexity minus the number of independent all-inductor loops and the 
number of independent all-capacitor cut-sets. 

The word "independent," both here and in the definition of the order of 
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complexity given previously, is important. We can confirm this by 
reference to Fig. 3. Of the three all-inductor cut-sets only two are indepen
dent; the KCL equation for one of the cut-sets can be obtained from the 

Fig. 3. Network with many degeneracies. 

All-capacitor loop 
6, 7, 8, 9, 10,11 

All-inductor cut-sets 
1,2 ,3 
3 ,4 
1 ,2 ,4 

All-capacitor cut-sets 
5, 6,7 
6,8 
5, 7,8 

All-inductor loops 
None 

other two. The same is true of the three all-capacitor cut-sets: only two are 
independent. Since there are a total of 11 inductors and capacitors, and 
3 linear constraints (one all-capacitor loop and two all-inductor cut-sets), 
the order of complexity and the number of natural frequencies is 
11 — 3 = 8. Of these natural frequencies, two are zero, corresponding to 
the two independent all-capacitor cut-sets. Thus there are 8 — 2 = 6 
nonzero natural frequencies. 

4.2 BASIC CONSIDERATIONS IN WRITING STATE EQUATIONS 

We are now ready to begin the development of the state equations. The 
basic equations at our disposal are still KVL, KCL, and the v-i relation
ships. It is the particular combination and the particular order in which 
these are invoked that we must choose. The decision is made on the basis 
of a number of considerations: 

1. We want the final equations to contain no integrals. Integrals arise 
from the substitution of i = j"0 v dxjL + i(0) for an inductor current 
in KCL and the substitution of υ = J 0 i dx/C + v(0) for a capacitor 
voltage in KVL. So, we shall simply not make these eliminations of 
inductor currents and capacitor voltages but keep them as variables. 

2. We want the final equations to be first-order differential equations. 
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Derivatives arise from the substitution of υ = L di/dt for an inductor 
voltage in KVL and i = C dv/dt for a capacitor current in KCL. We 
shall make these substitutions, thus removing capacitor currents and 
inductor voltages from the final set of variables. 

3. Of the two capacitor variables, voltage and current, it is the voltages 
whose initial values can be independently specified in a network—except 
when there is an all-capacitor loop, as discussed in the last section. Likewise, 
for inductors, the initial currents can be independently specified— 
except when there is an all-inductor cut-set. This gives added impetus to the 
retention of capacitor voltages and inductor currents among the variables. 

4. All the above considerations are nontopological; they have no 
bearing on how a tree is selected and what type of branches are twigs or 
links. Topologically, we know that twig voltages are a basis for all 
voltages; that is, knowledge of twig voltages determines all other voltages. 
Since we wish to have capacitor voltages among the final variables, we 
should place capacitors in a tree, as much as possible. Likewise, link 
currents are a basis for all currents. Since we wish to have inductor currents 
among the final variables, we should place inductors in the cotree, as 
much as possible. 

5. Up to this point we have not counted independent sources as separ
ate branches but have assumed they are always accompanied; we have 
lumped them with their accompanying branches. For reasons of conven
ience we shall here reverse this procedure and shall count independent 
sources as separate branches. The strain of the reorientation should not 
be too great. Since the voltage of a voltage source is a " known," it cannot 
be determined from other voltages. So, a voltage source cannot be made 
a link, because then its voltage would be fixed in terms of twig voltages. 
Similarly, a current source cannot be made a twig, since its current would 
then be fixed in terms of link currents. One might conceive of a network 
having a loop containing only independent voltage sources, in which case 
one of them would have to be a link. These sources could not truly be 
independent, since their voltages would have to satisfy KVL around the 
loop. If they did, then one of the sources could be a link, and its voltage 
would be determined from the other sources. Similar considerations apply 
to a cut-set containing only independent current sources. We assume, 
therefore, that our networks have no all-independent-voltage-source 
loops and no all-independent-current-source cut-sets. 

The convergence of the above considerations leads to the following 
approach: Define a normal tree as a tree having as twigs all of the indepen
dent voltage sources, the maximum possible number of capacitors, the 
minimum possible number of inductors, and none of the independent 
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current sources. (If the network is not connected, the corresponding term 
is "normal forest." For simplicity, we shall later refer to a normal tree, 
sometimes reverting to the use of "normal forest" for emphasis.) 
If there are no all-capacitor loops, all the capacitors will be twigs of the 
normal tree. Also, if there are no all-inductor cut-sets, none of the induc
tors will be twigs of the normal tree; they will all be links. This can be 
proved by contradiction. Suppose there is a capacitor link in the absence 
of an all-capacitor loop. Both end nodes of the capacitor link lie on the 
corresponding normal tree. If this capacitor link is added to the tree, it 
will form a loop that, by hypothesis, is not an all-capacitor loop. If from 
this loop a noncapacitor branch is removed, the result will be a new tree 
that will have one more capacitor than the preceding one. This is not 
possible, since the preceding normal tree has the maximum number of 
capacitors, by definition. A similar proof applies for the inductors. 

Given a network, we first select a normal tree (or a normal forest if the 
network is not connected). We then write KVL equations for the f-loops 
and KCL equations for the f-cut-sets of this tree. We use the branch 
v-i relationships to eliminate capacitor currents and inductor voltages but 
we have not yet discussed how to handle the variables of the resistive 
elements, including controlled sources, gyrators, as well as resistors. 
Before considering this problem in a general way, let us spend some time 
in discussing some examples through which the general approach can 
evolve. 

As a first illustration consider the network shown in Fig. 4a. It is de
sired to find the output voltage v0(t) when voltages vgl(t) and vg2(t) are 
the inputs. There are three reactive elements and no degeneracies. 
Hence the order of complexity is 3. There are six nodes and nine branches. 
(Remember that the two voltage sources are counted as separate 
branches.) A normal tree must contain both voltage sources and both 

Fig. 4. Illustrative example for writing state equations. 

(a) 

(b) 

(c) 
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capacitors, but not the inductor. This information is shown in Fig. 4b, 
where the solid lines show a partial normal tree and the dashed line re
presents the inductor link. We need one more twig, and this must connect 
node c to the rest. There are clearly two possibilities among the resistive 
branches—branch 5 or 6. We have chosen 5 to complete the tree, as 
shown in Fig. 4c. Notice that the branches have been numbered with the 
twigs first, then the links. 

Now let us write the KCL equations for the f-cut-sets and the KVL 
equations for the f-loops. With the usual partitioning, these can be 
written as 

(6a) 

(6b) 

or 

(7a) 

(7b) 

Note that, because the sources are counted as separate branches, the 
right-hand sides in (6) are 0 and not Qi g and B v g , as we have been used to 
writing them. In scalar form (7) leads to the following: 

(8a) 

(8b) 

(8c) 

(8d) 

(8e) 

(8f) 

(8g) 

(8h) 

(8i) 
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There remain the v-i relationships of the components. We assume that 
t = t0 is the point in time at which the network is established. The source 
voltages vgl and vg2 are specified for t > t0. The initial inductor current 
and capacitor voltages are also specified; that is, v3(t0), v4(to), and i9(to) are 
given. The v-i relationships of the sources and reactive elements are 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

The resistor equations are either of the form v = Ri or i = Gv, but we have 
no guidelines yet as to how they should be written. According to our 
earlier discussion, we want to eliminate capacitor currents and inductor 
voltages. Hence we substitute i3, i4, and v9 from the last three equations 
into the appropriate KCL and KVL equations in (8). This step leads to 

(10a) 

(10b) 

(10c) 

There are two classes of variables on the right-hand sides: (1) capacitor 
voltages and inductor currents (v3 and i9), which we want to keep; and 
(2) resistor currents and voltages. There are four of the latter kind of 
variable; namely, v5, i6, i7, and i 8 . Note that none of these appears 
explicitly solved for in the Kirchhoff equations in (8), but their comple
mentary variables do. To change these complementary variables to the 
desired ones, we can combine the appropriate v-i relationships with (8). 
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In fact, now we have a guide as to a suitable form of these relationships. 
They are 

(11a) 

(11b) 

(11c) 

(11d) 

Thus for the twigs we use the form v = Ri; and for the links i = Gv. 
When these are inserted into the appropriate four equations in (8), the 
result can be rewritten in the following form: 

(12a) 

(12b) 

(12c) 

(12d) 

These are purely algebraic equations giving resistor voltages or currents 
in terms of (1) source voltages, (2) capacitor voltages, and (3) inductor 
currents. These algebraic equations can be easily solved (the last two 
trivially) to yield 

(13a) 

(13b) 

(13c) 

(13d) 

Finally, these equations can be substituted into (10) to yield, after re
arrangement, 

(14a) 
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(14b) 

(14c) 

This is a set of first-order differential equations. Let us write them in 
matrix form. After dividing by the coefficients on the left, the result will 
be 

(15) 

This is the equation toward which we have been striving. It is a matrix 
differential equation of the first order. The following terminology is used: 

State vector Input vector 

The elements of the state vector are state variables. We refer to the matrix 
equation as a state equation. Equation (15) can be written in compact 
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matrix notation as 

(16) 

where the meanings of the matrices A and B are obvious. This is called 
the normal form of the state equation. The derivative of the state vector 
is given as a linear combination of the state vector itself and the input, 
or excitation, vector. (The letter " e " stands for excitation.) 

The desired output quantities may be state variables or any other 
variables in the network. In the present case we had wanted the output to 
be v0(t). From the network it is found that vo = v3 — v4, which can be 
written in matrix form as 

or more compactly as 

(17) 

where w is the output vector. 
The next step would be to solve the state equations, a project that will 

occupy a major part of the remainder of this chapter. However, before 
undertaking this major effort, we shall consider another example, which 
will introduce some features not present in this past example. 

The network for this example is shown in Fig. 5. It has an all-capacitor 
loop (capacitors and voltage sources). A normal tree must contain both 
voltage sources but clearly cannot include all three capacitors. The ones 
numbered 3 and 4 have been placed on the tree. The normal tree can be 
completed by any one of the three resistors; the one numbered 5 is chosen 
here. 

Fig. 5. Illustrative example of circuit with all-C loop for writing state equations. 
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The next step is to write KCL equations for the f-cut-sets and KVL 
equations for the f-loops in the form of (7). The result is 

(18a) 

(18b) 

(18c) 

(18d) 

(18e) 

(18f) 

(18g) 

(18h) 

If we followed the approach of the preceding example, we would next 
write the v-i equations of all the capacitors (the only reactive elements in 
this case) in order to eliminate the capacitor currents from (18) and retain 
only the capacitor voltages. However, because of the all-capacitor loop, 
not all these voltages are dynamically independent. Therefore we write 
the v-i equations of only those capacitors that are in the normal tree. 
Thus 

(19a) 

(19b) 

These are now inserted into the appropriate KCL equations in (18) to 
yield 

(20a) 

(20b) 

Of the three variables on the right sides, the capacitor link current i6 

and the resistor link currents i7 and i8 are treated separately. The KVL 
equation for v6 in (18f) is inserted into the v-i equation for i4, yielding 
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(21) 

which gives i6 in terms of "desirable" variables only. 
This leaves us with i7 and i8 to eliminate from (20). These do not 

appear explicitly solved for in (18). Again we write the v-i relations for 
the resistor links as v = Ri and for the twig (branch 5) as i = Gv. The 
appropriate three equations in (18) can then be rewritten as follows: 

(22a) 

(22b) 

(22c) 

This is simply a set of algebraic equations that can be solved to yield 

(23a) 

(23b) 

(23c) 

where K = 1 + R7(C5 + G 8). The last two of these equations together with 
(21), when inserted into (20), will eliminate the unwanted variables. 
After rearrangement, the result in matrix form becomes 

(24) 
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The final result is obtained upon premultiplying by the inverse of the 
coefficient matrix on the left. Again we have a first-order matrix differen
tial equation, but this time the right-hand side has a term containing the 
derivative of the input vector, in addition to the input vector itself. 

As a final calculation, suppose the outputs are taken as —i1 and i 2 . 
These can be expressed in terms of the link currents i6, i7, and i8 by 
means of (18a) and (18b). These currents are, in turn, eliminated by using 
(21) and (23). The result of these operations for the output equation in 
matrix form will be 

(25) 

The derivative of 

can be eliminated by using (24). The detailed result is algebraically 
complicated and is not given here. Nevertheless, it is clear that the kinds 
of terms present on the right side of the output equation will be the same 
as those present on the right side of (24). 

Equations (24) and (25) can be written in compact form as follows: 

(26a) 

(26b) 

The first of these is a differential equation. Once it is solved, the output 
variables are determined algebraically from the second one. As a matter of 
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terminology, the two equations together are called the state equations. 
The second one is called the output equation. Our next task is to carry out 
a solution of these equations. 

4.3 TIME-DOMAIN SOLUTIONS OF THE STATE EQUATIONS 

In the examples of the last section we found that the input and output 
variables are related through equations such as (26). We shall find in later 
sections that such equations result for all networks of the class we are 
considering. Observe that a somewhat simpler form is obtained by setting 

(27) 

in (26), which then becomes 

The derivative of the excitation has been eliminated in the first equation 
but not in the second. For simplicity we shall simply remove the bar and 
write x instead of 5. Furthermore, we shall replace B1 + AB2 by B, 
D1 +CB2 by D, and D2 by D. The equations we shall treat will, there
fore, have the forms 

(28a) 

(28b) 

If the first of these equations resulting from a network is not initially in 
this form (because it contains a term involving the derivative of e), 
the transformation of (27) will put it in this form. Even with this trans
formation, however, we see that the derivative of e will be present in the 
output equation unless D = 0. Whether or not this condition is true will 
depend on the specific network and on the variables that are the outputs. 

The vector x is assumed to be an n-vector (n components). The number 
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of components in e will generally be different from n. So, A is a square 
matrix, but B is generally not square. 

We now turn our attention to the solution of (28) for x(t), assuming the 
initial values are expressed by the vector x(t 0). For this purpose we shall 
use the method of variation of parameter. Let 

(29) 

in which Y(t) is a square matrix of order n that is assumed to be non
singular for all finite t>t0.* Insert this transformation into (28). The 
result after suitable arrangement of terms will be 

(30) 

It is clear that the solution is simplified if the quantity in parentheses 
is assumed to be zero. This will then lead to a homogeneous matrix dif
ferential equation for Y. After that equation is solved, Y can be inserted 
into the right side of (30). The result can then be directly integrated to 
find X i . After both Y and x i are found, x is determined from (29). 

Proceding in this way, the two equations that result from (30) by setting 
the quantity in parenthesis equal to zero are 

(31) 

(32) 

The second equation comes from premultiplying by the inverse of Y, 
which exists because Y was assumed to be nonsingular. We shall tempor
arily postpone solving the first equation and assume a solution has been 
obtained. The second equation can be solved for Xi by direct integration 
from t0 to t. The result will be 

(33) 

* The development of this chapter is extravagant in the use of symbols. The need far 
outstrips the availability. This forces us to use a symbol in one context when it already 
has a well-defined meaning elsewhere. Thus in earlier work Y is an admittance matrix. 
Its use here with a different meaning will hopefully cause no confusion. 
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The initial-value matrices are related by 

(34) 

Therefore Xi(t 0 ) = Y ( t 0 ) - 1 x ( t 0 ) is the specified initial condition for (33). 
Now premultiply both sides of (33) by Y(t). Since the integration is 

with respect to r, Y(t) can be taken under the integral sign. Furthermore, 
since Xi(to) = Y ( t 0 ) - 1 x(t 0), the result will be 

(35) 

This is a very significant result. It tells us that in order to solve (28) we 
first solve (31) with some nonsingular initial condition, such as Y(to) = U. 
We then carry out the indicated integration in (35). However, the 
integrand requires us first to find the inverse of Y, which is a considerable 
chore. 

It turns out that this can be avoided, because Y(t) Y ( τ ) - 1 is a matrix 
function of t — r, which, as will be seen shortly, is easily determined. We 
express this relationship symbolically as 

(36) 

When this is inserted into (35), the result becomes 

(37) 

The matrix Φ is called the state-transition matrix. The name derives from 
the idea that when e = 0 the transition from the " state " of the network 
at time t0 to the " state " at time t is governed by Φ, as (37) illustrates. 

Equation (37) constitutes the time-domain solution of the original 
nonhomogeneous differential equation in (28). Its importance cannot be 
overemphasized. However, it is really a symbolic solution, because we are 
still required to solve the homogeneous equation (31) before the job is 
complete. This will be our task now. 

SOLUTION OF HOMOGENEOUS EQUATION 

Consider a first-order homogeneous differential equation 
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where a is a constant and the initial condition is y(to) = 1. The solution 
that satisfies the initial condition is 

which may be verified by direct substitution into the equation. Since the 
form of the matrix equation (31) is identical with that of the scalar 
equation, it is tempting to seek an exponential solution: 

(38) 

The only trouble is, we do not know the meaning of an exponential with 
a matrix in the exponent. You have no doubt encountered a similar 
difficulty in defining an exponential with a complex-number exponent. 
This is handled by defining a complex exponential in terms of the series 
expansion of the real exponential. (See Appendix 2.) We shall do the same 
thing here and define 

(39) 

Since A is a square matrix of order n, e A t is also a square matrix of order n. 
As an example, suppose 

Then 

(40) 

It can be shown that each of the elements of the matrix eAt converges 
to a continuous function of t, absolutely for any finite t and uniformly 
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over any finite time interval. Hence term-by-term differentiation of the 
series is permitted. Thus 

(41) 

that is, the formula for the derivative of a matrix exponential is the same 
as it is for a scalar exponential. When this result is used it is found that 
Y(t) = eA(t—to) given in (38) is the (unique) solution satisfying (31) and the 
initial condition Y(to) = U. 

Recall that in obtaining (32) it was assumed that Y(t) is nonsingular 
for all finite time following t0. We must now show that it is, in fact, 
nonsingular. This is not difficult. From the series definition of a matrix 
exponential, we can write 

(42) 

Now let this series be multiplied by the series for the positive exponential 
in (39). The result will be 

(43) 

All other terms cancel. This term-by-term multiplication is permissible 
because of the absolute convergence of the two series for all finite t. 
The result tells us that we have found a matrix ( e — A t ) , which, when multi
plied by e A t , gives a unit matrix. By definition, it is the inverse of e A t . 
Hence Y(t) is nonsingular for t ≥ t0. 

There is only one thing left to do. We must give an explicit expression 
for the state-transition matrix Φ(t — T) = Y(t) Y(τ) — 1 . This is an easy 
task. We know that Y(t) = e A ( t — t o ) and Y ( τ ) - 1 = e — A ( τ — t o ) ; therefore 

(44) 

and is, like Y(t), a matrix exponential—only the scalar time variable is 
different. This relation can now be inserted into (37) to yield 

(45) 
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The solution is now complete. Starting with a vector differential 
equation of the form of (28), we first solve the homogeneous equation (31) 
subject to the initial condition Y(t0) = U. The solution is e ^ t - / o ) . We 
then insert this into (45), changing t0 to τ under the integral, carry out 
the integration, and the job is done. 

ALTERNATIVE METHOD OF SOLUTION 

We have just treated the solution of the state equation in the general 
case. In a particular situation, suppose there is no excitation (e = 0) or 
for a given network B = 0. Then the state equation reduces to the homo
geneous equation 

(46) 

Comparing this with (31) shows that they are of the same form. There is, 
however, one difference: whereas Y (or, equivalently, the state-transition 
matrix Φ) is a square matrix, in the present equation x is a column 
vector. Among other things, this means the initial value in the present 
case cannot be a unit matrix but must be represented by the initial-value 
vector x(t 0). 

From the general solution in (45) the solution of (46) can be written as 

(47) 

This is, of course, much simpler than the general solution when Be ≠ 0. 
It would, therefore, be of considerable value if, by some modification of 
variables, it would be possible to convert the general nonhomogeneous 
state equation into a homogeneous one. This is what we shall pursue in 
this section. 

Consider the state equation (28a), repeated here for convenience: 

(48) 

Suppose there exists a vector f that satisfies the differential equation 

(49) 



Sec. 4.3] TIME-DOMAIN SOLUTIONS OF THE STATE EQUATIONS 251 

with the initial value f(t0) and that is related to e by 

( 5 0 ) 

In these expressions F and K are matrices to be determined. Now sub
stitute (50) into (48) and combine the resulting equation with (49). The 
result can be put in the following form: 

( 5 1 ) 

which is homogeneous like (46). Consequently the solution will be 

( 5 2 ) 

just as (47) was the solution of (46). (The notation exp(u) stands for e u . ) 
The solution for x(t) is, of course, just the first n-elements of this solution 
for [x f ] ' . 

There is one major drawback to this method of obtaining a homo
geneous differential equation equivalent to the nonhomogeneous state 
equation. Suppose f is an m-vector. Then the matrix exponential in (52) 
is of order n + m. In the solution (45) of the original state equation the 
order of the matrix exponential is just n. Since m may very easily be large, 
the increase in the order of the matrix exponential by m can result in a 
substantial computing effort merely to eliminate computing the integral 
appearing in (45). 

It is possible to use an alternative procedure that will lead to a homo
geneous differential equation without increasing the order of the matrix 
exponential to be evaluated. As might be expected, this is achieved at a 
price. Let 

( 5 3 ) 

or, equivalently, 

( 5 4 ) 

where S is a matrix to be determined. Substitute (54) into the state 
equation (48) to get 

( 5 5 ) 
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Then substitute (49) and (50) into this equation and rearrange terms to 
obtain 

(56) 

If an can be found that satisfies the following two-sided, linear, alge
braic matrix equation 

then (56) becomes 

(57) 

(58) 

which is the same homogeneous differential equation as in (46). Its solu
tion, therefore, is 

in which 

(59) 

(60) 

from the definition of y in (53). The solution for x(t) is obtained by sub
stituting y(t) from (59) and f (t) from the solution of (49) into (54). 

The solution of the two-sided matrix equation (57) is not a trivial 
matter.* Since Sf will be an n × m matrix, (57) is equivalent to nm 
linear algebraic equations for the nm unknown elements of Sf. 

To illustrate these two methods of obtaining an equivalent homogene
ous differential equation, let us start with the state equation 

* It turns out that, if the eigenvalues of F are different from those of A, the solution 
for S can be expressed in closed form using some of the results of the next section. This 
closed-form solution will be given in Problem 17. You will find a proof for that solution 
in: J. S. Frame, "Matrix Functions and Applications—Part IV," IEEE Spectrum, 
Vol. 1, No. 6, June 1964, pp. 123-131. A second closed form solution will be given in 
Problem 35. You will find a proof for that solution in: A. Jameson, "Solution of the 
Equation A X + X B = C by Inversion of an M × M or N × N Matrix," SI AM Jour, of 
Applied Mathematics, Vol. 16, No. 5, Sept. 1968, pp. 1020-1023. 
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It may easily be verified that 

is the solution of the differential equation 

Observe that 

Therefore 

The matrices A , B, and F are obvious from the state equation and the 
differential equation for f. The vector differential equation corresponding 
to (51) is, therefore, 

The solution of this equation is now easily written. 
The alternative method requires solution of the two-sided matrix 

equation (57). Since the order of A is n = 2 and the order of F is m = 2, 
S will be a 2 × 2 matrix. For this example (57) will be 
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As you may easily verify, this is equivalent to the following algebraic 
equation: 

whose solution is 

Using these values for the S i j , the matrix S is 

Thus S exists, and the solution for y(t), and then x(t), can be obtained by 
the use of this method. 

In this example we converted the two-sided matrix equation for S into 
an equivalent vector equation for a vector with the same elements as S. 
Let us indicate how this is accomplished in general. Let s i and k i 

denote the ith column vectors of S and K, respectively. Then the vector 
equation 

(61) 

where 

(62) 

is equivalent to the two-sided matrix equation (57) in the sense that the 
solution of (61) above yields values for all the elements of S. 
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Many excitation functions are encountered over and over again in 
analysis. There are, in a sense, a standard set of excitations used in 
analyzing the performance of a network. The sine and cosine of the past 
example are only two functions from that set. Some of the other often-
used excitations are step functions, ramp functions, exponential functions, 
and exponentially damped sinusoids. To eliminate the necessity of con
structing the F matrix and the corresponding initial vector f (0) each time 
these standard excitation functions are encountered, we have constructed 
a table (Table 1) of the most often encountered f(t)'s and the associated 
F's and f(0)'s. Observe that t0 = 0 in this table; there is no loss of general
i ty in doing this, and it is decidedly convenient to do so. Note also that 
the constant α appearing in Table 1 can be zero. If this is done, the 
elements of f(t) become simply powers of t in the one case, and ordinary 
sine and cosine functions in the other. 

Table 1 

f(t) F f(0) 

Since a network excitation vector is very apt to have elements that are 
combinations of the elements of standard excitation vectors with different 
values of α, ω, and k, it may be necessary to combine the several differen
tial equations for the different standard excitation vectors into a single 
differential equation. To make this point clear we shall consider a simple 
example. Let 
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The elements of e can be related to the standard excitation functions, 
appearing as elements of f, as follows: 

Based on Table 1, there are five differential equations, each for a part of 
the f-vector on the right; they are 
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They combine into one vector differential equation for f(t): 

MATRIX EXPONENTIAL 

These formal solutions have buried a major difficulty. The matrix 
exponential is just a symbolic solution—it does not tell us much. Although 
the series form of the exponential may permit some approximate numer
ical answers, it does not lead to a closed form. Thus in the simple example 
shown in (40), each element of the matrix is an infinite series, and we do 
not know what function it represents. Clearly, we need some means for 
finding closed-form equivalents for the exponential e A t . 

One equivalent of the exponential can be found by Laplace transforms. 
To simplify matters, suppose the initial time is t0 = 0. If we take the 
Laplace transform of the homogeneous equation in (31), we shall get 

where Y is the Laplace transform of Y(t). This can be written as follows: 

or 
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Finally, we take the inverse transform to get Y(t). Because we have taken 
to = 0, Y(t) will also equal e A t . Hence 

(63) 

This is very interesting. Let us apply it to the simple matrix considered 
earlier in (40). The matrix (sU — A), its determinant, and its inverse are 
easily obtained as 

(64) 

A partial-fraction expansion was made in the last step. The inverse 
transform of this expression is 

It is left as an exercise for you to expand the exponentials here and to 
verify that the series are the same as in (40). 

The Laplace transform is one way of evaluating the matrix exponential 
e A t . However, if we are going to use Laplace transforms, we can do so on 
the original nonhomogeneous equations and avoid going through all the 
intervening steps. This, of course, can be done; but we will not be using 
matrix mathematics to advantage in so doing. We need some additional 
means for finding the matrix exponential. 

4.4 FUNCTIONS OF A MATRIX 

The matrix exponential eAt is a particular function of a matrix; it is 
a member of a general class that can be called functions of a matrix. 
It is possible U) learn much about the particular function e A t by studying 
the theory of the general class. This is what we shall do in this section. 
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The simplest functions of an ordinary scalar variable are powers of 
the variable and polynomials. These are also the simplest functions of a 
matrix. Consider a polynomial f(s) of the complex variable s. 

Suppose the variable s is replaced by a square matrix A of order n. The 
corresponding function will be a matrix polynomial: 

The generalization of a polynomial is an infinite series: 

( 6 5 ) 

Such a series, in fact, can represent any analytic function of a complex 
variable, within its domain of convergence. With s replaced by A, the 
series becomes 

( 6 6 ) 

The function f (A) is itself a matrix, each of whose elements is an infinite 
series. This matrix series is said to converge if each of the element series 
converges. We shall not show it, but it turns out that the matrix series 
will, in fact, converge if the eigenvalues of A —that is, the zeros of the 
characteristic polynomial, det(sU — A)—lie within the circle of conver
gence of the scalar series in (65).* 

Transcendental functions of a matrix can be defined by means of 
infinite series. One such function is the exponential, for which the series 
definition has already been given in (39). A series definition of a function 
of a matrix is not of much value in evaluating the function, except for an 
approximate numerical value. Furthermore, a series definition will not 
always be suitable, as when the zeros of the characteristic polynomial do 
not lie within the circle of convergence. Fortunately, it turns out that if 
f(s) is an analytic function that is regular at the zeros of the characteristic 
polynomial of A, then f(A) can be expressed as a polynomial function; 
that is, a finite series. Let us see how this comes about. 

* For a proof, see L. Minsky, An Introduction to Linear Algebra, Oxford University 
Press, London, 1955, pp. 332-334. 
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THE CAYLEY-HAMILTON THEOREM A N D ITS CONSEQUENCES 

To start, let us define an annihilating polynomial of a matrix A as a 
polynomial a(s), which reduces to zero when s is replaced by A; that is, 
a(A) = 0. The characteristic polynomial, d(s) = det(sU — A), of a 
square matrix A is an annihilating polynomial of A. This follows by 
observing that the inverse of (sU — A) is given by 

(67) 

or 

(68) 

Now suppose s is replaced by A. On the right side a factor A — A 
appears; hence d(A) = 0, and d(s) is an annihilating polynomial. This 
result is known as the Cayley-Hamilton theorem: 

Theorem* Any square matrix satisfies it own characteristic equation. 

The Cayley-Hamilton theorem permits us to reduce the order of a 
matrix polynomial of any (high) order to one of order no greater than 
n — 1, where n is the order of the matrix. Suppose A is a square matrix 
of order 3. Its characteristic equation will have the form d(s) = s3 + dis2 

+ d2 s + d3. Hence, by the Cayley-Hamilton theorem, 

and 

Given a polynomial of order greater than 3, all powers of 3 or more can be 
replaced by quadratics in A by using this expression for A3. Hence the 
entire polynomial will reduce to a polynomial of order 2. 

As a collateral result, the Cayley-Hamilton theorem permits the evalu
ation of the inverse of a matrix as a matrix polynomial. Thus, if the 
characteristic equation of a matrix A is 

then 



Sec. 4.4] FUNCTIONS OF A MATRIX 261 

If the equation is multiplied through by A - 1 , the last term becomes 
d n A - 1 . Hence 

(69) 

This explicit relationship is valid only when zero is not an eigenvalue of 
A, so that d(s) does not have a factor s and dn ≠O. 

We are mainly interested in functions f(A) other than polynomials; 
in particular, exponentials. How do we deal with such functions? A clue is 
obtained by considering polynomials again. Suppose two polynomials 
pi(s) and p2(s) are given, the order of pi(s) being less than that of p2(s). 
The latter can be divided by the former, yielding a quotient q(s) and a 
remainder r(s) whose order is one less than that of the divisor polynomial, 
pi(s). The result, after multiplying through by pi(s), can be written as 

Instead of polynomial p2(s), suppose we have an analytic function f(s) 
and we replace pi(s) by a(s). Then, in analogy with the preceding equa
tion, we hope that 

(70) 

where q(s) is an analytic "quot i ent" function, which is regular at the 
zeros of the polynamial a(s), and where g(s) is a " remainder " polynomial 
whose order is less than the order of a(s). 

Suppose the polynomial a(s) is an annihilating polynomial of matrix A; 
that is, a(A) = 0. This means that, with s replaced by A in (70), we get 

(71) 

where f(A) is a function and g(A) is a polynomial. 
This is a very interesting result. Remember that f(s) is an arbitrary 

function; thus this result states that any analytic function of a matrix A 
can be expressed as a polynomial in A of order no greater than one less than 
the order of A. 

We still have the job of determining the "remainder" polynomial 
g(s). Before doing this, let us look at annihilating polynomials a little 
further. The Cayley-Hamilton theorem assures as that a square matrix 
has at least one annihilating polynomial. (You should show that this 
implies there are an infinite number of annihilating polynomials of the 
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matrix.) Let the one having the lowest degree and with unity leading 
coefficient be labeled m(s) and be called the minimal polynomial. 

One interesting fact about a minimal polynomial is given in the follow
ing theorem: 

Theorem. The minimal polynomial of any square matrix sé is a factor 
of every annihilating polynomial of A. 

This is easy to prove. Given a(s) and m(s), where m(s) is of no higher degree 
than a(s), we can divide a(s) by m(s) to obtain a quotient qi(s) and a 
remainder ri(s) of degree lower than that of m(s). After multiplying 
through by m(s) the result will be 

Now replace s by A and observe that a(A) = 0 and m(A) = 0. Hence 
ri(A) = 0. But this is a contradiction, unless ri is identically zero, because 
n ( A ) = 0 means ri(s) is an annihilating polynomial of lower degree than 
m(s). Hence ri(s) = 0 , and m(s) is a factor of a(s). 

It is unnecessary to spend effort seeking to find the minimal polynomial 
in anything we shall do. In any of the calculations to be carried out it is 
possible to use the easily determined characteristic polynomial d(s), 
which is an annihilating polynomial and which may sometimes be the 
corresponding minimal polynomial. 

We are now ready to take up the job of determining the polynomial 
g(s), which can be written as 

(72) 

in which the coefficients are unknown. The starting point is (70). 
Let us deal with the characteristic polynomial d(s) of matrix A which 

we know to be an annihilating polynomial, and rewrite (70) as 

(73) 

DISTINCT EIGENVALUES 

We shall first assume that the eigenvalues of A are distinct and write 
d(s) in factored form as 

(74) 

Now let us evaluate (73) at each of the eigenvalues s i . Since d(si) = 0, 
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we find 

( 7 5 ) 

There are n such relationships. When (72) is used for g(s) these n relation
ships become 

(76) 

The right-hand sides are known quantities, since f(s) is the originally 
given function. This is a set of n equations in n unknown gi coefficients. 
Inversion of this set of equations gives the solution. 

Let us illustrate the process with the same simple example considered 
before. For the A in (40), the characteristic polynomial was given in (64). 
They are repeated here: 

The desired matrix function is e A t , so f(s) = e S t . By substituting into (76) 
we obtain 

from which 

Hence, 



264 STATE EQUATIONS [Ch. 4 

The next step is to replace s by A to get g(A), which, by (71), equals 

By an obvious rearrangement, this becomes 

which agrees with the previously determined result. 
A glance back at the set of equations in (76) reveals a certain uniformity 

in the matrix of coefficients. It should be possible to solve the equations 
in literal form and take advantage of the uniformity in the matrix to 
arrive at an easily interpreted result. 

If we let Δ be the determinant and Δ i j the (i, j)th cofactor of the co
efficient matrix in (76), the solution for the gi's can be written 

With these coefficients inserted, the polynomial g(s) now becomes 

or 

What we have done in the last step is to rearrange the terms so that it 
is not the powers of s on which we focus, but on the values f(sj). Since the 
equations of (76) are all so similar, it must be possible to write this result 
in a simpler form, and indeed it is. The result was first given by Lagrange 
in the context of passing a polynomial of degree n — 1 through n points. 
It is called the Lagrange interpolation formula and converts the summation 
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within the braces above to a product, as follows: 

(77) 

(It is suggested that you verify this.) From this, g(A) is easily obtained. 
Finally, since f(A) = g(A), we get 

(78) 

From this result a very interesting observation can be made. Given a 
matrix A the eigenvalues si are uniquely determined from A. Hence 
everything within parentheses in (78) is a function only of A and is in
dependent of the specific function f(s) under consideration. Once the 
quantity within the parentheses is determined, any function of a matrix 
can be determined merely by evaluating the function at the eigenvalues 
of A. We shall make note of this again in the more general case to be 
treated next. 

MULTIPLE EIGENVALUES 

If the eigenvalues of A are not distinct and there are repeated values, 
a modification of this procedure is necessary. Let d(s) be written as 

(79) 

where the multiplicities are obviously ri for the ith eigenvalue. 
Let us now consider differentiating (73), after which we shall evaluate 

the result for s = sk. Except for the derivatives of the product α(s)d(s), 
the derivatives of f and g will be equal. Thus, 

(80) 

What happens to the summation when s = sk ? If the order of the deriva
tive is less than the multiplicity of the eigenvalue sk (i.e., if j < rk), then 
from (79) it is clear that di d(s)/dsi = 0 for s = sk and for i < j . This means 
all the terms under the summation sign will vanish, and so 

(81) 

and for derivative orders j = 0, 1, 2, ..., (rk — 1); that is, for derivatives of 
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any order up to one less than the multiplicity of sk. This equation is a 
generalization of, and includes, (75). It gives as many relationships as 
there are eigenvalues when each eigenvalue is counted according to its 
multiplicity. Since g(s) in (72) also has that many coefficients, they can 
be determined by applying (81). Thus the first ri relationships evaluated 
for s = si will be 

Similar sets of equations will result for each distinct eigenvalue. The 
entire result in matrix form will be 

(82) 



Sec. 4.4] FUNCTIONS OF A MATRIX 267 

This is a horrible-looking expression; it is inflicted on you by our desire 
to be general. Actual cases will rarely have such generality, and the actual 
equations will look considerably simpler than this. In any case, the gi 

coefficients are obtained by inverting this matrix equation. This is the 
generalization for multiple eigenvalues of (76) which applies for simple 
eigenvalues. 

As an example of the determination of a function f(A) when A has 
multiple eigenvalues, let f(s) = est and 

Take si = —2 and s2 = — 3 ; then the multiplicities are ri = 2 and r2 = 1. 
Let us use d(s) as the annihilating polynomial in determining g(s). For 
this example (82) becomes 

since df(si)/ds = teSlt = te-2t. The solution for the g's is easily found by 
inversion, as 

With go, gi, and g2 now known, g(s) = go + gi s + g2 s2 will be 
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or, after an obvious rearrangement of terms, 

The next step is to form g(A) by replacing s by A: 

The remaining work is just arithmetic, after A is inserted here. The final 
result is obtained from (71): f(A) =g(A) leads to 

This completes the example. (You should verify that this equation follows 
from the immediately preceding one upon the insertion of A.) 

CONSTITUENT MATRICES 

Let us look back at (82). This equation can be solved for the gi coeffi
cients which are then inserted into the g(s) polynomial, just as in the case 
of (76). Again we rearrange the terms so that the focus is on the elements 
of the right-hand vector in (82), rather than on the powers of s. The re
arranged expression can be written as follows: 

( 8 3 ) 
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It is only for later convenience that the Kij's have been chosen as the 
coefficients of the derivatives divided by the factorials rather than just 
the derivatives themselves. When the eigenvalues are of single multipli
city this complicated expression reduces to just the first column, which is 
simply (77). 

The next step is to replace s by A. Recalling that g(A) = f(A), we 
now get 

(84) 

assuming the functions fi (s) not singular for s = si. The coefficients 
Kij(A) in (84) are matrices, which are often expressed as K i j . They are 
called the constituent matrices of (A) and depend only on A, not on the 
function f(s). This can be observed by looking at (82). The nonzero ele
ments of the coefficient matrix there are proportional to various powers of 
the eigenvalues of A; Kij(s) is simply a linear combination of cofactors 
of that coefficient matrix. Since the eigenvalues and, hence, the entries of 
that coefficient matrix depend only on A, the result in verified. This is a 
very powerful point. It means that the constituent matrices Kij(A) of 
a square matrix A can be determined once and for all, independent of 
any specific function. For any given function f the expression in (84) can 
then be formed simply by evaluating the various derivatives of f at the 
eigenvalues of A. 

So far the only way we know to find the constituent matrices when A 
has multiple eigenvalues is to set up (82), solve for the gi coefficients, 
insert into g(s), and then rearrange to put it in the form of (83). It would 
be in order to look for simpler methods, and fortunately the search pays 
off. When the eigenvalues of A are simple, of course, we have the Lagrange 
interpolation formula. We need something like that for multiple eigen
values. 

THE RESOLVENT MATRIX 

Since the constituent matrices K i j = Kij(A) do not depend on the 
specific function f if we can find a simple function for which (84) can be 
written, then the K i j ' s thus determined will be the same for any function. 
The success of this approach depends on finding a convenient function. 

Consider the functionf(s') = l/(s — s') = (s — s')-1, where s' is a complex 
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variable that is to play the role formerly played by s; for example, it is 
s' that is to be replaced by A. At the risk of confusion, we have used the 
symbol s to stand for another complex variable. Another symbol, say z, 
should have been used here instead of s, but our choice results from the 
desire to end with an equation containing s. You might avoid confusion 
by thinking "z" when you see "s" in this development. If we take 
derivatives with respect to s', we obtain 

(85) 

where si are specific values of s'. Now substitute (85) in (84) and replace 
s' by A inf(s') = (s — s')-1. The result will be (sU — A)-1 in terms of the 
constituent matrices. Next, from (67) this can be written 

(86) 

The numerator of the right side is a matrix whose elements are poly
nomials in s since they are cofactors of the matrix (sU — A). Since each 
element of the numerator is divided by d(s), the whole thing is a matrix 
of rational functions. A partial-fraction expansion of the right-hand side 
can be carried out and leads to 

(87) 

In view of (85), this expression is exactly of the form of (84), and our 
anticipation in using the same symbols K i j = Kij(A) for the coefficients 
of this partial-fraction expansion as for the constituent matrices is 
justified. That is, the constituent matrices are the coefficient matrices in 
the partial-fraction expansion of (sU—A)-1. The matrix (sU—A)-1 is 
called the resolvent matrix. 

Given a matrix A and a function f(s), the determination of f(A) in the 
form of (84) is carried out by expanding the resolvent matrix (sU — A)-1 

into partial fractions. The coefficients of the expansion (which are the 
residues if the eigenvalues are simple) are the constituent matrices. 
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Let us illustrate by means of the example considered before. Let f(s) 
= e S t and 

To find the inverse of sU — A, we need its determinant and cofactors. 
When these are determined, we get 

Let si = —2 and s2 = — 3 . The partial-fraction expansion is carried out 
next. The result is 

Finally, these constituent matrices are inserted into (84) to yield for the 
matrix exponential 

This agrees with the earlier answer. 

THE RESOLVENT MATRIX ALGORITHM 

Let us review the procedure for determining the constituent matrices. 
It requires first the determination of the eigenvalues, which is true for 
any other method also. It requires next the inversion of the matrix 
(sU — A), which we have done by determining the cofactors of this 
matrix. But this will be an onerous task for large n. It requires, finally, 
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the partial-fraction expansion of the resolvent matrix (sU—A)-1. 
Any assistance in reducing the tedium of the computation would be quite 
valuable. There is available an algorithm that provides just this required 
assistance. We shall call it the resolvent matrix algorithm.* 

Observe from (86) that the resolvent matrix is expressed in terms of 
the characteristic polynomial in the denominator and the adjoint matrix 
of (sU — A) in the numerator. The elements of this matrix are poly
nomials in s. We can focus attention on the powers of s by rewriting this 
matrix as a sum of matrices, one for each power of s. Let. 

(88) 

(89) 

Multiplication of (86) by d(s)(sU — A) yields 

(90) 

which, upon inserting (88) and (89), becomes 

Equating coefficients of like powers of s on the two sides leads to 

(91) 

* Early reports of this algorithm may be found in: J. M. Souriau, " Une méthode pour 
la Decomposition spectrale à Γinversion des matrices," Compt. Rend., Vol. 227, pp. 
1010-1011, 1948; D. K. Fadeev and I. S. Sominskii, "Collection of Problems on Higher 
Algebra," 2nd ed. (in Russian), Gostekhizdat, Moscow, 1949; J. S. Frame, "A Simple 
Recursion Formula for Inverting a Matrix," Bull. Am. Math. Soc, Vol. 55, p. 1045, 
1949. H. E. Fettis, "A Method for Obtaining the Characteristic Equation of a Matrix and 
Computing the Associated Model Columns," Quart. Appl. Math., Vol. 8, pp. 206-212, 
1950. 
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It is clear that, if we knew the di coefficients of the characteristic poly
nomial, these equations would permit us to determine the P i matrices 
one at a time. Of course, the di coefficients can be determined by evaluating 
the determinant of (sU— A). We shall now show that even this is not 
necessary. 

By taking the trace of the matrices on both sides of (90) we find that 

(92) 

We shall now show that tr [P(s)] equals the derivative of d(s). Write 
d(s) as 

(93) 

where δ i j is the Kronecker delta, (sδij — aij) is an element of (sU — A), 
and Δ i j is the cofactor of (sδij — aij). Refer back to (25) in Chapter 1, 
where the derivative of a determinant was discussed. For an arbitrary 
matrix B(s) = [bkj(s)] it was shown that 

(94) 

In the present case the determinant is d(s) = det (sU— A). Hence, using 
(94), we get 

(95) 

Using this relationship, we can substitute for tr P(s) in (92) to get, 
after rearrangement, 

(96) 

Finally, we substitute the expressions for P(s) and d(s) from (88) and (89) 
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into this equation to get 

Again we equate coefficients of like powers of s on both sides to find 
solutions for the di coefficients: 

(97) 

This set of expressions for the dk coefficients, together with (91) for the 
P k matrices constitute an algorithm, with a finite number of steps, to 
compute the resolvent matrix, ( s U — A ) - 1 . We shall write them again, 
side by side, showing the sequence of steps: 

(98) 

(check). 
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The last equation in this set can be used as a check since all its components 
have already been determined in the preceding steps. If the equation is 
not satisfied, then an error (or more than one) has been made. 

The important point concerning the resolving matrix algorithm is the 
fact that all of the steps involve purely numerical operations; the variable 
s does not appear. Consequently, although it might appear that there is a 
prodigious amount of matrix arithmetic, the algorithm can be easily 
programmed for a computer. 

A side result of the algorithm is an evaluation of the inverse of A when 
zero is not an eigenvalue of A. In that case dn = d(0) ≠ 0. From (86), 
(sU — A)-1 = P(s)/d(s). Setting s = 0 gives — A - 1 = P(0)/d(0), or 

(99) 

To illustrate the resolvent matrix algorithm, consider again the example 
treated earlier. The flow of the algorithm is as follows: 

As a check, we find that AP2 + 12U = 0. Collecting the information from 
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the preceding, we can write the resolvent matrix: 

In the last step the result was again rearranged into a single matrix. 
Compare this with the earlier solution. Incidentally, since zero is not an 
eigenvalue of A, (99) gives the collateral result that 

Note that the algorithm gives the characteristic polynomial d(s) in 
expanded form. To find the constituent matrices it is still necessary 
(1) to factor d(s) in order to find the eigenvalues and (2) to obtain a partial-
fraction expansion. Computational algorithms for the first of these are 
readily available,* 

RESOLVING POLYNOMIALS 

Looking back again at (84), we remember that the constituent matrices 
K i j depend only on A, and not on any specific function. As we mentioned 
earlier, if these matrices can be evaluated for some specific functions, the 
results so obtained will be good for any other function. We found one 
function, leading to the resolvent matrix ( s U — A ) - 1 , from which the 
constituent matrices could be evaluated. We shall now discuss a set of 
functions that can also do the job. 

Consider a set of functions f1(s), f2(s), ...,fn(s), each of which is a 
polynomial. Each of these polynomials can be inserted, in turn, into (84) 
and will lead to an equation in which the unknowns are the constituent 

* The quotient-difference algorithm is one of the most widely known of the methods 
for determining the zeros of a polynomial. The algorithm is described in: P. Henrici, 
Elements of Numerical Analysis, John Wiley, New York, 1964, Chap. 8. 
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matrices. There will be as many equations as there are unknowns. In 
matrix form these equations will be as follows: 

(100) 

We shall call this the resolving equation. Although the vector elements 
are square matrices of order n, these matrices are treated as single quanti
ties when the indicated matrix multiplication is interpreted. Thus the 
matrix multiplication, when performed, gives terms in which a matrix is 
multiplied by a scalar—a perfectly legitimate operation; for example, in 
the first row of the product. 

(101) 

the matrix K21 is multiplied by the scalar f1 (s2). 
If this approach is to work, the coefficient matrix of (100) must be 

nonsingular and easily inverted. It becomes a problem of selecting an 
appropriate set of polynomials, which will be called resolving polynomials. 

The simplest polynomial is a power of s. Thus one possible set of re
solving polynomials is 

(102) 

Rather than writing the general expression for this case, suppose, for 
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example, the characteristic polynomial is d(s) = (s — si)2(s — s2)2. Then 
n = 4 and f1 = l , f2 = s, f3 = s2, and f4 = s3. Hence (100) becomes 

(103) 

It is clear that the elements of the right-hand vector are easy to determine 
in this case but that inverting the matrix will require considerable effort, 
especially if n is much larger. 

As a more explicit illustration let us consider the example given earlier 
in which 

(104) 

With the resolving polynomials chosen according to (102), we get for (100) 

We now invert this equation to get 

which in expanded form gives 

(105) 
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Now you can complete the problem by inserting A and A2 in these 
equations and verifying that the same constituent matrices are obtained 
as before. 

Another choice of the set of polynomials is the following: 

where the si's are the eigenvalues. In this case the evaluation of fi(A) 
will require a large effort, but the matrix in (100) will be easy to invert. 
Again we shall consider the particular case in which d(s) = (s — s1)2 

(s — s2)2. Then 

and (100) becomes 

(107) 
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The coefficient matrix is seen to be upper triangular in this case and can be 
easily inverted. This is true in general for this selection of resolving 
polynomials. 

For the specific example treated before, given in (104), the resolving 
equation becomes 

which can be readily inverted to yield 

On comparing the last step with (105) we find they are identical, as they 
should be. 

In this section we have treated a number of methods for evaluating a 
function of a matrix. Each method has certain advantages and dis
advantages. Some are more readily applied to low-order matrices; others 
lend themselves to numerical evaluation by computer. Our basic interest 
is in determining equivalent closed-form expressions for the function e A t , 
which constitutes the solution to a homogeneous state equation. 

4.5 SYSTEMATIC FORMULATION OF THE STATE EQUATIONS 

Let us briefly review what has been done in this chapter. We started 
by considering the order of complexity of a network. We discovered 
that the number of dynamically independent variables for RLC networks 
equals the number of reactive elements, minus the number of all-capacitor 
loops and the number of all-inductor cut-sets. For a network containing 
multiterminal components (controlled sources, etc.), additional algebraic 
constraints among capacitor voltages and inductor currents may be intro
duced, thus further reducing the order of complexity. We shall here 
assume that in all cases the order of complexity is the same as would be 
computed for an RLC network. If it turns out that the assumption is 
false in a particular network, then it will be impossible to obtain the 
equations in the desired form by the process we shall describe. An illustra
tion will be provided shortly. 
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Next, we defined a normal tree of a graph as one containing the 
maximum number of capacitors and the minimum number of inductors— 
as well as all the independent voltage sources, but none of the independ
ent current sources. We showed by means of examples that a set of net
work equations could be written having as variables the capacitor twig 
voltages and inductor link currents for a normal tree. The equations had 
the general form 

(108a) 

(108b) 

However, by the transformation x -> x + B2e, these could be reduced to 

(109a) 

(109b) 

where 

Equation (109a) is the normal form for the state equation; x is the state 
vector, and its elements are the state variables. Actually the state vector 
in the last pair of equations is a linear combination of the original "state 
vector" (with capacitor twig voltages and inductor link currents as 
variables) and the source vector e. Even with this transformation the 
second equation of the pair—the output equation—may still contain the 
de/dt term. We shall shortly clarify the conditions under which this will 
occur. For purposes of accurate reference we shall refer to the first equa
tion of either pair as the state equation and the second equation of either 
pair as the output equation. The two equations together will be referred 
to as the state equations. 

Our next task was to solve the state equation, and this was done by 
finding a solution first for the homogeneous equation (with e = 0). 
Symbolically, this solution involves the matrix exponential e A t , so we 
devoted some effort to determine methods for evaluating such functions 
of a matrix. Once the matrix exponential is evaluated, the state vector x 
is found from (45). We shall defer further consideration of the evaluation 
of this integral and its ramifications to the next chapter. 
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We must now formalize the writing of the state equations (109) for a 
given network and show that this is the general form. Let us observe at 
the outset that it is possible to choose some variables other than the 
capacitor voltages and inductor currents as state variables. In Fig. 6, 

Fig. 6. 

for example, the resistor current iR might be chosen as a state variable— 
rather than the capacitor voltage—since vC is directly proportional to 
iR. Nevertheless, while recognizing this flexibility, we shall proceed in 
the manner to be described now. 

TOPOLOGICAL CONSIDERATIONS 

The first step is the selection of a normal tree (or normal forest). 
Generally this is not unique. If there are no degeneracies (no all-capacitor 
loops or all-inductor cut-sets), at least the reactive elements will be 
uniquely assignable to the normal tree and cotree—but not the resistive 
elements. However, when there are degeneracies, there will be a choice 
even among the reactive elements. 

According to our usual convention, in writing a loop or cut-set matrix 
we first number the twigs and then the links. We shall here make a more 
detailed convention of branch numbering and adopt the following order 
within the twig and link categories: 

Twigs 

1. Voltage-source twigs 
2. Capacitor twigs 
3. Resistor twigs 
4. Inductor twigs 

Links 

5. Capacitor links 
6. Resistor links 
7. Inductor links 
8. Current-source links 

Note that the terms " resistor twig " and " resistor link " include branches 
of multiterminal devices, such as gyrators and controlled sources, whose 
v-i relationships are algebraic like that of a resistor. We are imposing no 
specific order in the numbering of such branches but are including them 
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among the branches representing resistors. This numbering of branches 
leads to a partitioning of the current-and-voltage vectors as follows: 

(110a) 

(110b) 

where, for example, v C t is the vector of capacitor twig voltages and i R l is 
the vector of resistor link currents. We have placed no twig subscript 
on v E and i E , and no link subscript on i J and v J , because the voltage 
sources are always twigs and the current sources are always links. 

Our next step is to write KVL equations for the f-loops and KCL 
equations for the f-cut-sets, as in (6) and (7). They are repeated here as 

(111a) 

(111b) 

where the usual partitioning is Q = [U Q l ], B = [B t U] . The last step 
follows from B t = —Q'l. If the current-and-voltage vectors partitioned 
according to (110) are to be inserted here, we must also partition the Q l 

matrix conformally; that is, into four rows and columns. Now each row 
of Q corresponds to an f-cut-set defined by a twig for the normal tree. 
The columns correspond to links. If we arrange the columns and rows in 
the conventional order decided upon, Q l must take the form 
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If there is a capacitor link, it will be by virtue of an all-capacitor loop. 
Since there will be no resistors or inductors in such a loop, the column 
corresponding to a capacitor link cannot have a nonzero entry in the rows 
corresponding to R and L twigs; that is, the entries in the first column, 
third and fourth rows must be zero. Similarly, if there is an inductor 
twig, it is by virtue of an all-inductor cut-set. Since there can be no 
resistors or capacitors in such a cut-set, the row corresponding to inductor 
twigs cannot have nonzero entries in the columns corresponding to C and 
R links. Hence Q l can be written as 

(112) 

When this is inserted into the Kirchhoff equations in (111) the result can 
be expanded into 

(113a) 

(113b) 

(113c) 

(113d) 

(113e) 

(113f) 

(113g) 

(113h) 

To illustrate this partitioning return to the examples considered earlier 
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in the chapter. For Fig. 4 the Q l matrix is 

Since there are no inductor twigs, capacitor links, or current sources in the 
network, the Q l matrix is less than full. 

ELIMINATING U N W A N T E D VARIABLES 

Up to this point the discussion has been topological. We must now bring 
in the v-i relationships. First, let us write them for the reactive elements; 
thus 

(114a) 

and 

(114b) 

In these expressions C t and C l are the matrices of capacitor twigs and 
links; they are both diagonal. Because of the possibility of mutual 
inductance, there may be coupling between inductor twigs and links, as 
well as between inductor twigs themselves and inductor links themselves. 
Hence the inductor matrices need not be diagonal (L t l and L l t are not 
even square), but L t t and L l l are symmetric and L l t = L'tl. Note that by 
keeping the capacitance and inductance matrices under the derivative 
sign these expressions apply equally well to time-varying networks. 

The eventual variables of interest are v C t and iL l ; all others must be 
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eliminated. For the capacitors this means eliminating i C t , v C l , and i C l . 
Let us start this process by rewriting (113b) as follows: 

(115) 

Into the left-hand side we insert the capacitor v-i relationship from (114). 
This side then becomes 

(116) 

The next-to-last step follows by substituting for v C l from (113e). To 
simplify, define 

(117) 

which equals C t when there are no all-capacitor loops, and 

(118) 

which is the zero matrix when there are no loops containing just capacitors 
and independent voltage sources. Then, with the last two equations in
serted into (115), we get 

(119) 
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There is still an unwanted variable here, i R l , but before we discuss its 
elimination, let us arrive at a similar result for inductors. 

We start the process by rewriting (113g) as 

(120) 

Into this we next insert the inductor v-i relationship from (114). The left-
hand side becomes 

(121) 

The next-to-last step follows by substituting for i L t from (113). To 
simplify, define 

(122) 

which equals L l l when there are no all-inductor cut-sets, and 

(123) 

which is the zero matrix when there are no cut-sets containing just 
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inductors and independent current sources. With the last two equations 
inserted into (120) there results 

(124) 

This is the counterpart of (119). It also contains the unwanted variable 
v R t , just as (119) contains i R l . 

To continue with the elimination process it will be necessary to express 
the v-i relationships of the resistor branches in terms of these two vari
ables; namely, i R l and v R t (resistor link currents and resistor twig voltages). 
We shall assume that the resistor branch v-i relationships can be written 
as 

(125a) 

(125b) 

This is one of the hybrid-parameter forms.* It is the same form used in 
Chapter 2 for the mixed-variable equations. For simple RLC networks 
the G l l and G t t matrices will be diagonal, and G l t and G t l will be zero 
matrices. More generally, none of the matrices need be diagonal, and they 
may all be nonzero. There is no assurance at the outset that equations of 
the form of (125) exist for a given network; but unless they exist, the 
method we are developing will not work. This does not mean that state 
equations do not exist, but only that our method will fail. 

As a simple example, consider the network of Fig. 7. The normal tree 
includes only the two capacitors. The resistor branches of the graph are 
all links, but their v-i relationships have the form 

The second one prevents us from writing an equation of the form of 
(125). This comes about because the controlled voltage source, controlled 
by a capacitor voltage, introduces an additional algebraic constraint 

* We could have started with the resistor branch v-i relations in the other hybrid-
parameter form. (Or, indeed, in the y-parameter, the z-parameter, or the ABCD-para
meter forms.) We shall leave these alternate representations of the resistor branch v-i 
relationships to you as an exercise. 
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Fig. 7. Numerical example. 
(a) (b) 

among capacitor voltages, thus reducing the order of complexity. This 
means that the normal tree must contain only a single capacitor. With 
very little effort we can write the following state equation for this network, 
demonstrating that one exists: 

Returning now to the task of eliminating i R l and v R t from (119) and 
(124), we have available for this purpose the v-i relations in (125) and 
the topological relations in (113c) and (113f). When the latter two are 
substituted into the former two and the terms are rearranged, the result 
will be 

(126a) 

(126b) 

These are a pair of vector algebraic equations in the two variables i R l and 
v R t . They will have a solution if the following matrices have inverses: 

(127a) 

and 

(127b) 

or 

(128a) 
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and 

(128b) 

It is left as an exercise for you to verify this statement. 
If these inverses do not exist, we cannot proceed, and our procedure 

fails. So we assume that they exist and that (126) can be solved for i R l 

and v R t . When the solutions are substituted back into the equations for 
the derivatives of CvCt and LiLl in (119) and (124), the resulting expres
sions are extremely complicated and do not give any particular insight. 
It is clear, however, that there are terms involving the state variables 
v C t and i L l , the sources v E and i J , and their derivatives. We shall not 
write out the details here but simply indicate the final form: 

( 1 2 9 a ) 

(129b) 

The symbols we have used for the matrices take into account the dimen
sions. Thus y and y relate a current vector to a voltage vector and so 
have the dimensions of admittance. The H and G are dimensionless; they 
correspond to the hybrid h- and hybrid g-matrices. In this form the equa
tions apply to time-varying as well as time-invariant networks. Also, 
they can more readily be generalized to nonlinear networks. Look over 
the preceding development and note that, in arriving at these equations, 
we have used all the v-i relationships and all the topological (Kirchhoff) 
relationships in (113) except the fitst and last, relating to the voltage-
source currents and the current-source voltages. These two will be used in 
the determination of output variables, assuming that elements of i E 

and v J are output variables. 
In fact, we should establish that, once the state equation and its 

solution is available, all other variables can be expressed in terms of 
the state variables v C t and i L l , the source quantities v E and i J , and the 
derivatives of the latter, as in (109). It is a matter only of looking over the 
previously developed equations to verify that this is the case. It will be 
left as an exercise for you to do at this point. 
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One point should be clear after contemplating (129) and the way in 
which any output variable is expressed in terms of the state variables. 
This is that source-voltage derivatives will appear only when there is 
an all-capacitor loop—and even then only when this loop includes a 
voltage source, making C = — Q C C C L Q E C nonzero. Similarly, source-
current derivatives will appear only when there is an all-inductor cut
set—and only when this cut-set includes a current source, making L = 
— Q _ L L T T Q L J + L L T Q L J nonzero. It is only in these cases that deriv
atives of source quantities can appear in the state equations. 

TIME-INVARIANT NETWORKS 

Let us now limit ourselves to time-invariant networks. In this case 
(129) can be rewritten as follows: 

(130) 

Finally, assuming that C and L are nonsingular matrices, we get 

(131) 

where 

(132) 

(133) 

(134) 
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This is the desired result. What has been done here is to present a 
procedure for arriving at a first-order vector differential equation for a 
given network in the form of (131). However, we have not derived formu
las for the A, B1, and B2 matrices directly in terms of branch-parameter 
matrices and submatrices of Q l , because such formulas would be extremely 
complicated and impossible to use. The result depends crucially on the 
existence of the inverse of the matrices in (127) or (128) and of the matrices 
C and L . Unfortunately, there are no simple necessary and sufficient 
conditions to tell us when these inverses exist and when this procedure 
will work. 

RLC NETWORKS 

There is, however, one class of networks for which the above-mentioned 
procedure will always work. This is the class of time-invariant RLC 
networks. It is of interest to carry through the development for this class, 
because the results can be written out explicitly and provide insight into 
the more general case. 

The first simplification comes in the v-i relations of the resistor branches 
in (125). There will be no coupling terms in the parameter matrices. 
Hence G t l and G l t are both zero matrices, and the matrices G l l and G t t are 
diagonal and, hence, nonsingular. Let us rename these matrices according 
to the dimensions of their elements; G l l is dimensionally conductance, and 
G t t is resistance. Set 

from which 

(135a) 

(135b) 

Equations (126) reduces to 

(136a) 

(136b) 

The conditions for the existence of a solution reduce to the existence of 
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the inverse of K1 or K2 where these have become 

(137a) 

(137b) 

Define 

(138a) 

(138b) 

so that K1 = R t G and K2 = G l R. Thus K1 and K2 will be nonsingular 
if G and R are nonsingular. We shall shortly show that R and G can be 
interpreted as loop-and-node parameter matrices and are consequently 
nonsingular. Accepting this fact here we conclude that a solution for 
(136) always exists. We now solve this equation for i R l and v R t and 
substitute into (119) and (124). The details of the process are tedious and 
will not be given here. The result will be 

(139) 

where 

(140) 

and 

(141) 

Note that the matrix G in the case of the reciprocal networks under 
consideration is the negative transpose of H, which is something we 
would expect. The form of (139) is the same as that of (129) for the general 
network. The difference in the present case is that we have explicit 
expressions for the coefficient matrices of the state and source vectors. 
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Now, in a time-invariant RLC network, C and L will be time-invariant, 
diagonal matrices. Therefore, their inverses exist and (139) can be rewritten 
in the desired form 

(142) 

where A , B1, and B2 are as indicated in (132), (133), and (134). 
The innocent-looking simplicity of this final equation masks the exten

sive matrix operations that go to make up the A , B1, and B2 matrices. 
For ease of reference and as an aid to the memory, the essential results are 
summarized in Table 2. 

PARAMETER MATRICES FOR RCL NETWORKS 

In arriving at the final equation, a number of matrices such as C, R, 
and y were introduced for notational simplicity. It is possible to give 
rather simple interpretations for these matrices—which we shall now 
outline. 

First consider the parameter matrices R, G, C, L. Although we are 
here dealing with the state equations, let us temporarily switch our atten
tion to the loop-impedence matrix Z m = BZB', where Z is the branch-
impedance matrix formed after removing the sources—replacing v-sources 
by short circuits and replacing i-sources by open circuits. Let us arrange 
the rows and columns of Z in the following order: C, R, and L twigs; 
then L, R, and C links. The branch-impedance matrix can then be written 
as follows: 

Next we partition B in the usual form [B t B l ] . Then we further partition 
B t ( = —Ql) in accordance with the partitioning of Q l in (112), keeping 
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in mind that the row and column corresponding to sources are now absent. 
Now, because of the order in which the elements are arranged in Z, 
B l ≠ U but is a rearrangement of the columns of U. Thus the partitioning 
of B becomes 

The loop-impedance matrix is now formed. This will be quite a complicated 
expression. The details will be left for you to work out. From the loop-
impedance matrix, the loop-parameter matrices (resistance and induct
ance) can be written. When this is done, it is found that— 

1. R = R l + Q R R R t Q R R is a submatrix of the loop-resistance matrix 
for the f-loops defined by resistor links for a normal tree, with all sources 
removed. 

2. L = L l l + Q _ L L t t Q L L is a submatrix of the loop-inductance 
matrix for the f-loops defined by inductor links for a normal tree, with all 
sources removed. 

In a completely analogous way, by forming the node-pair admittance 
matrix QYQ' and partitioning in the same manner as above, it will be 
found that— 

1. C = C t + Q C C C l Q C C is a submatrix of the cut-set capacitance 
matrix for the f-cut-sets defined by capacitor twigs for a normal tree, 
with all sources removed. 

2. G = G t + Q R R G l Q R R is a submatrix of the cut-set conductance 
matrix for the f-cut-sets defined by conductance twigs for a normal tree, 
with all sources removed. 

With these interpretations it is possible to evaluate these parameter 
matrices—without going through the extensive matrix multiplications 
involved—merely by inspection of the network after a normal tree has 
been selected. 

To illustrate, look back at the example in Fig. 4. For this example, 
L is trivially given by [L9]. To find R, we note that the resistor links are 
branches 6, 7, 8. The f-loop defined by link 6, for example, contains R5 
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and R6. There are no resistors common to the f-loops formed by branches 
6, 7, and 8. Hence R is 

As for G, there is only one f-cut-set defined by a conductance twig; 
namely, branch 5. This cut-set contains G 5 and G 6 . Hence G = (G 5 + G 6 ). 
Finally, for C there are two f-cut-sets defined by capacitor twigs (branches 
3 and 4) and they contain no other capacitors. Hence 

This example is too simple to permit a meaningful illustration. Let us 
find the C matrix for the example of Fig. 5. Here also there are two f-cut-
sets defined by capacitor twigs (branches 3 and 4 again). This time each 
cut-set contains two capacitors, and C6 is common to both cut-sets. 
However, branch 6 is oriented in one way relative to one cut-set and the 
opposite way relative to the other. Hence the off-diagonal term in the 
matrix will carry a negative sign. Thus 

This checks with the result back in (24). 
To illustrate the preceding development for the writing of a vector 

state equation, consider the network in Fig. 8. The first task is to find a 

Fig. 8. Illustrative example for state equations. 

(a) 

(b) 
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normal tree. There are a total of six reactive elements, but there is an 
all-C loop (including a voltage source) and an all-L cut-set. Hence the 
order of complexity will be 4, so there will be four state variables. One of 
the capacitors must be a link; and one of the inductors, a twig. A possible 
normal tree is shown in heavy lines in Fig. 8b. The branches are numbered 
according to the scheme: twig v-source, C, R, and L; then link C, R, L, 
and i-source. For purposes of simplification we will assume that the branch 
numbers are also the numerical values of the elements: resistance in 
ohms, inductance in henries, and capacitance in farads. With this choice 
of normal tree, the branch parameters are 

The next step is to write the Q matrix and to partition it appropriately: 

The various submatrices are evident from the partitioning. The parameter 
matrices are now computed, as follows: 
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The next step is to compute the y, i_% and H matrices: 

Next we compute the y, i_% H, and G matrices: 
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Finally, the terms involving the source derivatives: 

When all of this is inserted into (139) and the resulting equation is pre-
multiplied by 

we obtain 

(143) 

This is the state equation. Observe that it is not in normal form. If we set 
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and substitute it into the above state equation, we obtain the following 
normal-form state equation: 

(144) 

You should verify this result. The new state variables x\ and x2 are linear 
combinations of a capacitor voltage and the voltage of the source. They 
cannot be identified on the network diagram as measurable voltages. 

In looking over the effort just completed, you may despair at the large 
amount of work involved. But observe the kinds of mathematical 
operations that occur. They are largely matrix multiplications and addi
tions. Such operations are easily programmable for a computer, and so the 
work reduces to writing a convenient program. 

Note, in this case, that the parameter matrices could have been written 
by inspection; for example, L is the inductance submatrix of f-loops 
defined by inductor links 9 and 10. Each loop also contains inductor 6 
whose orientation coincides with that of the first loop but is opposite to 
that of the second. Hence 

which is what we obtained before. You should verify the remaining 
parameter matrices in this manner. 

The equation in (143) contains the derivative of the voltage source. 
This is why we had to make the change x ->(x — B2e) in order to obtain 
a state equation in normal form. Observe that the presence of the source-
voltage derivative is caused by the all-capacitor loop including the voltage 
source. The current source is not included in an all-L cut set, and so there 
is no derivative of the source current. Although we carried out the example 
by evaluating all the matrices previously defined and then inserting into 
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the formulas, for any given problem we could also proceed by actually 
retracing the steps of the derivation. This may sometimes require less 
effort than inserting into formulas. You might carry out the solution for 
this example that way and compare the amount of work. 

CONSIDERATIONS IN HANDLING CONTROLLED SOURCES 

In writing the state equations for the preceding example we simply 
evaluated the matrices appearing in the final equations and substituted 
therein. When dealing with nonpassive, nonreciprocal networks this 
approach is not possible. Instead it will be necessary to return to a point 
midway in the development of the equations and to proceed step by step 
from there. The essential equations are (119), (124), (125), and (126). 
The steps to be carried out and the differences from the RLC case are as 
follows: 

1. Write Q matrix and partition—same as for RLC. 
2. Evaluate C and L matrices—same as for RLC. 
3. Write resistor-branch v-i equations as in (125). 
4. Form the pair of equations (126) and solve. This is the critical 

point. If there is no solution, stop. 
5. Use solution of (126) to eliminate v R t from (119) and i R l from (124). 
When setting up the normal tree care must be exercised in assigning 

the resistor branches corresponding to multiterminal devices, as discussed 
in Chapter 2. In the case of a gyrator both branches must be either twigs 
or links. For an ideal transformer and a negative converter one branch 
must be a twig and the other a link. In the case of controlled sources 
each branch is uniquely assignable either as a twig or a link. Whether a 
branch (controlling or controlled) is a twig or link depends on which vari
able is specified. Equation (125) expresses link currents and twig 
voltages explicitly. Hence, if the current of a branch is specified, it must be a 
link—and if its voltage is specified, it must be a twig; for example, take 
the current controlled voltage source. The controlling quantity is the 
current in a short circuit; but for a short circuit the voltage is specified 
(specified to be zero). Hence this branch must be a twig. For the controlled 
branch it is again the voltage that is specified. Hence this branch must 
also be a twig. 

As an illustration consider the network in Fig. 9. The transformer 
is ideal. The graph of the network is in two parts because of the trans
former. A normal forest must contain four branches, of which two are the 
voltage source and the capacitor. One of the two branches of the trans
former must also be a twig. Both branches of the controlled source must 
be links, since it is the current that is specified in both cases. The normal 
forest is shown in heavy lines in Fig. 9b. 
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Fig. 9. Example with multiterminal components. 

(a) 

(6) 

The first task is to write the Q matrix and to partition it. 
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The v-i relationships of the transformer and controlled source are 

Using these, the resistor branch v-i relations according to (125) become 

We now have all the submatrices to insert into (126). These equations 
become 

Since the coefficient of v R t in the second equation is nonsingular, we can 
solve for v R t in terms of i R l , insert the solution into the first equation, 
and then solve for i R l , from which v R t is then determined. The result of 
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these steps is 

The matrix on the left is nonsingular, and its determinant is 
Δ = 1 + n2R4 C6. Therefore, upon premultiplying by its inverse, 

and hence 

For this example the reactive-element parameter matrices are simple. 
There is only one capacitor, so C = [C2] and C_1 = [1/C2]; the L matrix is 
the diagonal matrix 

Finally, we substitute into (119) and (124), multiply by C - 1 and L - 1 , 
respectively, and combine the two into a single equation. To simplify, 
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let R4 = kR6 , so that R4 G 6 = k. The result will be 

(145) 

In looking over this example you will notice that many of the sub
matrices are sparse (meaning that many elements are zero). This results 
in the need for many operations whose result is zero. It is possible to 
carry out the same steps with the equations written in scalar form. This 
obviates the need for writing large numbers of zeros, but sacrifices 
compactness. You might parallel the steps of the solution with the equa
tions in scalar form to observe the difference. 

It should also be noted in this example that G ≠ —H' because of the 
presence of gm ; but if gm = 0, then G will equal — H'. 

4 .6 MULTIPORT FORMULATION OF STATE EQUATIONS 

Let us now turn to an interpretation of the y, Z, H, and G matrices. 
We shall do this for the general case, not just the RLC case. For this 
purpose look back at (115) and (116), together with the definition of 
C and C in (117) and (118), respectively. Combining these equations 
leads to 
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Similarly, from (120) and (121), together with the definition of L and L 
in (122) and (123), respectively, we get 

These two can be combined into a single matrix equation. Then the deriva
tives can be eliminated by substituting the state equation of (129), 
which applies to the general network. The result will be 

(146) 

This is a purely algebraic equation relating certain reactive-element 
voltages and currents, and the source quantities. Note that the derivatives 
of the sources have also disappeared. An interpretation of the various 
matrices can be obtained by first considering the network of Fig. 10. 

Fig. 10. Network decomposition into subnetworks. 

Current 
sources 

Voltage sources 

Capacitor 
subnetwork 

Subnetwork of 
resistor 

branches 

Inductor 
subnetwork 

The overall network is shown as an interconnection of subnetworks. The 
central subnetwork consists of all the resistor branches (including control
led sources, etc.) to which are connected the subnetworks of capacitors, 
inductors, and independent sources. The resistor subnetwork can be 
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considered a multiport with as many ports as there are reactive elements 
and independent sources. Now we must further distinguish between 
reactive elements that are twigs and those that are links. 

This situation can be expressed symbolically as shown in Fig. 11, where 

Fig. 11. Multiport interpretation. 

Resistor 
multi-port 

each element represents a subnetwork of its class. Each port variable 
shown stands for all the scalar variables of its class and so is a vector. 
The orientations of the variables are consistent with orientations for which 
the equations were developed. The current orientations are opposite to 
the standard references for port currents. Thus the power into the resistor 
multiport from any port is —v'i. The capacitor twigs and links, and the 
inductor twigs and links are shown as separate subnetworks. Let us 
reemphasize that, in order to arrive at (146) for the general case, we 
assume that no further algebraic constraints are introduced by the resis
tive branches to reduce the order of complexity below what it would be 
from reactive-element considerations alone. 

Suppose we open-circuit all the reactive links and the independent 
current sources, and short-circuit the voltage sources. This will make 
i c l , i J , and v E all zero vectors. But if all inductor link currents are 
zero, so also will all inductor twig currents be zero by KCL for the all-
inductor cut-sets; that is, i L t = 0. Under these circumstances from (146) 
we can write 

(147) 
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Remembering the opposite orientation of the port currents, we conclude that 
y is the short-circuit admittance matrix of the resistive multiport whose 
ports are the terminals of the capacitor twigs, when all other reactive 
elements are open-circuited and all independent sources are removed 
(meaning that voltage sources are shorted and current sources are opened). 
This interpretation gives us a means for calculating the matrix y for a 
purely resistive network without going through the formal development 
of the last section. 

The other matrices can be evaluated in a similar manner. To find Z, 
short-circuit all reactive twigs and the independent voltage sources, and 
open-circuit the current sources, so that v C t , v L t , v E , and i J are all zero 
vectors. From (146) we can write 

(148) 

We conclude that Z is the open-circuit impedance matrix of the resistive 
multiport whose ports are the terminals of the inductor links, when all 
other reactive elements are shorted and all sources are removed. 

Matrices H and G can be found by similar means. We shall state the 
results and ask you to supply the details. 

(149a) 

(149b) 

Thus H is the current-transfer matrix of the resistive multiport, the 
input ports being the terminals of the inductor links that are replaced by 
current sources, and the output ports the shorted terminals of the capacitor 
twigs when the capacitor links are open-circuited and all independent 
sources are removed. The inductor twigs will be replaced by current 
sources as dictated by KCL at the all-inductor cut-sets. 

Finally, G is the voltage-transfer matrix of the resistive multiport, 
the input ports being the terminals of the capacitor twigs that are re
placed by voltage sources, and the output ports the open-circuited 
terminals of the inductor links, when the inductor twigs are shorted and 
all independent sources are removed. 

To illustrate these interpretations return to the example considered in 
Fig. 9. We shall carry through the calculations of each of the matrices 
in turn. To find y, we are to open-circuit the two inductors, remove the 
independent voltage source by shorting it, replace the capacitor with a 
voltage source v2 having the same polarity as the capacitor voltage, and 
then find the current i2 in this voltage source. The appropriate diagram 
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is shown in Fig. 12, where the ideal transformer terminated in R4 is 
replaced by a resistor n2R4, or n2kR6 when, as previously, we set 
R4 = kR6. The result is a series connection of R6 and n2R4 across which 
there is a voltage v2. The resulting current i is easily found, from which 
the voltage v7 follows. The controlled source current is now known. 
Hence KCL applied at one of the terminals of v2 yields i2. The details of 
the computation are given in Fig. 12. 

Fig. 12. Computation of y and G. 

Calculation of G Calculation of y 

Since there are no inductor twigs, the diagram for the calculation of G 
is the same as the one in Fig. 12. However, now the desired outputs are 
the voltages across the open-circuited inductors. The computation is also 
shown in Fig. 12. 
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To find Z we remove the voltage source, short the capacitor, and re
place the two inductors with current sources ig and i 1 0 , with appropriate 
references. The result, shown in Fig. 13, consists simply of R6 in parallel 
with n2R4 fed by the sum of i9 and i 1 0 . The voltages V9 and v10 are equal 
and easily computed. The totally painless computation of Z is shown in 
Fig. 13. 

Finally, for H the diagram is the same as the one in Fig. 13, except 
that the desired output quantity is the current in the shorted capacitor. 
This can be found by applying KCL at the lower terminal of the controlled 
current source, leading to i2 = i 1 0 — gmv7 — i6. But i6 = v7/R6 , v7 = —v10, 
and v10 was found in the diagram in terms of ig and i 1 0 . The matrix H 
is obtained when all of these are inserted into the expression for i 2 . 
The entire set of calculations is shown in Fig. 13. 

Although the discussion of the computation of these matrices for this 
example appears to be somewhat lengthy, the actual effort involved is 
very small. (It takes longer to talk about it than to do it.) You should 
compare the results with the A matrix in (145) to verify that the same 
answers have been obtained. 

Now let us turn to the submatrices y, Z, H, and G that make up 
Bi, the coefficient matrix of the source quantities. Looking again at 
(146) and Fig. 11, suppose we open all reactive links and the independent 
current sources, and we short all reactive twigs. Under these circumstances 
(146) yields 

(150a) 

(150b) 

Thus y is computed by finding the currents in the shorted capacitor 
twigs, and G is computed by finding the voltages at the open inductor 
links, both resulting from the independent voltage sources. 

Similarly, suppose we short all reactive twigs and the independent 
voltage sources, and open the reactive links. Then (146) yields 

(151a) 

(151b) 

Thus H is computed by finding the currents in the shorted capacitor 
twigs, and Z is computed by finding the voltages across the open 
inductor links, both resulting from the independent current sources. 
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Again we shall illustrate by means of the example in Fig. 9. There are 
no current sources in this case, so Z and H are both zero matrices. To 
find y and G, open both inductors and short the capacitor. The result is 
drawn in Fig. 14. The current i is trivially determined from the series 
connection of R6 and n2R4. From this v7 is obtained as R6 i. This deter-

Fig. 14. Computation of y and G. 

mines the current of the controlled source, and KCL then gives i2. The 
voltages vg and v10 are also trivially obtained. The details are shown in 
Fig. 14, with the result 

Comparison with (145) shows agreement. 
Let us see what we have to show for our efforts. Except for the terms 

containing source derivatives, we have been able to obtain the vector 
state equation completely from computations on a resistive multiport 
network, together with the simple evaluation of C and L as submatrices 
of the cut-set capacitance matrix and loop-inductance matrix. We have 
not obtained the terms contributed by the source derivatives when there 
are degeneracies. A glance back at (118) and (123) shows that these terms 
are rather simply given anyway, compared with the multiport matrices. 
To be accurate in stating that the state equations have been obtained by 
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a series of calculations for port relations alone, however, we must assume 
that no source-derivative terms will appear. This means that we are 
assuming the network will have no voltage sources in an all-capacitor 
loop and no current sources in an all-inductor cut-set. In terms of the 
submatrices of Q l , we are assuming that Q E C = 0 and Q L J = 0. 

OUTPUT EQUATIONS 

Having found an approach to determining the vector state equation by 
simple resistive multiport computations, let us turn our attention to 
similar calculations to find any variable that may be chosen as an output. 
Look again at Fig. 11. The port variables there encompass all possible 
output variables. For the reactive-element and source-element voltages 
and currents this statement is clear. The only other unknown branch 
variables are the resistive branch variables. Now current-source voltages 
and voltage-source currents can actually account for any resistor-
branch variables for the following reasons. Any voltage variable of a 
resistor branch can be made the voltage across a current source simply 
by attaching a current source of zero value across those points. Similarly, 
any resistor-branch current can be considered the current in a voltage 
source simply by placing a voltage source of zero value in series with the 
branch. Of course, doing this increases the effort introduced, but it permits 
ease of interpretation. 

Continue looking at Fig. 11. Now v C t and i L l are the state variables. 
The term v C l can be expressed in terms of v C t by KVL around the all-
capacitor loops. Similarly, i L t can be expressed in terms of i L l by KCL at 
the ail-inductor cut-sets. This leaves the following sets of variables: 

Consider the first set. Into the v-i relation i C l = C l dνCl/dt insert the KVL 
equation in (113e). Remembering the assumption that Q E C = 0, we 
obtain i C l = C l Q C C dvCt/dt. But dvCt/dt is expressed in terms of state 
variables and sources by the state equation. When this is substituted 
from (129) there results 

(152a) 
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A similar development for v L t gives 

(152b) 

Thus both capacitor link voltages and inductor twig currents can be 
expressed as output variables in terms of state variables and source 
variables. Aside from the matrices already found when forming the state 
equations (i.e., L, C, y, and H), we require a knowledge of the topological 
matrices Q C C and Q L L , and the parameter matrices C l , L t t , and L t l . 

As for i C t and v L l , which are the variables complementary to the state 
variables, we already have (146). This, however, is not exactly in the 
desired form for output equations because of the term containing i C l and 
v L t . However, (152) can be substituted for these, so that (146) can be 
rewritten as 

(153a) 

(153b) 

We observe that any reactive-component voltage or current variable can 
be written as an output in the standard form in terms of state variables 
and sources. Except for the matrices C t and L l l — L l t Q L L , this is done in 
terms of matrices already found in writing the state equations. 

This leaves the output variables v J and i E . Recall that the topological 
equations expressing these variables in (113a) and (113h) had not been 
used in arriving at the state equations. When the solutions for v R t and 
i R l of (126) are inserted into these equations, the result will be in terms of 
state variables and sources. It will have the following form: 

(154) 

The interpretation of the matrices in these expressions can be obtained 
in terms of the multiport network in Fig. 11 in the same way as shown 
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earlier; for example, y is obtained by opening the inductor and independ
ent current-source links (and hence also the inductor twigs), replacing the 
capacitor twigs with voltage sources v C t , shorting the independent 
voltage sources, and writing an expression relating the currents (—i E ) 
in these short circuits to v C t . 

The conclusion of this discussion is the following. By looking upon a 
network as made up of an interconnection of single-component types of 
subnetworks as in Fig. 11, we have a way of evaluating those matrices 
that are coefficients of the state variables and source variables in the state 
equation. We assume that the network contains no voltage sources in 
all-capacitor loops and no current sources in all-inductor cut-sets. By a 
similar approach we can compute the matrices that are coefficients in 
the output equation, whatever the output variables may be. When the 
output variables are reactive-element variables, no further calculations are 
needed on the resistive multiport. The pertinent equations are collected 
in Table 3. 

Table 3 

Multiport interpretation 

Output equations 

To illustrate, consider the network shown in Fig. 15a. With the usual 
equivalent circuit for the triode, the result is redrawn in (15b). Let the 
desired output be the voltage v and the current i3. Hence we insert a 
current source across the right-hand terminals, with ig = 0. In the graph 
this current source is shown by branch 11. Branch 8 is the controlling 
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Fig. 15. RC oscillator network. 

(a) (b) 

(c) 

branch of the controlled source. There is an all-capacitor loop, so one 
capacitor becomes a link of the normal tree. The f-cut-sets defined by 
capacitor twigs 1, 2, and 3 each contain capacitor 6, and with the same 
orientation. Hence the C matrix is easily written as 

Since there are no inductors and voltage sources, (146) and (154) reduce to 

( 1 5 5 a ) 

( 1 5 5 b ) 

Thus to find y and G we open-circuit the capacitor link 6 and the current 
source. (In this case the latter step is not needed since the only current 
source has zero value.) We then replace the capacitor twigs by voltage 
sources. The resulting network is shown in Fig. 16a. It is a matter of 
computing the currents i1 i2, and i3 in this resistive network by any 
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Fig. 16. Resistive network for computing y. 

(a) (b) 

convenient method. The details of the computation will be left to you. 
The result is 

From the diagram it is clear that v J = [v] = [Ri3]; so G is also easily 
found as follows: 

For the remaining matrices we continue to open-circuit capacitor link 6, 
but this time we short-circuit the capacitor twigs. The details of the com
putation will be left to you. The result will be 
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For this example, since the only source is a zero-value current source, 
there was no need of finding H and Z; they will be multiplied by zero in 
the final equations anyway. We went to the trouble of finding them here 
only for the purpose of illustration. 

We can now easily write the state equation and the output equation. 
For simplicity, let us use the following numerical values: C = J; r = R = 
10; μ = 6. Then 

The output i3 is a current in a capacitor twig. Hence, to get the correspond
ing output equation, we must use (153a), which reduces to i C t = 
— C t C - 1 y v C t , where C t is a diagonal matrix with diagonal elements 
equal to C = 1/4. We do not want all of i C t but only the third row. Thus the 
state and output equation will be 

This completes the example. 
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PROBLEMS 

1. For the networks in Fig. P1 determine (a) the number of natural 
frequencies and (b) the number of nonzero natural frequencies. Verify 
your answers by considering topological formulas for the determinant of 
the node admittance matrix or the loop impedance matrix. 

Fig. PI 

(a) (b) 

(c) (d) 

2. For each of the networks in Fig. P1, draw at least one normal tree. 
3. Show at least three normal trees for the network in Fig. 3 in the text. 
4. How many normal trees are there in Fig. 5 in the text? 
5. Equation 24 relating to Fig. 5 contains the derivative of the source 

voltages. Make a transformation of variables so that the corresponding 
equation in the new variables does not contain derivatives of source 
voltages. Can you interpret the new variables in terms of the network? 

6. Assume A and B are square matrices of the same order. Under what 
condition is the following relation valid: 

Use this result to show that (44) is a valid consequence of (36). 
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7. Show that each of the following matrices satisfies its characteristic 
equation: 

(a) (b) 

(c) (d) 

(e) (f) 

8. Using the Cayley-Hamilton theorem, find the inverse of each of those 
matrices in Problem 7 that is nonsingular. 

9. Let f(s) be a polynomial and d(s) the characteristic polynomial of a 
matrix A. Let g(s) be the remainder polynomial of least degree when 
f(s) is divided by d(s). In each of the following cases evaluate f(A). 

(a) 

(b) 

(c) 

10. For a given matrix A, observe that d(s) equals the minimal polynomial 
m(s) if the zeros of d(s) are simple. For each of the following matrices 
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with simple eigenvalues evaluate e A t using the Lagrange interpolation 
formula: 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

11. For each of the matrices of Problem 10, set up equations (76) or (82) if 
the eigenvalues are not simple, and solve them for the gi coefficients 
using f(s) = e 5 t . From this determine e A t and compare with the previous 
result. 

12. For each of the matrices of Problem 10, use the resolving matrix 
algorithm to evaluate [sU — A]-1. Then make a partial-fraction expansion 
of [ s U — A ] - 1 to determine the constituent matrices of A. 

13. For each of the matrices of Problem 10, determine the constituent 
matrices by the method of resolving polynomials, using fi(s) = s i - 1 . 

14. For each of the matrices of Problem 10, determine the constituent 
matrices by the method of resolving polynomials using the set of poly
nomials in (106). 

15. Evaluate the following matrix functions: 

(a) 

(b) 



PROBLEMS 323 

(c) 

16. Solve the following sets of state equations with the state vector evaluated 
using first (45), then (52), and finally (54) with (49) and (59). In each 
case evaluate e A t by first finding the constituent matrices of A and then 
applying (84). 

(a) 

(b) 

(c) 
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(d) 

(e) 

(f) 



Fig. P18 

(a) (b) 

(c) (d) 

(e) 

(f) 

(g) (h) 

(i) (J) 

(k) 
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17. If the eigenvalues of A are different from those of F, then 

is the unique solution of 

where the K i j are the constituent matrices and the s i are the eigenvalues 
of A. We let ri denote the multiplicity of s i and k the number of 
distinct eigenvalues. In each of the parts of Problem 16 solve for S 
by using the above formula, when the eigenvalues of A and F are 
different. 

18. For each of the networks in Fig. P18, derive the state equations by 
(a) the formal matrix approach and (b) the method of resistive multiport 
parameter evaluation. 

19. Derive the state equations for the network in Fig. P19 by both the 
matrix method and the method of resistive multiport parameter evalu
ation. For the pentode use the equivalent circuit shown. The response 
variables are the volages across all the inductors. 

Fig. P19 

(a) (b) 

20. Determine the order of complexity of the nonpassive, nonreciprocal 
networks in Fig. P20. 

21. Using the method of Section 4.6, derive the state equations for the 
networks in Fig. P21. In (a) the ouput is i1(t); further, choose a normal 
tree so that all the C capacitors are included. In (b), the outputs are ii 
and V2 ; further, choose the normal tree to include La. 

22. Derive the state equations for the single-stage amplifier shown in Fig. 
P22a. Use the hybrid-pi-equivalent circuit for the transistor, as shown in 
Fig. P22b. The voltage v 2 is the network response. 
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Fig. P20 

(a) (b) 

(c) 

Fig. P21 
( a ) (b) 

Fig. P22 

(a) (b) 
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23. Derive the state equations for the network of Fig. P23. Solve for the 
state-transition matrix. Set up the equation for the solution of the 
response vector w = [v2 v 3 ] ' . The capacitors are uncharged at time 
to = 0. Carry out the solution. 

Fig. P23 

24. In deriving the general formulation of the state equations from 
topological considerations, we assumed all branches could be classified as 
(1) independent sources, (2) capacitive, (3) inductive, or (4) resistive. 
The general formulation of the state equations can also be derived using 
the compound branch of Fig. P24a, instead of a capacitive branch; and 

Fig. P24 
(a) (b) 

the compound branch of Fig. P24b, instead of an inductive branch. 
Unaccompanied resistors would continue as branches. Carry through the 
details of this development. Discuss the advantages and disadvantages 
of deriving state equations in this manner. 

25. Using the method developed in Problem 24, determine the state 
equations for each of the networks shown in Fig. P25. The output vari
ables for each case are indicated. 

26. Derive the state equations for the amplifier shown in Fig. P26a. Use the 
transistor model shown in Fig. P26b. 
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Fig. P25 

(a) 

(b) 
(o) 

(d) 

Fig. P26 

(a) (b) 
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27. Derive the state equations for the three-stage amplifier network shown 
in Fig. P27a. Use the triode model shown in Fig. P27b. 

Fig. P27 

(a) 

(b) 

28. In deriving the state equations in the text, a hybrid-g representation 
was used for the resistive v-i relationships. It is possible to use another 
representation instead. Replace the resistive equations (125) in the text 
with one of the following sets of equations and show how they, together 
with the Kirchhoff equations, yield the vectors i R l and v R t needed in 
(119) and (124). Explicitly state any conditions needed to guarantee a 
solution for i R l and v R t . 

(a) 

(b) 

(c) 

(d) 

(e) 

29. In the networks in Figs. 4 and 5 in the text, solve for i R l and v R t 

using the method based on (125) discussed in the text. Then solve for 
i R t and v R t using one of the other representations in Problem 28. 
Do some representations require less computational effort? Discuss. 
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30. Derive the state equations for the network shown in Fig. P30. Use the 
transistor model shown in Fig. P26b. 

Fig. P30 

31. Derive the state equations for the differential amplifier network shown 
in Fig. P31. Use the transistor model shown in Fig. P26b. 

Fig. P31 

32. Derive the state equations for the network shown in Fig. P32 using the 
transistor model shown in Fig. P26b. 

Fig. P32 
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33. Determine the state equation for each of the oscillator networks shown 
in Figs. P33a through c by using the transistor model shown in Fig. P33d. 

Fig. P33 

(a) (b) (c) 

(d) 

34. The network shown in Fig. P34 is a simple RC oscillator circuit. 
Determine the state equation and indicate for what value of α there will 
be two imaginary eigenvalues of A. 

Fig. P34 

n 
35. Suppose A and F in (57) have no eigenvalues in common. Let α i λ n - i 

i = 0 
m 

and β̂  λ m - i be the characteristic polynomials of A and F, 

respectively. 



PROBLEMS 333 

Let 

Then the solution of (57) is given by either of the following equations: 

In each of the parts of Problem 16, solve for S using each of the above 
formulas, when the eigenvalues of A and F are different. 

36. (a) For the network shown in Fig. P36a, specify the number of natural 
frequencies and the number of nonzero natural frequencies. 
(b) Repeat for the network in Fig. P36b. State whether the values of the 
natural frequencies (not their number) are the same or different in the 
two cases. Explain. 

Fig. P36 

(a) (b) 

The next six problems involve the preparation of a computer program 
to help in implementing the solution to some problems. In each case, 
prepare a program flow chart and a set of program instructions, in some user 
language such as FORTRAN IV, for a digital computer program to carry 
out the job specified in the problem. Include a set of user instructions for 
the program. 
37*. Prepare a program to evaluate (sU + A)-1 by the resolvent-matrix 

algorithm of (98). 
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38*. Prepare a program to evaluate A - 1 by (99). 
39*. Prepare a program to identify a normal tree of a connected network 

when each branch is specified by a sequence of quadruplets of numbers: 
the first number identifies the branch; the second number identifies 
its type according to the schedule given below; and the third and fourth 
numbers identify the nodes to which the branch is attached. The 
program should also renumber the branches in accordance with the 
convention in Section 4.5 under " Topological considerations " and 
provide as output data the sequence of number quadruplets with the 
new branch number. An example of a typical set of data is given in 
Fig. P39 for the network shown there. 

Number Type of Branch 

1 Independent voltage source 
2 Independent current source 
3 Capacitor 
4 Resistor 
5 Inductor 

Fig. P39 

40*. Prepare a program to determine, first, a reduced node-incidence 
matrix of a connected network and then an f-cut-set matrix associated 
with a normal tree. Take as input data the output data from Problem 
39*. Assume the third number of each quadruplet of numbers denotes 
the node to which the tail of the branch is connected; then the node 
at the head of the branch will be the fourth number. 

41*. Prepare a program to determine A , B1, and B2 of (142) when the 
network is 

(a) RC with no capacitor links and no resistor twigs 
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(b) RC with no capacitor links 
(c) RC with no resistor twigs 
(d) RC (general) 
(e) RL with no inductor twigs and no resistor links 
(f) RL with no inductor twigs 
(g) RL with no resistor links 
(h) RL (general) 
(i) LC with no capacitor links and no inductor twigs 
(j) LC with no capacitor links 
(k) LC with no inductor twigs 
(l) LC (general) 
(m) RLC (general) 

The input data are given as a sequence of quintuplets of numbers: 
the first number identifies the branch, the second number identifies 
its type according to the schedule of Problem 39*, the third number 
identifies the node at the branch tail, the fourth number identifies 
the node at the branch head, and the fifth number is the value of the 
parameter associated with the branch (zero will be entered for all 
independent sources). Assume the f-cut-set evaluated by the program 
of Problem 40* is available. 

42*. Combine the programs of Problems 39* and 40* with each of those of 
problem 41* to create a single program which, starting with the input 
data of Problem 41*, determines the network state equation for each 
of the several types of networks listed in Problem 41*. 



. 5 . 

INTEGRAL SOLUTIONS 

We have now reached a level of ability where given any linear, time-
invariant network and an arbitrary excitation the complete response can 
be obtained. The complex-frequency-domain methods of Chapters 2 and 3 
are very useful in determining an analytic expression for the response. 
In particular, when the network is initially relaxed, we have seen that it 
can be characterized by its transfer function. Hence it is not even neces
sary that the network be given, as long as its transfer function is known. 
The time-domain methods of Chapter 4 are also useful in establishing an 
analytic expression for the response, but they are particularly suited to 
numerical evaluation of the response in the time domain. As with the 
complex-frequency-domain methods, if the network is initially relaxed, 
it need not be given; it is sufficient to know the integral relation giving the 
response in terms of the network excitation. 

In this chapter we shall be concerned first with the problem of determin
ing the response of a network to an arbitrary excitation—not when the 
network is given, but when its response to some standard excitations is 
given. Step and impulse functions will be used in defining these standard 
excitations. We shall establish analytic results by using both time-domain 
and complex-frequency-domain methods. Furthermore, we shall treat the 
problem of obtaining numerical results in the time domain. 

To start with, let us relate the network response in the complex-
frequency domain to the response in the time domain. To achieve this 
goal we shall need a result from the theory of Laplace transforms. How
ever, this result is probably less familiar than such standard things as 
partial-fraction expansions. Hence we shall spend some time discussing it. 

336 
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5 . 1 . CONVOLUTION THEOREM 

Suppose an initially relaxed network is excited by voltage and/or 
current sources at its various inputs, and it is desired to determine the 
voltages and/or currents that are its outputs. 

An illustration is given in Figure 1; in the amplifier network there is a 
voltage source and a current source. The desired responses are the two 

Fig.l 

voltages ve and v0, and the current if. The transforms of the excitation 
and response vectors for this network are as follows: 

assuming e(t) is transformable. Let H(s) be the matrix of transfer functions, 
called the transfer matrix, relating the excitation and response transforms. 
Then the response transform can be written 

(i) 

In this example H is of order (3, 2), but the relationship is quite general. 
In the general case E is a p-vector; and W, an r-vector; hence H is of order 
(r,p). 

Now, with W(s) known, w(t) is most often found by first making a 
partial-fraction expansion of W(s) and then inverting each term in the 
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expansion. What we should like to do now is to express both H(s) and 
E(s) in terms of the time functions of which they are the transforms. 
We shall assume H(s) is the transform of a matrix of ordinary point func
tions. If we can express the result of subsequent manipulations on those 
time functions in the form 

( 2 ) 

then, from the definition of the Laplace transform, we can conclude that 
whatever is in the parentheses is the desired response vector. What we 
plan to do does not depend on the interpretations of H(s) as a transfer 
matrix and E(s) as an excitation vector. Hence we shall use a more general 
notation in developing this result. 

Let F1(s) and F 2(s) be the Laplace transforms of the matrix functions 
F1(t) = [flij(t)] and F2(t) = [f2ij(t)], respectively; that is, 

(3a) 

(3b) 

We have used as dummy variables u and v rather than t to avoid confusion 
in the later development. Assume that the matrix product F1(s) F 2(s) is 
defined. Then we find 

(4) 

The last step is clearly justifiable, since each integral in the second line 
is a constant with respect to the other variable of integration. The product 
of integrals in the second line can be interpreted as a double integral 
over an area whose coordinate axes are u and v. The integration is to be 
performed over the entire first quadrant, as indicated in Fig. 2a. 
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Fig. 2. Region of integration. 
(a) (b) 

Let us now make a transformation to a new set of variables, as follows: 

(5) 

Actually, the second one of these is an identity transformation and is 
included only for clarity. We now need to express the double integral in 
terms of the new variables. The element of area du dv in the old variables 
is related to the element of area dτ dt in the new variables through the 
Jacobian of the transformation; thus,* 

( 6 ) 

Computing the partial derivatives from (5) and substituting here leads 
to the result that dτ dt = du dv. 

To complete the change of variables we must determine the new limits 
of integration. Note that, since t=u + v = τ + v, and since v takes on 
only positive values, t can be no less than T . The line t = τ in the T - t 
plane bisects the first quadrant; thus the desired area of integration is the 
the area lying between this line and the t-axis, as shown in Fig. 2b. 
In order to cover this area we first integrate with respect to τ from τ = 0 
to T = t; then we integrate with respect to t from 0 to infinity. 

With the change of variables given in (5) and with the limits changed 
as discussed, (4) yields 

(7) 

* See Wilfred Kaplan, Advanced Calculus, Addison-Wesley, Cambridge, Mass., 1953, 
p. 200. 
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This is exactly the form of (2), so that we can identify the quantity in 
the parentheses as F(t) = £ - 1 {F ( s ) } . It should be clear that, if in (3) we 
write F1(s) in terms of the dummy variable υ and F 2(s) in terms of u, then 
in the result given by (7) the arguments of F1 and F2 will be interchanged. 
The final result can therefore be written in the following two alternative 
forms: 

(8) 

(9) 

The operation performed on the two matrices Fi(t) and F2(t) repres
ented by these expressions is called convolution. The two matrices are 
said to be convolved. The convolution of two matrices is often denoted by 
the short-hand notation F1_*F2. We can state the above result in the form 
of a theorem, as follows. 

Convolution Theorem. Let the two matrices F1(t) and F2(t) be Laplace 
transformable and have the transforms F1(s) and F 2 ( s ) , respectively. The 
product of F 1 ( S ) with F 2 ( s ) , if they are conformable, is the Laplace transform 
of the convolution F1(t) with F2(t). 

(10) 

where 

(11) 

While we are still in this general notation let us state another useful 
result concerning the derivative of the convolution of two matrices. 
If the matrices F1(t) and F2(t), in addition to being Laplace transformable, 
are also differentiable for t > 0 (they need be continuous only at t = 0), 
then their convolution will also be differentiable for t > 0. The derivative 
will be 

(12) 
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or 

(13) 

where the dot indicates differentiation with respect to t. These expres
sions can be found by applying the Leibniz formula for differentiation 
under an integral. In fact, we can observe that we do not really need the 
hypothesis that both F1(t) and F1(t) are differentiable. If either function 
is differentiable and the other continuous, then the convolution F1*F2 is 
differentiable. 

Although the preceding has been carried out in matrix form, the results 
are, of course, valid for the scalar case as well, a scalar being a one-
dimensional vector. Thus, for scalars, (8) and (9) become 

5.2 IMPULSE RESPONSE 

Let us return to our original problem of finding the response w(t) of an 
initially relaxed network having the transfer matrix H(s) to the excitation 
e(t). Recall that H(s) must be the transform of a matrix of ordinary point 
functions in order to apply the convolution theorem. This implies that 
H(s) tends to 0 as s tends to infinity within the sector of convergence for 
H(s). Let W δ(t) denote the inverse transform of H(s); that is, 

(14) 

The reason for this choice of notation will be clear shortly. Now the con
volution theorem applied to (1) provides us with the result 

(15) 
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This is a very valuable result. By this expression we are able to express 
the time response of a network to an arbitrary excitation e(t) in terms of 
the inverse transform of the transfer matrix of the network. 

A further interpretation is possible if we are willing to admit the 
impulse function in our discussions.* Such an interpretation is not really 
needed, since (15) can stand on its own feet, so to speak. However, the 
interpretation may prove useful in some instances. For instance, by using 
this interpretation, one can find a close approximation to W δ(t) 
experimentally. 

Now suppose that all excitations are zero except the jth one and that 
this one is an impulse. In this case the excitation vector, denoted by 
e δ j (t), has all elements equal to zero except the jth, this element being 
the impulse function δ(t). We may think of e δ j(t) as the jth column of the 
p × p excitation matrix E δ(t). Thus, for example, 

* The impulse function δ(t) is not an ordinary point function; rather, it is a generalized 
function. Symbolically, we may manipulate mathematical relations involving the impulse 
function and its derivatives as we would relations involving only ordinary point 
functions. On the other hand, mathematical precision requires that we view each function 
as a generalized function, and each operation as defined on the space of generalized 
functions. A short treatment of the theory of generalized functions is given in Appendix 1. 
Here it is enough to observe that the impulse function satisfies the following relations. 
With a<τ<b, 

For other values of T outside the range [a, b], each of the above integrals yields zero. 



Sec. 5.2] IMPULSE RESPONSE 343 

is the second-column vector of the excitation matrix 

Similarly, let w δ j(t) be the response vector resulting from e δ j(t); that is, 
w δ j(t) is the collection of all the scalar responses when there is a single 
excitation and this excitation is an impulse. Let these w δ j vectors be 
arranged as the columns of an r × p matrix designated W δ(t) and called 
the impulse response of the network. Note carefully that W δ(t) is a set of 
response vectors, one column for each column of E δ(t). It is thus not an 
observable response in the same sense that each of its columns is an ob
servable response. On the other hand, the sum of elements in each row of 
W δ(t) is an observable (scalar) response—the response to the sum of all 
excitations, these excitations all being impulses. Let us illustrate with the 
example of Fig. 1. 

Finally, the sum of the elements in the first row of W δ(t) [namely, voδl(t) 
+ voδ2(t)] is the voltage v0(t) when each of the two sources in the diagram 
is an impulse. 

Now consider the Laplace transforms. Since Eδ(t) = δ(t)U, then 

(16) 

Equation (1) relates corresponding columns of the transforms of Eδ(t) 
and W δ ( t ) . Hence, by using (16), we obtain 

(17) 
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or, equivalently, 

(18) 

In words, the last equation states that the inverse transform of the network 
transfer function is equal to the impulse response of the network. We 
anticipated this result in using the notation in (14). 

Let us return now to (15). We see that this equation expresses the fact 
that, once the impulse response of an initially relaxed network is known, 
the response to any other excitation e(t) is determined. What we must do 
is premultiply the excitation at each point T by the impulse response—not 
at the same point, but at a point (t — τ)—and then integrate. Another 
viewpoint is that the input vector is " weighted " by the impulse response. 
This leads to the name of " weighting matrix " used by some authors for 
the impulse response.* 

Let us elaborate a little on the concept of weighting. Perhaps a simple 
example would be more satisfying as a means of communicating this 
point. Therefore let us consider a single-input, single-output network with 
the transfer function 

which is the transfer function V2(s)/Vi(s) of the network of Fig. 3. Then 
the impulse response is given by 

Fig. 3. Example for the concept of the weighting function. 

A plot of this function is given in Fig. 4. 
Suppose we wish to compute the response of this network to some driving 

* The term weighting function has been used as another name for the impulse response 
of a single-input, single-output network. Weighting matrix seemed to be the natural 
generalization for the multi-input, multi-output networks discussed here. 
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Fig. 4. Impulse response of the network of Fig. 3. 

function e(t). For convenience of interpretation let us take the convolu
tion of wδ(t) and e(t) in the second form given in (15). We shall use T as the 
running variable. To get the value of the response at any given time T , 
we first reverse the impulse response and translate it along the τ-axis so 
as to obtain wδ(t — τ) as a function of T . Compare wδ(t) versus t in Fig. 4 to 
wδ(t — T) versus τ in Fig. 5a. The excitation over the interval 0 to t is 
superimposed on wδ(t — τ) in Fig. 5a. Now according to (15) we 
must multiply the two curves wδ(t — τ) and e(τ) point by point on this 
interval. The resulting product is shown in Fig. 5b. Since wδ(0) = 0, the 
value of e(τ) at the point t contributes nothing to the response at t, in 
spite of the fact that e(τ) has a maximum value at this point. On the other 
hand, the most important neighborhood is around (t — 1), because the 
values of e(τ) in this vicinity are multiplied by the largest values that wδ 

assumes. Similarly, the values of e(τ) for τ less than (t— 2) do virtually 
nothing to the response at t. Thus wδ decides how much weight to attach 
to the values of e at various times. In this case the response, that by (15) 
is the integral of wδ(t — τ) e(τ) from 0 to t, is decided almost entirely by 
the values of e(t) for the previous 2 seconds; the most significant contribu
tion coming from the values of e(t) about the point 1 second prior to the 
time under consideration. 

TRANSFER FUNCTION NONZERO AT INFINITY 

The question now arises, What should we do if the network transfer 
function does not have a zero at infinity? In such a case wδ(t) will 
contain impulses and first derivatives of impulses. Since we are permitting 
impulses in the excitation, we might just as well relax the original condi
tion on H(s) and permit it to be nonzero at infinity. Let us see what effect 
this will have. 
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Fig. 5. Illustration of convolution 

(a) 

(b) 

The transfer function of a network can be more than just a nonzero 
constant at infinity, it can have a first-order pole there. Let K ∞ be the 
residue matrix of H(s) at the pole at infinity, and let K be the constant 
matrix that is the limit of H(s) — K ∞ s as s approaches infinity along the 
real axis. Then we can write 

( 1 9 ) 

where H(s) has a zero at infinity. The impulse response will then be 

(20) 

where W δ(t) is a well-behaved matrix not containing impulses. Let us use 
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this expression in the second form of (15) to find the response of the net
work to an excitation e(t). The result will be 

(21) 

The last step follows from the properties of impulse functions and their 
derivatives, as given in Appendix 1. This is the general form of the con
volution integral. 

ALTERNATIVE DERIVATION OF CONVOLUTION INTEGRAL 

In deriving (21) we permitted W δ(t) in the second convolution integral 
to include impulses and derivatives of impulses; that is, all elements of 
W δ(t) were not necessarily ordinary point functions. Now it is a fact that 
the convolution theorem is valid when elements of W δ(t) are not ordinary 
point functions; however, the proof given in the last section does not hold 
in this more general case. It is necessary, therefore, to give an alternative 
derivation of (21). This is easily done in terms of the time-domain results 
of Chapter 4. 

Recall that the state equations for a network may be written as 

(22a) 

Recall also that the solution of the differential equation for the state 
vector and, from (22b), the solution for the output vector, are 

(23a) 

(23b) 

Observe that part of the response is a consequence of a nonzero initial 
state. We shall let 

(24) 
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denote this part. The superscript f was chosen because w f(t) is known as 
the free response of the network; this is a sensible name, since w f(t) is 
independent of the controlling influence of the network excitation. The 
remaining part of the response stems from nonzero excitation of the net
work. We shall let 

(25) 

denote this part. The superscript c was chosen because we may think of 
wc(t) as the controlled response, since wc(t) is controlled by the network 
excitation. As a consequence of these definitions we have 

(26) 

When the network is initially relaxed, x(t0) = 0 and hence w f(t) = 0. 
Thus the total network response is simply the controlled response. Now, 
upon letting t0 = 0, we get 

(27) 

Observe that (21) and (27) are identical after the obvious identification 
of W δ(t) with CeAt B, K with D, and K ∞ with D; the theorem is thus 
proved. 

One further comment on the need for generalized functions is in order. 
Suppose we restrict e(t) and w(t) to the set of ordinary vector-valued 
point functions. As (27) then makes evident, if D ≠ 0, we must also require 
that e(t) have a derivative for t > 0. A restriction such as this is not desir
able, since it is often of value to examine w(t) when elements of e(t) are 
discontinuous functions or functions with slope discontinuities. Two very 
typical functions of this type are the unit step function 

which is discontinuous at t = 0; and the unit ramp function t u(t), which 
has a slope discontinuity at t = 0. We can circumvent the differentiability 
restriction by removing the initial restriction on e(t) and w(t) to the set 
of ordinary vector-valued point functions, and by allowing e(t) and w(t) 
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to be vector-valued generalized functions. This act removes the differ
entiability restriction because every generalized function has derivatives 
of ail orders. 

Example 

The application of the convolution integral in the solution of a problem 
is quite straightforward. It is necessary first to find the impulse response 
W δ(t) = £ - 1 {H (s)} and then to substitute this, together with the excita
tion as specified by a functional expression—possibly different functional 
expressions over different intervals of time—in the convolution integral. 
We shall illustrate this process in the following example. 

Fig. 6. Example. 

In the initially relaxed network of Fig. 6, let the responses be v and i 
as shown. There is only a single source, having a voltage given in the 
diagram. Hence the excitation vector is 1 × 1, and the response vector is 
2 × 1. The transfer-function matrix is 

(You may go through the details of finding this; try it by finding the state 
equations.) We see that the first element of H(s) has a zero at infinity, 
whereas the second one is nonzero at infinity. The impulse response, 
therefore, is 
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Since the excitation has a different functional form for 0 ≤ t ≤ 1 from 
the one it has for t ≥ 1, the response for each of these ranges must be found 
separately. Thus 

Hence, from (21), for 0 ≤ t ≤ 1 

In the range t ≥ 1, the integral from 0 to t must be broken into two 
integrals, the first going from 0 to 1, the second from 1 to t. The excitation 
in the first interval is v1(t) = 2t, the same as in the calculation just completed. 
Hence in this next calculation it is enough to replace the limit t by 1 in 
the preceding integral and then to evaluate the second integral. Note that 
t is not replaced by 1 everywhere in the evaluated integral above but only 
in the contribution coming from the upper limit. So, for t ≥ 1, 
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You should carry out the details of these calculations and verify that 
both expressions give the same value of w at t = 1. 

5 . 3 STEP RESPONSE 

In the last section we established that the response of an initially 
relaxed network to any arbitrary excitation can be found simply from a 
knowledge of the impulse response of the same network. In this section 
we shall show that the same conclusion applies as well to a knowledge of 
what shall be called the step response of the network. 

Suppose that all excitations are zero except the jth one, which is a 
unit step. Denote by eUj(t) an excitation vector with all its elements 
equal to zero except the jth, this one being a unit step u(t). We can think 
of eUj as the jth column of a p × p matrix Eu(t). Thus, for example, 

is the third column-vector of the excitation matrix 

Similarly, let w n j ( t) denote the response vector resulting from e n j (t); 
that is, wUj(t) is the collection of all the scalar responses when there is a 
single excitation and this excitation is a unit step at the jth input. 
Suppose these w u j vectors are arranged as the columns of an r × p matrix 
designated W u(t) and called the step response of the network. 
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Now consider the Laplace transforms. From (1) it follows that 

(28) 

However, since £{E n(t)} = £{u(t)U} = U/s, it follows that 

(29) 

This expression immediately tells us something about the relationship 
between the step response and the impulse response, since H(s) = 
£{W δ(t)}. To get the relationship between the time responses, we take 
the inverse transform of (29) either as it stands or after multiplying 
through by s. The results will be 

(30) 

(31) 

The initial value of the step response is readily found from (29), by using 
the initial-value theorem. Provided H(∞) is finite, it will be 

(32) 

where σ is a real scalar. We conclude that the initial value of the step 
response of a network will be zero if the transfer function has a zero at infinity. 
Further, if H(∞) is nonzero but finite, the initial value of the step response 
will be nonzero and, in addition, the impulse response will itself contain an 
impulse. If, on the other hand, H(∞) is nonzero but infinite—H(s) has a 
simple pole at infinity—then the step response has an impulse at t = 0, 
and the impulse response contains the derivative of an impulse at t = 0. 
Note that this does violence to our ordinary concepts of calculus, as em
bodied in (30) and (31). If W δ(t) is an integrable matrix, then (30) tells 
us that W w (0 ) should be zero (simply by putting zero as the upper limit); 
however, if we admit impulses, then our constitution must be strong to 
withstand the consequences. Note, however, that if W δ(t) contains a 
first-order impulse, W n(t) is not impulsive; further, if W δ(t) contains the 
derivative of an impulse, W n(t) has an impulse but not the derivative of an 
impulse. Hence W n(t) is always better behaved than W δ(t). 

Let us now return to our original task and assume that an arbitrary 
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(but without impulses) Laplace-transformable excitation e(t) is applied to 
the network. Equation 1 relates the transforms. This equation can be 
rewritten in one of several ways after multiplying numerator and de
nominator by s. Thus 

(33) 

(34) 

(35) 

In each case we have used (29) to obtain the far-right side. To find w(t) 
we shall now use the convolution theorem. Focus attention on (33). This 
can be written 

(36) 

where 

(37) 

By using the convolution theorem, we can write 

(38) 

If we evaluate f(0), we shall find it to be zero, unless W n(t) contains an 
impulse. We saw that this is not possible even if H(s) has a finite nonzero 
value at infinity. In fact, the step response will have an impulse only if 
H(s) has a pole at infinity. Hence, if we admit only those H(s) matrices 
that are regular at infinity, then w(t) will be the derivative of f(t), based 
on (36). Thus 

(39) 
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We now have an expression for the response of an initially relaxed 
network to an excitation e(t) in terms of the step response. This result 
ranks in importance with (15). Using the results stated in (12) and (13), 
we can put the last equation in the following alternative forms: 

(40) 

(41) 

This will require that e(t) or W u ( t ) , as the case may be, be differentiable 
and that, correspondingly, e(0) or W u ( 0 ) be finite. 

These same expressions can be obtained in an alternative manner, 
starting from (34) and (35). To use (34) let us first write 

(42) 

We can now use the convolution theorem on (34). The result will be 

(43) 

which is the same as (41). In a similar manner, (40) can be obtained starting 
from (35). The details are left to you. 

For future reference we shall collect all of the forms of these expressions 
that have been derived. They are as follows: 

(44) 
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( 4 5 ) 

( 4 6 ) 

These expressions, as scalar rather than vector equations, were originally 
used by DuHamel in 1833 in dynamics. They are variously known as 
the DuHumel integrals, Carson integrals, and superposition integrals. 
Carson himself called (46) the fundamental formula of circuit theory. 

Example 

In applying the superposition integrals to the evaluation of a network 
response, the first step is to find the response W u ( t ) . A decision is then 
required as to which matrix, e or W u , should be reversed and translated 
to the argument (t — τ). This choice is guided by the simplicity of the 
resulting integrals. Then a decision is needed as to which one, e or Wu, 
should be differentiated. Sometimes there may be no choice, since one of 
them may not be differentiable. 

To illustrate, consider again the example of Fig. 6 which was earlier 
evaluated by using the impulse response. Since we already have W δ (t) , 
(30) can be used to find W u ( t ) . The result is 

Because of the functional form of the excitation, it is much simpler to 
differentiate e(τ) = [v1(τ)] then W u ( t ) . The derivative is shown in Fig. 7; 
its analytical form is also given. 

Note that if we differentiate W u(t) instead, then, by using (31) for W u and 
inserting it into (45), we get back the convolution integral. 

Let us use the second form of (44), which should be simpler than the 
first form, since V1(t — τ) = 2[u(t — τ) — u(t — T — 1)], which is simply the 
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Fig. 7. Example. 

square pulse in Fig. 7 shifted by t units. Since e(0) = [v1(0)] = 0, we get 
for 0 ≤ t < 1 

This answer can be verified by comparing with the result previously 
found. Note that the integration was considerably simpler in this case. 

This would be the response for all t if υ'1 would stay constant at 2; 
but it does not; it takes a negative step downward at t = 1. Hence, to find 
the response for t > 1, we simply replace t by t — 1 in the above expression, 
to get the response to the negative step at t = 1, and subtract the result 
from the above expression. The result for t > 1 will be 

This again agrees with the previously found result. 
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5.4 SUPERPOSITION PRINCIPLE 

In the preceding sections of this chapter we obtained, in a formal way, 
expressions that relate the response of an initially relaxed network to an 
excitation e(t) and the impulse response or step response through a con
volution integral. It is possible to interpret these integrals as statements 
of the superposition principle. This will be the subject of the present 
section. 

Concepts relating to the superposition principle are best developed with 
illustrations. Unfortunately, it is difficult to illustrate vector and matrix 
functions. Therefore we shall develop our results for a single-input, 
single output network, since only scalar equations are then involved, and 
the scalar functions encountered can be illustrated. At the appropriate 
place we shall state the corresponding results for the vector equations 
characterizing multi-input, multi-output networks. 

SUPERPOSITION IN TERMS OF IMPULSES 

Consider the excitation function sketched in Fig. 8a. The positive time 
axis is divided into a sequence of equal-length intervals, the length being 
Δ T . It is not necessary that the intervals be equal, but the task ahead is 
easier to formulate if they are. 

Now consider the sequence of impulses labeled f(t) shown in Fig. 8b. 
The impulse at the point kΔτ has a strength e(kΔτ)Δτ, which is the area of 
a rectangle formed by the base Δ T and the height of the curve of Fig. 8a 
at the point kΔτ. The rectangle is shown shaded. The heights of the arrows 
in the figure have been drawn proportional to this strength. However, 
remember that the impulses are all of infinite height. Hence, for any 
finite Δ T , no matter how small, the string of impulses is not a good point-
wise representation of the excitation function, which is everywhere 
finite. Nevertheless, let us compute the response of the network to this 
sequence of impulses. Now f(t) is not a point function; it is a generalized 
function that can be expressed as 

(47) 

Let us denote by Δ w k the response at time t to one of these impulses. Then 
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Fig. 8. Decomposition of function into impulse train. 

(a) 

(b) 

Δ w k will be equal to the strength of the impulse times the impulse response, 
suitably displaced. Thus 

(48) 

is the response at time t to the impulse at time kΔτ. 
Let us now concentrate on a particular point on the axis, which we can 

call T . For a given value of Δ T , this point will be kΔτ. If we let Δτ get 
smaller, we shall have to increase k proportionately so that the value 
T = kΔT will stay the same, since it refers to a fixed point on the axis. 
Hence, (47) and (48) can be rewritten as follows: 

(49) 

( 5 0 ) 

The response at any time t is obtained by adding the responses to each of 
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the impulses up to time t. Let us denote by w(t) the response to the 
sequence of impulses as we let Δ T approach zero. 

( 5 1 ) 

(The summation has been indicated as extending from r = 0 to r = t. 
Actually, it should be k = 1 to n, where n is the largest integer such that 
nΔT ≤ t, with the limit taken as Δ T tends to zero. Since T = kΔT, the 
notation we have used is equivalent to this.) The indicated limit is, by 
definition, the integral written in the last line. 

The question that remains to be answered is whether the sum of impulse 
functions f(t) given in (49) can represent the original excitation e(t) in 
the limit as Δ T approaches zero. In a formal way, the summation in (49) 
will become an integral which, by the sampling property of impulse 
functions, becomes e(t). Thus, in the limit, the series of impulses represents 
the excitation. 

In view of the preceding discussion, we can, for a single-input, single-
output network, interpret the convolution integrals in (15) as expressing 
the response to an excitation e(t) as the superposition of responses to a 
sequence of impulses that make up the function e(t). 

Now let us turn our attention to the multi-input, multi-output case. 
Precisely the same type of development leading to the convolution of the 
impulse response with the excitation can be carried out. Thus 

( 5 2 ) 

where 

( 5 3 ) 

is the response to the vector of impulses occurring at time T = kΔT in 
the representation of e(t) given by 

( 5 4 ) 
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To give a suitable interpretation, we must reformulate the result. Let 
w δ j denote the jth column vector of W δ . Then from (52) we get 

( 5 5 ) 

Now w δ j(t) is the response when the jth input is excited by a unit impulse 
at time zero and all other inputs have zero excitation. Thus, in the multi-
input, multi-output case, an appropriate interpretation of (52) is the 
following: The response to the excitation e(t) is the superposition of a set of 
responses, each of which is the response of the network to excitation at a 
single input, the excitation consisting of a sequence of impulses. 

SUPERPOSITION IN TERMS OF STEPS 

A development similar to that just completed can be carried out by 
representing an excitation function as a sum of step functions. Let us, as 
before, initiate the discussion in terms of a single-input, single-output 
network. The positive time axis is divided again into equal intervals of 
length Δ T . The excitation function represented as a sum of step functions 
is illustrated in Fig. 9. The resulting " staircase " function is not a very 

Fig. 9. Decomposition of a function into step functions. 

good approximation to e(t), but it gets better as Δ T is made smaller. 
When Δ T is very small, the value of each step in the staircase can be 
approximated by the product of Δ T and the slope of the curve at the jump, 
since each of the little figures between the curve and the staircase function 
approaches a triangle. 
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The response of the network to the excitation e(t) can be approximated 
by the response to the staircase function. However, this is nothing but 
a sum of step-function responses, suitably displaced and multiplied by the 
value of the discontinuity. Let Δ w k be the response at time t to the step 
occurring at kΔτ. It will be given by 

( 5 6 ) 

where the dot indicates differentiation. The factor in brackets is the value 
of the step, whereas wu(t — K Δ τ ) is the response to a displaced step func
tion. 

The total response will be the sum of the contributions for each step. 
Again, if we focus attention on the point τ = KΔτ and take the limit as 
Δ T approaches zero, we shall get 

( 5 7 ) 

In this development we have assumed that the excitation is a contin
uous function and that the initial value is zero. Now suppose it has dis
continuities of value γi occurring at times ti, respectively. We shall consider 
a nonzero initial value to be a discontinuity at t = 0. The total excitation 
will then be e(t) + _ γi u(t— ti), where e(t) is the continuous part of the 
excitation. We have already found the response to this part; to this we 
must now add the response due to the discontinuities. The complete 
response will be 

( 5 8 ) 

In particular, if there are no discontinuities except at t = 0, then the total 
response will be [with e(0) written for y 0 ] 

( 5 9 ) 

This expression is identical with the first one in (44). We have now demon
strated that the response to an excitation e(t) can be regarded as the 
superposition of the responses to a series of step functions that represent 
the excitation. 
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In the case of the multi-input, multi-output network, the corresponding 
result is achieved by simply changing e(t) to e(t), γii to γ i , Δ w k to Δ w k , 
w(t) to w(t), and wu(t) to W u(t) in (56) through (59). Corresponding to 
(58) we get 

(60) 

which may be rewritten as 

(61) 

where ( γ i ) j denotes the jth element of γ i and w u j ( t ) denotes the jth column 
vector of W u ( t ) . Now w u j (t) is the response when the jth input is excited 
by a unit step at time zero and all other inputs have zero excitation. 
Therefore the following interpretation of (61) can be given: The response 
to an excitation is the superposition of a set of responses, each of which 
is the response of the network to an excitation at a single input, the excita
tion consisting of a sequence of step functions. 

5.5 NUMERICAL SOLUTIONS 

These interpretations that we have given for the convolution-integral 
representations have an important application in the numerical computa
tion of network response (e.g., by using a computing machine). It makes 
little difference to the final results whether we take the impulse or the 
step representation. Therefore, for the present discussion, let us take the 
former. 

Suppose we wish to find the response of a single-input, single-output 
network to a time function that is not easily represented as a sum of 
elementary functions; for instance, the time function may be given 
simply as a curve, or its analytical formula may be very complicated. 
In such cases the Laplace transform E(s) may be either difficult to find or 
be so involved as to be useless. If we approximate E(s) by a rational func
tion, we shall not know how good an approximation of the response 
function we shall get in the time domain. In such cases it is more meaning
ful to approximate e(t) in the time domain by an impulse sequence, as 
in Fig. 8, or by a staircase function, as in Fig. 9. 

Let us once again resort to an example. Suppose we have a network 
that has the impulse response shown in Fig. 10a. This impulse response 
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Fig. 10. Numerical computation of network response. 

(a) 

(b) 

may have been found experimentally by using a short pulse as an 
"approximation" to the impulse. Suppose we wish to find the response of 
the network to the excitation in Fig. 10b, which again may be an experi
mental curve or the result of some other numerical computation. 
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We now select a suitable interval T such that the variations of wδ(t) 
and e(t) over an interval T are small enough to be negligible. Then we 
use the approximate representation 

( 6 2 ) 

for the excitation. This expression is usually interpreted as the result 
of multiplying e(t) by the impulse train ∞= i δ(t — k T) T. The set of values 
e(kT) is referred to as a time sequence, and the function e(t) is referred to 
as a time series. It can be shown that the same final results as we shall 
obtain here using these concepts can also be obtained by approximating 

( 6 3 ) 

by a staircase function and using Laplace-Stieltjes transforms, without 
using the impulse function. Thus our final results can be justified in the 
realm of rigorous mathematics. 

Now, by using the convolution theorem, the response of the network to 
the time series (62) can be written as follows: 

( 6 4 ) 

where 

In particular, the value of the response at our chosen points n T will be 
given by* 

( 6 5 ) 

Let us see the implication of this equation. We notice that the sum on the 
right is simply a sum of real numbers, not functions. Thus we can get an 
approximate idea of the response simply by adding these numbers, 
without integrating functions. 

* Since n is the only variable in this equation, we can write this in more conventional 
form as 

and observe that it is the Cauchy product of two time sequences, for e and wδ. 
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To make this point a little clearer, let us find the approximate response 
at t/T= 2, 4, 6, 8, and 10 for the example of Fig. 10, by using the values 
given in Table 1. (The invervals chosen are too large for any accuracy, 
but the example suffices as an illustration.) Lines 1 and 2 of this table are 
found by reading the values of e(kT) and wδ(kT) from the graphs. The 
remaining odd-numbered lines, the lines associated with wδ[(n — k) T], 
n = 2, 4 ,6 , 8, and 10, are obtained by copying line 1 backwards, starting at 
the column corresponding to k = n — 1. The elements in each of these lines, 
when multiplied by their corresponding entries in line 2, give the entries 
in the even-numbered lines, those associated with wδ[(n — k)T]e(kT). 
The sum of the entries from k = 1 to k = n in each of the even-
numbered lines is wê(nT)/T. Thus 

This computation has given a numerical value for the response at a few 
selected points. The final tabulated values are a time sequence. With 
these values, the time series can be written as 

(66) 

This method of representing everything by time series leads to the so-
called z-transform method of analysis used in sampled-data systems. 

The same concept of time series is also used in time-domain synthesis. 
Quite often the synthesis problem is specified by means of a curve for the 
excitation e(t) and a curve for the response w(t) that is desired. Then one 
of the procedures in use is to represent e(t) and w(t) as time series and to 
use simultaneous equations derived from (66) to find the time series for 
wδ(t). The synthesis then proceeds by finding H(s). The mathematical 
problems that arise are too numerous for us to consider this question any 
further, and so we leave this application to advanced courses on synthesis. 

MULTI-INPUT, MULTI-OUTPUT NETWORKS 

Let us now examine the changes needed to handle the multi-input, 
multi-output network. The time series for e(t) will be 

(67) 
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The response to that time series for n T ≤ 1 < (n + 1) T, and specifically 
at the points n T, will be 

(68a) 

(68b) 

and hence the associated time series will be 

( 6 9 ) 

Conceptually, the multi-input, multi-output network time-series res
ponse is quite easily computed. The time required to perform the calcula
tions, however, is considerably greater than that needed to evaluate the 
response of a single-input, single-output network. It is significant, there
fore, that (68) is easily programmed for solution by a digital computer. 
One drawback to such a program and its execution will be the large amount 
of storage space needed to retain W δ (nT) and e(nT), for n = 0, 1, ..., N, 
in memory, or, if not stored, the large amount of time required to re
compute W δ (nT) and e(nT) each time they are needed in a calculation. 
The latter alternative is only possible if W δ (nT) and e(nT) are known 
analytically and not just experimentally. The technique to be developed 
now overcomes some of these problems. 

STATE RESPONSE 

Thus far we have sought to solve for the network response directly 
without consideration of the network state. Since the network response 
could be, without loss of generality, the network state, all that we have 
concluded till now concerning the response vector applies equally well 
to the state vector. Because, in the method about to be developed, no 
significant simplicity is achieved by assuming that the network is initially 
relaxed, we shall no longer make this assumption. 

According to (23) the state vector is the sum of the free-state response 

(70) 

and the controlled-state response 

(71) 
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that is, 

( 7 2 ) 

We shall take to = 0 and suppose that e(t) is approximated by the time 
series (67). Remember that the network response in (68) is the controlled 
response. Then for the controlled state response for nT≤t<(n + l )T 
and at the point t = n T, we can write 

(73a) 

(73b) 

At t = n T, the free-state response is simply 

( 7 4 ) 

Substituting (73) and (74) into (72) we get 

The last rearrangement is obtained by writing the term of the summation 
corresponding to k = n separately, and then factoring e A T from the other 
terms. By comparing the quantity within braces with the previous line, 
the only difference is seen to be a replacement of n by n— 1. Hence 

( 7 5 ) 

This is an extremely valuable recursion formula. Observe that this 
expression could have been deduced directly from (23) by setting 
x(t0) = x é [(n—1)T] and by assuming e A ( n T — τ ) B e(τ) is essentially 
constant on the interval (n—1)T≤τ≤nT and equal to its value at 
τ = nT. The present approach was adopted in order to be consistent with 
the previously formulated results. 

Notice that the recursion relation established by (75) requires that we 
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have knowledge of e A T at only one point in time; namely, t = T. This fact 
largely alleviates the computer storage-space problem referred to earlier. 

The solution for the network response now proceeds as follows: We 
first let xê(0) equal the initial state x(0); then (75) is used to solve for the 
state vector xê(nT) as n successively assumes the values 1, 2, 3 , . . . . 
For each value of n, the network response at t = nT, according to (22b), 
is given by 

(76) 

This gives the time sequence of the network at the sampling points nT. 
The time-series approximation to the network response then follows 
directly. 

Example 

Let us now illustrate these results with a simple example. Suppose 

Using the procedures of Chapter 4, we find simply that 

Suppose the interval is chosen to be T= 0.2; then 

Using this, (75) and (76) become 
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Let the network be initially relaxed and let the excitation be the function 
e(t) given in Fig. 10. The values for e(nT) are given in the top line of 
Table 2. Using the recursion formula and numerical values above, com
putations for n = 1, . . . , 5 yield the results given in Table 2. 

Table 2 

PROPAGATING ERRORS 

A particular type of error is created in evaluating xê(nT) numerically 
according to the recursion relation (75). Any error in the numerical value 
of e(nT) propagates and generates errors in xê(mT) w i t h m ≥ n. Similarly, 
an error in x(0) propagates and generates errors in xg(mT). To get an idea 
of how such errors progagate, suppose e(nT) is correctly known for ail n 
except n = n0. Let e (n 0 T) = e a ( n 0 T ) + ζ, where e a ( n 0 T ) is the actual 
value and ζ is an error vector. Suppose also thatx(O), e A T , B, and Tare 
correctly known. Further, let Xêa(nT) denote the value of xê(nT) for 
n ≥n0 when e a ( n 0 T ) replaces e (n 0 T) . Then, by applying the recursion 
relation successively for n = n0, n0 + 1, . . . , n, we find that 

and, for n ≥ no, 

(77) 

Note that the error BζT in the state response at n0T propagates and 
causes an error in the state response at nT, equal to the error in xê(n0T) 
premultiplied by ( e A T ) ( n — n 0 ) . 

In a similar manner, let x(0) = x a (0) + ξ, where x a (0) is the actual 
value and ξ is an error vector. The recursion relation yields 

(78) 
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where x ê

a ( n T ) denotes the value of x ê (nT) computed when x(0) is 
replaced by x a (0) . Again, the error ξ in x ê(0) propagates and causes an 
error in x ê (nT) equal to the error in x ê(0) premultiplied by ( e A τ ) n . 

Errors in the numerical evaluation of e A T also propagate. However, we 
shall defer consideration of these errors till we examine the problem of 
calculating e A T in the next section. Although we shall not consider them 
here, errors in B and T also propagate. Using the recursion relationship, 
you should work out how these errors propagate. 

It is clear that the value of ( e A T ) ( n - n i ) determines to what extent an 
error in x ê (mT) , due to errors in the excitation and in the initial state, 
affects the accuracy of x ê (nT) at a later time. We shall lump the state-
response errors contributed by errors in excitation and initial state. Let 
x ê (mT) be in error by ε m and let 

(79) 

be the propagated error in x ê (nT) , assuming n > m. A question that is of 
great significance is: How does the " size " of the error behave as n is in
creased? Here we are dealing with an error vector; we specify the " size " 
of a vector in terms of its norm. 

For a refresher about norms of vectors and matrices, see Chapter 1. 
There, the norm of a vector ε was written as | |ε | | and defined as a non-
negative number having the following properties: 

1. | |ε | | = 0 if and only if ε = 0 ; 

2. | |αε | | = | α | | |ε | | , where α is real or complex number; 

3. | |ε 1 + ε 2 | | ≤ | | ε 1 | | + | | ε 2 | | , where ε1 and ε 2 are vectors. (This is the 

triangle inequality.) 

A vector may have a number of different norms satisfying these properties. 
The following three were discussed in Chapter 1: 

the sum-magnitude norm; (80a) 

the Euclidean norm; (80b) 

the max-magnitude norm. (80c) 

Of these, the most common and familiar one is the Euclidean norm, which 
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corresponds to the length of a space vector. However, as a practical 
matter, the numerical evaluation of the other two norms is often signifi
cantly easier. 

As discussed in Chapter 1, the norm of a matrix as a transformation, 
transforming one vector into another, satisfies the three properties of a 
norm listed above. Further, the norm of the vector Kε, that is, the trans
formation of ε by K, satisfies the inequality 

(81) 

In addition and as a direct consequence of (81), the matrix norm has the 
following property: 

(82) 

The matrix norms corresponding to the three vector norms in (80) 
are the following. Let K = [kij]; then 

the value of the norm of the column vector 
with the greatest sum-magnitude norm; (83a) 

where λ m

2 is the eigenvalue of K*K with the 
largest magnitude; (83b) 

the value of the norm of the row vector with 
greatest sum-magnitude norm; (83c) 

Our interest is in determining the norm of the error in the state response. 
In particular, we want to know in (79) if | |ε n | | < | |ε m | | when n > m. In 
this equation the two errors are related through the matrix ( e A T ) ( n — m K 
Taking the norm of both sides of (79), and using (81) and (82) leads to 

(84) 

We conclude that, if the norm of e A T is less than 1, then the norm of the 
error vector will be a decreasing function of n. Any of the matrix norms in 
(83) may be used to evaluate | | e A T | | . 

Thus, for the previous example in which 
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we find 

For this example, any of the norms shows that the norm of the error vector 
decreases as n increases. 

5 . 6 NUMERICAL EVALUATION OF e A T 

In the numerical example of the last section we had an exact analytic 
expression for e A T ; it was 

For T = 0.2, this becomes 

Is is evident, however, that this is only an approximate value of e 0 . 2 A , 
accurate to three digits. The actual e 0 . 2 A has elements with an infinite 
number of digits, because e - 0 . 2 and e - 0 . 9 are irrational numbers. Thus, 
in any finite numerical process, only an approximate value of e 0 . 2 A 

can be obtained. 
What is true for this example is true for the general case; that is, it is 

generally true that for any n × n matrix A and any nonzero real constant 
T, only an approximate value of e A T is known at the end of a finite numer
ical process. This becomes even more evident when it is realized that an 
exact analytic expression for e A T is not usually known and that it might 
be necessary to evaluate e A T by evaluating the terms in its defining power 
series 

(85) 
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It is clear that only a finite number of these terms can possibly be 
evaluated in a finite numerical process. We shall now discuss the error 
resulting from the truncation of the series in (85) and a criterion for 
selecting the number of terms required to achieve a specified accuracy. 

Let us write 

(86) 

where 

(87) 

is the truncated series approximation of e A T and 

(88) 

is the remainder or error matrix. Now if A is a good approximation of 
e A T , then Aε should be a good approximation of e A T ε , where ε is an arbit
rary n-vector. A quantitative measure of the quality of the latter approxi
mation is the norm of the error vector 

relative to the norm of e A T ε ; that is, 

(89) 

is a measure of how well Aε approximates e A T ε . Obviously, the approxi
mation gets better as S gets smaller. Thus a reasonable criterion for select
ing K, the maximum value of the index of summation in the truncated 
power series, is as follows: K should be chosen such that δ is less than some 
prescribed, positive number Δ. The value assigned to Δ, the prescribed 
upper bound on δ, is selected to insure a desired level of accuracy in the 
knowledge of e A T ε through evaluation of Aε. 

It must be kept in mind that the accuracy we are talking about is 
that achieved through calculations with numbers from the set of all real 
numbers. When the set of numbers is finite, as it is in doing calculations 
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on a digital computer, there is a bound on the achievable accuracy. This 
computer-imposed bound on accuracy is related to the number of signifi
cant digits in floating-point numbers used in doing arithmetic on the 
computer. The implication for the problem we are examining is this: The 
accuracy of machine-performed calculations is determined by Δ only for 
Δ greater than some value established by the number of significant digits 
in numbers used by the computer in performing arithmetic operations. 

We shall obtain, first, an upper bound on δ that is independent of ε. 
A simple manipulation gives 

which implies that 

(90) 

Thus | | e A T ε | | is bounded from below by | | e - A T | | - 1 ||ε||. Then, since 
||Rε|| is bounded from above by ||R|| ||ε||, we find in conjunction with (89), 
the defining equation for δ, that 

(91) 

To continue, we would like to evaluate the norm of R and of e — A T ; but 
each of these is defined by an infinite series, and evaluation of the norms 
is not possible. However, we can calculate a bound on ||R|| as follows: 
The several inequality relations applied to the norm of the series (88) for 
R yield 

Upon setting l = k — K—1, we get, after a simple rearrangement of 
factors, 
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The last line follows from the fact that (K + 1)!(K + 2)'/(K + 1 + l)! ≤ 1 
for all I ≥ 0. Now, let K0 be the least non-negative value of K such that 
K + 2 > | | A | | T ; then for all K≥Ko, we have ||A||T/(K + 2) < 1 and 

Substituting this result in the preceding inequality, we find, for K ≥ K0, 
that 

(92) 

The right side is an upper bound on the norm of R. 
Now let us turn to the norm of e ~ A T . If T is replaced by — T in (85), 

we obtain the defining power series for e - A T ; thus 

An upper bound on | | € - A T | | is easily calculated. We find that 

(93) 

When the upper bounds on ||R|| and | | e — A T | | in (92) and (93) are sub
stituted into (91), we get 

(94) 

for K ≥ K0. The right-hand side of (94) is a decreasing function of K, 
which tends to zero as K tends to infinity. Thus, for any given value of Δ, 
there are values of K, in fact a least value, such that 

(95) 
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and hence δ < Δ. Thus the values of K ≥ K0 that satisfy (95) also satisfy 
the previously stated criterion for selecting K. Of all the satisfactory 
values of K, it is suggested that K should be set equal to the least value 
that satisfies (95), since the number of arithmetic operations then needed 
to evaluate the truncated power series (87) will be minimized. 

COMPUTATIONAL ERRORS 

In the previous section we decomposed the state response x(t) into the 
sum of the free response x f(t) and the controlled response x c(t). As shown 
in (74), we found that 

( 9 6 ) 

Furthermore, when e(t) is approximated by the time series 

we found, as shown in (73b), that 

( 9 7 ) 

We are now interested in computing the error resulting from replacing 
e A T by its approximation in these two equations. 

ERRORS IN FREE-STATE RESPONSE 

Let us first consider the free-state response. Let ε f ( n T ) denote the 
difference between the actual free state response ( e A T ) n x ( 0 ) and the 
approximate free-state response A n x(0 ) ; that is, 

After taking the norm of both sides of this equation, we get 

( 9 9 ) 

Thus, in bounding | |ε f (nT)| | , we must establish an upper bound on terms 
of the form | | ( e A T ) z — A z | |. We have used l, rather than n, to denote the 
power to which e A T and A are raised, since the bound we shall establish 
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will be applied to relations other than just (99). In those other cases n will 
not be the exponent. 

By the properties of matrix norms, we show that 

(100) 

The second line follows from the binomial theorem. The next line results 
from the triangle inequality and from (82). Finally, the last line is a result 
of the binomial theorem applied backwards. If we require that K 
satisfy the inequality relation (95), we know from that equation that 
||R|| < Δ | | e - A T | | - 1 . Furthermore, it is easily shown (Problem 15) that 

and, therefore, that ||R|| < Δ \ \e^ τ \ \ . With the added observation that 
| | e A T | | ≤ ||A|| + ||R|| and the reasonable assumption that Δ < 1, we get 

(101) 

Combining (100) and (101) results in 

(102) 

Observe that this bound on | | [ e A T ] l — A z | | is a decreasing function of I if 
and only if ||A||/(1 — Δ) < 1; therefore we shall assume ||A||/(1 — Δ) < 1 
in the rest of this section. 
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Let us return to the task of bounding | | ε f ( n T ) | | . The result of substitut
ing (102) in (99) and of some simple manipulations is 

( 1 0 3 ) 

The second line is just the first line with the terms grouped differently. 
The last line follows from the fact that [1 —(1 — Δ ) n ] is a bounded, increas
ing function of n that never exceeds nΔ. It is an elementary calculus 
problem to find the maximum of the right-hand side of (103) with respect 
to n. In doing so, we obtain 

( 1 0 4 ) 

We see, by (104), that | | ε f ( n T ) | | is bounded and, by (103) that | | ε f ( n T ) | | 
is a decreasing function of n, tending toward zero as n tends to infinity. 
Furthermore, | | ε f ( n T ) | | tends to zero with Δ. It should be kept in mind 
that computers that might be used to compute x f ( n T ) recursively use 
numbers with a limited number of significant digits. Thus, as discussed 
previously, the error in numerical evaluation of x f ( n T ) will be bounded in 
accord with (103) and (104) only if Δ is greater than some value dependent 
upon the computer accuracy. 

ERRORS IN CONTROLLED-STATE RESPONSE 

Next, let us consider the controlled-state response x ê

c ( n T ) given by 
(97). Let ε c ( n T ) denote the difference between the actual controlled-
state response _

k = 1 ( e A T ) n ~ k B e(kT) T and the approximate controlled-
state response — £ = 1 A n - * B e ( k T ) T; that is, 

( 1 0 5 ) 
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After taking the norm of both sides of this equation and applying the 
inequality in (102), we establish that 

(106) 

Suppose, for k = 1, 2, . . . , that ||B e ( k T ) | | ≤ E, where E is a constant; 
that is, suppose ||B e ( k T ) | | is a bounded function of k. Then it is found that 

(107) 

The second line follows from the inequality [1 — (1 — Δ ) n - Λ ; ] ≤ (n — k)Δ 
for all k ≤ n. The third line results from replacing n — k by L Under our 
assumption that ||A||/(1 — Δ) < 1, the right-hand side of (107) is a bounded 
increasing function of n; therefore 

(108) 

The equality at the right follows from the fact that a series of the type 
_m=o m<×m is equal to α/(l — α) 2 for α < 1. We see by this inequality that 
| | ε c ( n T ) | | is bounded and tends to zero with Δ. However, for reasons dis
cussed previously, when computing a numerical value for x f ( n T ) , the 
accuracy limitations of a computer preclude the error in numerical 
evaluation of x ê

c ( n T ) being bounded in accord with (108) if Δ is too small. 

Example 

Let us illustrate the many ideas we have developed in this section with 
an example. Let us use the same A and T as in the last example; thus, 

and T= 0.2. For the norm of A we shall arbitrarily select the least of the 
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two norms (83a) and (83c). We have ||A||1 = 3 and ||A||∞ = 2; therefore 
we shall use the latter norm. To simplify the example, certainly not for 
accuracy, we shall require only Δ ≤ 0.001. 

Recall that K0 is the least non-negative (integer) value of K such that 
K + 2 > | |A| |T . Since ||A||T=0.4, we find that K0 = 0. Thus, by (95), 
we must find a K ≥ 0 such that 

We easily find that K = 4. The approximation A is evaluated as follows: 

and 

Hence, to an accuracy of five digits, 

Observe that | |A||oo = 0.967. Therefore, by (104), | | ε f (nT) | | ∞ is bounded 
as 

and, by (108), | | ε c (nT) | | ∞ is bounded as 
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Let us conclude this section with an observation on one type of error 
not considered in this or the previous section. Let e(t) be the network 
excitation and x(t) the corresponding state response. The values of x(t) at 
t= nTwill be x(nT), and, unless e(t) = ê(t), x(nT) ≠ x ê ( n T ) . The differ
ence between x(nT) and x ê (nT) is an error that stems from representing 
e(t) by ê(t). Even though we have not treated this type of error, we do 
know that, if we can convert a set of nonhomogeneous state equations 
into a set of homogeneous state equations, as shown in Chapter 4, then 
this type of error will not arise, since for the homogeneous equations 
e ( t ) = = 0. 

PROBLEMS 

1. In the text, the concept of the convolution of two matrix functions is 
introduced; extend the concept to more than two matrix functions. 

2. Prove that the convolution of scalar functions shares the following 
algebraic properties with ordinary multiplication: Iffi,f 2, andjà are 
integrable functions (so thatf|*f2 = J0fi(x)f2(t —x) dx is defined, as is 
/ 8 * / 8 and fffi), then 

(a) fi*f2 =f2*fi (commutative law) 

(*>) fi*(f2*f3) = (fi*f2)*f3 (associative law) 

(c) u*f=f*u =f, where u is the unit step function (identity) 

(d) / i * ( / 2 + / 8 ) = / i * / a + / i * / 8 (distributivelaw) 

Which of these properties hold when considering the convolution of 
matrix functions? 

3. In the alternative derivation of the convolution integral from the state 
equations, only one form of the integral is obtained, namely, that given 
in (21). Show that the other form is also valid. 

4. Find the impulse response and the step response of the networks given 
in Fig. P4 assuming initially relaxed conditions. The desired responses 
are indicated in the figures. Demonstrate that (31) is satisfied. 

5. Find the indicated response of the same networks to the excitation 
functions in Fig. P5 by using the impulse response or the step response 
and a superposition integral. (The ordinate shows multiple labels to 
correspond to the several different source designations in Fig. P4.) 
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Fig. P4 

(a) (b) 

(c) (d) 

(e) (f) 

6 . The equivalent circuit of a two-stage RC-coupled amplifier is shown in 
Fig. P6. Find the response of the amplifier to the excitations shown in 
Fig. P5 using a superposition integral with (1) the impulse response and 
(2) the step response. 

7. Solve the following integral equation of the convolution type: 

The unknown matrix function is F(t), and Gi(t) and G2(t) are square 
matrices and are known (integrable) matrix functions. 

8. Obtain a solution of the following scalar integral equations: 

(a) 
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(b) 

(c) 

Fig. P5 

(a) (b) 

(c) (d) 

(e) 

Fig. P6 
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9. Obtain a solution of the following matrix integral equations: 

(σ) 

(b) 

10. Given the differential equation 

get an explicit formula for y(t) (the solution) by finding first 

Use this formula to find the solution whenf(t) is 

11. The triangular voltage pulse shown in Fig. P11a is applied to the network 
of Fig. P11b. Find the output-voltage response for all time by using 
the convolution theorem. 

12. Use the convolution-integral theorem to prove the translation (shifting) 
theorem of Laplace-transform theory. 
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Fig. P11 

(a) (b) 

13. The trapezoidal pulse shown in Fig. P13a is applied to the network of 
Fig. P13b. Find the output-voltage response for all time by using the 
convolution theorem. 

Fig. P13 

(a) (b) 

14. The network of Fig. P14a is excited by two voltage sources. The 
voltages as functions of time are shown in Fig. P14b. Using the convolu
tion theorem, compute the indicated network responses v, ii, and i2 

for all time. 
15. Prove that | | e A T | | > | | e - A T | | - 1 . 
16. The network of Fig. PI lb is excited by the function 
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1 7 . Repeat Problem 16, but use the excitation 

Use the staircase approximation and the step response. Estimate the 
error. 

1 8 . The network of Fig. P18a is excited hy the function of Fig. P18b. Find 
the approximate response v2(t) for 0 < t < 5. 

Fig. P18 

(a) 

(b) 

1 9 . For each of the networks of Fig. P4, compute the impulse-response time 
sequence with T = 0.1 and for n = 0, 1, . . . , 15. Then compute the 
network-response time sequence for n = 0, 1 , . . . , 15, when the network 
excitations depicted in Fig. P5 are approximated by their time sequences. 

20. The measured impulse response Wδ(t) of a single-input, single-output 
network is shown in Fig. P20a. Using the time sequence for the impulse 
response, with T= 0.1, compute the network-response time sequence 
for n = 0, 1, 2, . . . , 10, when the network excitations e(t) depicted in 
Fig. P20b are approximated by their time sequences. 
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Fig. P20 

(a) 

(b) 

21. Consider a network for which 

Evaluate x ê (nT) according to the recursion relation (75) and w ( n T ) by 
(76) for n = 1 , . . . , 15, when e(t) = [u(t) - (t - l)u(t — 1) + (t - 2)u(t - 2)], 
T = 0.2, andx(0) = [ —1 2]'. 

22. Suppose that an arithmetic mistake introduces the error vector 

ε 4 = [0.001 —0.012]' into the computed value of x ê (4T) of Problem 21. 
Will the norm of the propagated error decrease for increasing time? 
What is the value of the bound on the propagated error in the computed 
value of x ê(14T) as evaluated by (84)? Answer the questions for each 
of the norms of (80). 
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2 3 . Repeat Problems 21 and 22 after replacing A by each of the following 
matrices: 

(a) (b) (c) 

2 4 . Repeat Problems 21 and 22 after replacing A, B, C, D, x(0), and ε 4 

by 

x(0) = [l - 1 1]', fi4 = [0.001 0.020 -0 .001] ' . 
2 5 . Repeat Problem 21 with e(t) and x(0) replaced by each of the following: 

(a) 
(b) 
(c) 
(d) 

(e) 
2 6 . Repeat the calculations of the example in Section 5.6 using the other 

matrix norms in (83). 
2 7 . For each of the following A matrices 

( a ) (b) (c) 

Determine K in the truncation (87) and the error bounds for (104) 
and (108) when T= 0.1 and Δ = 0.001. Use the three different matrix 
norms in (83). 

2 8 . Repeat the calculations of Problem 21 after replacing e 0 . 2 A by its 
truncated-power-series approximation A computed such that, in the 
truncation criterion, (a) Δ = 0.01, and (ò) Δ = 0.001. In each case use 
the three different norms in (83). Compare the results of these calculations 
with those obtained in doing Problem 21. 

2 9 . Repeat Problem 28 after replacing A by the matrices in Problem 23. 
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30. If r(t) and e(t) are the response and excitation of a linear time-invariant 
network N, then, as illustrated in Fig. P30, r ( k )(t) is the response to 

Fig. P30 

e ( k )(t). This suggests a method for computing an approximation of r(t): 
(a) Approximate e by straight-line segments, (b) differentiate once to 
get a staircase approximation of è. (or twice to get impulse-train approxi
mation of ë), (c) find the response of N to the approximation of è (or ë), 
and (d) integrate once (or twice) to get the approximate response. Using 
this method, with either the step or impulse response, compute the 
approximate response of the networks in Fig. P4 for the excitations in 
Fig. P5 . 

The next four problems involve the preparation of a computer program to 
help in implementing the solution to some problems. In each case, prepare 
a program flow chart and a set of program instructions, in some user language 
such as FORTRAN IV, for a digital computer program to carry out the job 
specified in the problem. Include a set of user instructions for the program. 

31*. Prepare a program to evaluate Wê(nT) for n = 1, . . . , N according to 
(65). The values of N, e(kT), and wδ(kT) are to be supplied as input 
data. 

32*. Prepare a program to evaluate A, the approximation to e A T , in (87). 
The program should lead to a selection of K for which (95) is valid. The 
matrix A and the scalars T and Δ are to be given as input data. Use 
the matrix norm of (83α) or (83c). 

33*. Prepare a program to evaluate x ê(nT) for n = 1, . . . , N according to 
(75) when e(nT) = 0 for all n. The values of N, x(0), and e A T are to be 

supplied as input data. 

34*. Combine the program of Problems 32 and 33 to create a single program 
that, starting with iV, x(0), A, T, and Δ as input data, evaluates 
x ê(nT) for n = 1, N when e(nT) = 0. 



. 6 

REPRESENTATIONS OF 
NETWORK FUNCTIONS 

It is our purpose in this chapter to discuss ways in which network 
functions are represented and to begin the study of properties of network 
functions as analytic functions of a complex variable. We shall here 
concentrate largely on those properties that apply generally to network 
functions, without regard to their specific nature as driving-point or 
transfer functions. We shall also study the relationships that exist between 
parts of a network function—real and imaginary parts, magnitude and 
angle—and observe how the function is represented by any one of its 
component parts. 

6 . 1 POLES, ZEROS, AND NATURAL FREQUENCIES 

Recall that a network function is defined as the ratio of the Laplace 
transform of a response to that of an excitation when the network is 
initially relaxed. Let us begin by observing a few elementary properties 
of network functions that should have become clear by now, even though 
some of them may not have been stated explicitly. 

We are dealing with lumped, linear, time-invariant networks. Network 
functions of such networks are rational functions, the ratios of two poly-

392 
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nomials. In Chapter 3 we related network functions to the determinants 
and cofactors of the node admittance or loop impedance matrices. Let us 
here relate them to the state equations. Recall that the state equations 
for a network can be written as follows: 

( la) 

(lb) 

where x, e, and w are the state, excitation, and output vectors, respec
tively. The last term in the second equation can appear only when an 
element of the output vector is a capacitor current in a capacitor and 
independent voltage-source loop or an inductor voltage in an inductor 
and independent current-source cut-set. 

Assuming initially relaxed conditions, let us take the Laplace trans
forms of these equations, solve the first one for X(s) and substitute into 
the second. The result will be* 

(2a) 

(2b) 

The quantity in braces is the transfer matrix H(s), each of whose elements 
is a network function. Thus 

(3) 

Examine this expression carefully. The last two terms indicate a direct 
relationship between excitation and response without the mediation of the 
state vector. These terms control the behavior of the response as s 
approaches infinity. In fact, as observed in the last chapter, D is the matrix 
of residues of H(s) at infinity. 

In the first term of (3), C and B are matrices of real numbers. The 

* Note that e(0) does not appear in (26) even though the derivative of e appears 
in (16). This is dictated by the requirement that the network be initially relaxed. The 
initial value of e could appear only if the derivative of the excitation term is present in the 
equation. Since it will be present only when there are all-capacitor loops or all-inductor 
cut-sets, setting initial capacitor voltages and initial inductor currents to zero will require 
initial excitation values also to be zero. 
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complex variable s appears only in (sU — A)-1. Letting d(s) be the charac
teristic polynomial of A, as before, this term can be written 

(4) 

Now the elements of adj (sU — A) are simply cofactors of det (sU — A) 
and hence are polynomials. This fact is not modified when adj (sU — A) 
is premultiplied by C and postmultiplied by B. Hence the whole term is 
a matrix whose elements are polynomials divided by d(s). We have thus 
verified that network functions are rational functions of s. 

Something more can be established from the preceding. In preceding 
chapters reference has been made to the natural frequencies of a network. 
In Chapter 3 we considered these to be the zeros of the determinant of the 
loop impedance matrix or the node admittance matrix. There we showed 
that these two determinants could differ at most by a multiplier KsP, 
and hence their nonzero zeros were the same. However, in Chapter 4 we 
treated the natural frequencies as the eigenvalues of the matrix A; 
namely, the zeros of d(s). We now see that the zeros of d(s) are the same as 
those of the loop impedance determinant and the node admittance 
determinant. This follows from the fact that W(s) refers to any output. 
Thus, if we choose all the node voltages, and only these, as the outputs, 
W(s) is the matrix of node-voltage transforms. Since network solutions 
are unique, (2b) must give the same results as the solution of the node 
equations. In the latter case the denominator of the solution will be Δ w . 
Hence Δ v and d(s) have the same nonzero zeros. A similar conclusion 
follows concerning Δ z . We shall state this result as a theorem for ease of 
reference. 

Theorem 1 . The nonzero zeros of det (sU — A) are the same as the nonzero 
zeros of det (AYA') and det (BZB'). 

LOCATIONS OF POLES 

Let F(s) be the generic symbol for a network function. Since it is a 
rational function, it can be written in the following forms: 

( 5 a ) 

(5b) 
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Since each of the matrices A , B, C, D, and D, on the right of (3) are 
matrices of real numbers and F(s) stands for any element of H, then all 
the coefficients of s in (5a) must be real.* Now if s takes on only real 
values in (5a), then F(s) will be real. A function of a complex variable that 
is real when the variable is real is called a real function. So network func
tions are real functions of s. From this the reflection property immediately 
follows; namely, 

(6) 

that is, network functions take on conjugate values at conjugate points 
in the complex plane. 

Now look at the second form in (5) in which the poles spk and the zeros 
s0k are placed in evidence. Aside from a scale factor K, the network 
function is completely specified in terms of its poles and zeros, which 
determine its analytic properties. In fact, the poles and zeros provide a 
representation of a network function, as illustrated in Fig. 1. The zeros 

Fig. 1. Pole-zero pattern. 

are shown by circles; and the poles, by crosses. We refer to such diagrams 
as pole-zero patterns or configurations. Because of the reflection property 
(6), the poles and zeros of a network function are either real or occur in 
complex-conjugate pairs. 

Another simple property possessed by network functions follows from 
a consideration of stability. We know that the free response is governed 

* This statement should be qualified in a trivial way, since it is possible to multiply 
every coefficient in the numerator and denominator by an arbitrary complex number 
without changing the function. This difficulty is overcome by fixing, say, the coefficient 
of the highest power in the denominator to be 1. 
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by the poles of the network function. Since 

(7) 

we immediately conclude that the network function of a stable network 
cannot have any poles in the right half-plane, and any poles on the jω-
axis must be simple. Otherwise, the free response will be unbounded and 
the network will be unstable. 

This conclusion can be strengthened in the case of a driving-point 
function. Both driving-point impedance and admittance exhibit this 
property, and, since one is the reciprocal of the other, the driving-point 
functions can have neither poles nor zeros in the right half-plane. Further
more, both poles and zeros on the jω-axis must be simple. 

In the case of a transfer function the reciprocal is not a network 
function. Hence we can say nothing about its zeros. They may lie any
where in the complex plane, subject only to the reflection property. 

E V E N A N D ODD PARTS OF A FUNCTION 

Generally speaking, F(s) will have both even and odd powers of s; 
it will be neither an even function nor an odd function of s. Hence we can 
write 

(8) 

where Ev F(s) means "even part of F(s)," and Od F(s) means "odd 
part of F(s)." Now an even function g(s) is characterized by the property 
g(—s) =g(s); and an odd function, by the property g(—s) = —g(s). Using 
these properties together with (8), we can express the even and odd parts 
of a function as follows: 

(9a) 

(9b) 

Alternative forms can be obtained if the even and odd powers of s are 
grouped in both the numerator and denominator of F(s). Thus, write 

( 1 0 ) 
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where m1 and m2 are even polynomials, and n1 and n2 are odd polynomials. 
Then, using this in (9), we get 

(11a) 

(11b) 

Note that the denominator is the same for both the even and the odd 
part of F ( s ) , and it is an even polynomial. The numerator of E v F(s) is 
even, and that of Od F(s) is odd, as they should be. 

It is of interest to observe where the poles of E v F (s ) [and Od F(s) 
also] lie. From (9) it is clear that Ev F(s) has poles where F(s) has poles 
and also where F(—s) has poles. But the poles of F(—s) are the mirror 
images about the imaginary axis of the poles of F(s). This can be illustrated 
by the following F (s ) and F(—s): 

F(s) has a real negative pole and a complex pair in the left half-plane. 
The poles of F(—s) are the mirror images of these, as shown in Fig. 2. 
Now E v F (s) has all the poles in Fig. 2, both left half-plane (lhp) and 
right half-plane (rhp). 

Fig. 2. Poles of Ev F(s). 



398 REPRESENTATIONS OF NETWORK FUNCTIONS [Ch. 6 

The pole pattern in Fig. 2 possesses a certain symmetry. A pole configu
ration that has symmetry with respect to both the real and imaginary 
axes is said to have quadrantal symmetry. So we say that the poles of 
Ev F(s) and Od F(s) have quadrantal symmetry. 

The function F(s) specifies a value of F for all complex values of s. 
Of all the values of s, of particular significance are those on the jω-axis. 
For s =jω, we are often interested in the behavior of one of the following 
quantities: real part, imaginary part, angle, and magnitude (or log 
magnitude). These are the quantities involved in the steady-state response 
to sinusoidal excitation. Any one of these quantities can be referred to as 
a frequency response. These components of a function are interrelated by 

(12) 

where the meanings of the symbols are obvious. 
Look at (9) under the assumption that s= jω; what becomes of the 

even and odd parts of F(jω)? Since F(—jω) = F(jω) = F(jω) from (6), 
we see that 

(13a) 

(13b) 

That is to say, the real part of a function on the jω-axis is its even part; 
the imaginary part on the jω-axis is its odd part divided by j . Another 
way of stating this is to say that the real part of F(jω) is an even function 
of angular frequency ω, and the imaginary part is an odd function of ω. 

MAGNITUDE A N D ANGLE OF A FUNCTION 

Similar statements can be made about the magnitude and angle. 
Thus, using the notation of (12), we can write the square of F(jω) as 
follows: 

Hence 

(14a) 

(14b) 
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Now replacing ω by —ω, it is seen that the magnitude-square function 
is an even rational function of ω. Observe that | F( jω)| 2 is the value of the 
even rational function G(s) — F(s) F(—s) on the jω-axis. It is of further 
interest to note that both the poles and zeros of G(s) occur in quadrantal 
symmetry, a fact that is true of any even rational function. 

For the angle, we get 

(15) 

Hence we are tempted to say that the angle is an odd function of ω. 
However, the angle is a multivalued function. Only by remaining on the 
appropriate Riemann surface can the claim about the angle function be 
made. 

THE DELAY FUNCTION 

A transfer function will be called ideal if it is of the form F(s) = e~ s τ . 
For s=jω, the magnitude identically equals 1, and the angle is propor
tional to ω. If a network having this transfer function is excited by a 
signal e(t), the response of the network, in view of the shifting theorem of 
Laplace transform theory, will be w(t) = e(t — T ) . The response signal is 
the same as the excitation except that it is delayed in time by an amount 
T , called the time delay. Since φ(ω) = —ωτ for the ideal function, the time 
delay is the negative derivative of the angle function. 

On the basis of the preceding, a function called the delay is defined for 
an arbitrary transfer function as the negative derivative of the phase 
function. Thus 

(16) 

is the delay function. In contrast with the angle function, the delay is a 
rational function. 

6.2 MINIMUM-PHASE FUNCTIONS 

As we observed earlier in this chapter, the zeros of transfer functions 
can occur in any part of the complex plane. However, those functions that 
have no zeros in the right half-plane have certain properties that are 



400 REPRESENTATIONS OF NETWORK FUNCTIONS [Ch. 6 

quite important. For this reason we give these functions a distinctive 
name for ease of identification. We define a minimum-phase transfer 
function as one that has no zeros in the right half-plane. Conversely, any 
transfer function that has zeros (even one zero) in the right half-plane is 
labeled nonminimum-phase. The reason for these names will become appar
ent below. 

In order to determine the effect of right half-plane zeros on the magni-

Fig. 3. Complex and real zeros in quadrantal symmetry. 

(a) (b) 

tude and angle of a transfer function, consider Fig. 3a. This shows a pair 
of conjugate zeros in the right half-plane and the left half-plane image of 
this pair. Let Pr{s) and P l(s) be quadratics that have the right half-plane 
pair of factors and the left half-plane pair of factors, respectively; that is, 

(17a) 

(17b) 

It is clear that Pr(s) = P l (—s ) . The geometrical construction in the figure 
indicates that the magnitudes of Pr and P l are the same when s=jω. 
As for the angles, we find 

(18a) 

(18b) 
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Note that in order for the angle of Pr to be zero at ω = 0, as it must be 
if the angle is to be an odd function, we have written the angle of (s — s0) 
as —(π + α 2 ) , rather than π — α 2 . The difference of 2π corresponds to 
specifying the angle of one Riemann surface rather than another. This 
desire to have the angle function an odd function of ω is quite deep-seated 
in network theorists. The main reason for this desire is that it simplifies 
the statement of many theorems that we shall state later in the chapter. 

It is clear from Fig. 3 that α1 + α 2 , the angle contributed by the left-
half-plane zeros, is positive for all positive ω. It runs from 0 at ω = 0 
to π at infinity. This is illustrated in Fig. 4. It follows, then, that the angle 

Fig. 4. Angle of a pair of complex left half-plane zeros. 

of a pair of conjugate right-half-plane zeros is always negative for positive 
values of ω, running from 0 at ω = 0 to —π at infinity. 

Let us now consider the situation in Fig. 3b, which shows a real zero 
on the positive real axis and its left half-plane image. Again, the magni
tudes of the two factors (jω — a) and (jω + a) are equal. The angle of the 
left half-plane factor (jω + a) is α for positive ω. (It will be —α for negative 
ω.) We shall choose the angle of the right half-plane factor (jω — a) to be 
— (π + α) for positive ω and π — α for negative ω in order to make the 
angle an odd function. Sketches of these angles are shown in Fig. 5. 

Fig. 5. Examples of angle functions: (a) arg (jω + a); (b) arg (jω — a). 

(a) (b) 



402 REPRESENTATIONS OF NETWORK FUNCTIONS [Ch. 6 

Note that there is a discontinuity of 2π in the second figure that is intro
duced simply by our desire to make the angle an odd function. This 
discontinuity corresponds to jumping from one Riemann surface to 
another. 

Now, if we consider two real right half-plane zeros, we can define the 
angles in such a way that this discontinuity is eliminated. The situation 
becomes similar to the case of a pair of conjugate right half-plane zeros. 
Thus a jump occurs at the origin only when there is an odd number of 
right-half-plane zeros. 

ALL-PASS A N D MINIMUM-PHASE FUNCTIONS 

With this discussion as background, let us now consider the following 
two transfer functions: 

(19a) 

(19b) 

where s0 and its conjugate lie in the right half-plane. These two functions 
are identical except that Fi(s) has a pair of right half-plane zeros, whereas 
in F2(s) these are replaced by their left half-plane images. The common 
function F(s) may have additional right half-plane factors. Suppose we 
multiply numerator and denominator of F1(s) by the left half-plane 
factors (s + s0)(s + so) = Pi(s). The result will be 

(20) 

where 

(21) 

Let us define an all-pass function as a transfer function all of whose 
zeros are in the right half-plane and whose poles are the left half-plane 
images of its zeros. It is clear, therefore, that an all-pass function has a 
unit magnitude for all values of s =jω. (This is the reason for its name.) 
A consideration of the last equation now shows that F 0(s) is an all-pass 
function. It is a second-order all-pass function, the order referring to the 
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number of poles. From (18), the angle of F 0(jω) is found to be 

(22) 

For positive frequencies this is a negative angle. Thus the angle of an 
all-pass function is negative for all positive frequencies. 

Using this equation and (20), we can now write 

(23) 

This result tells us that, at all positive frequencies the angle of a function 
having right-half-plane zeros is less than that of the function obtained 
when a pair of these zeros is replaced by its left half-plane image. 

This procedure of expressing a transfer function as the product of two 
others may be repeated. At each step a pair of complex zeros or a real 
zero from the right half-plane may be replaced by their left-half-plane 
images. A sequence of functions, of which F1 and F2 are the first two, 
will be obtained. Each member of the sequence will have fewer right 
half-plane zeros than the preceding one. The last member in this sequence 
will have no right half-plane zeros. Let us label it Fm(s). By definition, 
Fm(s) is a minimum-phase function (as the subscript is meant to imply). 
Using (23), and similar results for the other functions, we can write 

(24) 

Each of the functions in this sequence will have the same j-axis magnitude, 
but the angles get progressively larger. Paradoxically, the minimum-
phase function will have the largest angle of all (algebraically, but not 
necessarily in magnitude). The reason for this apparent inconsistency is 
the following. We have defined transfer functions as ratios of output 
transform to i n p u t transform. When the minimum-phase concept was 
first introduced by Bode, he defined transfer functions in the opposite 
way. With such a definition the inequalities in (24) will be reversed, and 
the minimum-phase function will have the smallest angle algebraically. 

At each step in the above procedure a second-order or first-order all-
pass function is obtained. The product of any number of all-pass functions 
is again an all-pass function. It follows that any non-minimum-phase 
transfer function can be written as the product of a minimum-phase 
function and an all-pass function; that is, 

(25) 

where Fm is a minimum phase and Fa is an all-pass function. 
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NET CHANGE IN ANGLE 

We can establish one other result from a consideration of the variation 
of the angle of an all-pass function as ω increases from zero to infinity. 
Equation 22, together with Fig. 3a, shows that the change in angle Aφ, 
defined as the angle at plus infinity minus the angle at ω = 0, for a 
second-order all-pass function is —2π. Similarly, for a first-order all-pass 
function, we can find from Fig. 5 that this change is Aφ = —π, not count
ing the discontinuity at ω = 0. It is easy to appreciate that for an nth-
order all-pass function the change in angle is —nπ, not counting any 
discontinuity at ω = 0. If n is even, there will be no discontinuity; 
however, if n is odd, there will be a discontinuity of —π, and the total 
change in angle will become —nπ — π. 

Consider now a non-minimum-phase function that has n zeros in the 
right half-plane. This can be expressed as the product of a minimum-
phase function and an nth-order all-pass function. The net change in 
angle of the non-minimum-phase function as ω varies from zero to plus 
infinity will be the net change in angle of the corresponding minimum-
phase function, plus the net change in angle of the ail-pass function. Since 
this latter is a negative quantity, it follows that a non-minimum-phase 
function has a smaller net change in angle (again, only algebraicaily), 
as ω varies from zero to infinity, than the corresponding minimum-phase 
function, the difference being nπ or nπ + π, where n is the number of 
right-half-plane zeros. 

It is also of interest to determine what the net change in the angle of a 
minimum-phase function will be as ω varies from zero to plus infinity. 
The angle contributed by each zero to this net change is π/2, whereas that 
contributed by each pole is —π/2. Hence the net change in angle will be 
π/2 times the number of finite zeros, minus the number of finite poles. 
Thus, if the transfer function is regular at s = ∞, the minimum-phase 
function will have a smaller \Aφ\ than the corresponding non-minimum-
phase function, since both angles are nonpositive. 

HURWITZ POLYNOMIALS 

Let us now consider another aspect of minimum-phase and non-
minimum-phase functions; namely, some relationships between the coef
ficients of a polynomial and the locations of its zeros. Polynomials with 
no zeros in the open right half-plane are called Hurwitz polynomials. 
If, in addition, there are no zeros on the jω-axis, the polynomial is called 
strictly Hurwitz, for emphasis. Thus the numerator polynomial of a mini
mum-phase function is Hurwitz. 
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Now a necessary condition for a polynomial to be Hurwitz is that all 
its coefficients have the same sign; however, this is not a sufficient 
condition. (You can easily make up a counterexample to demonstrate 
this.) That is to say, some polynomials with zeros in the right half-plane 
can have all positive or all negative coefficients. However, if a poly
nomial has coefficients of only one sign, there will be a limitation on the 
permissible locations of its zeros. The limitation is given by the following 
theorem: 

Theorem 2. If a real polynomial P(s) of degree n has coefficients of only 
one sign, it will have no zeros in the open s-plane sector given by |arg s\ < π/n. 

The excluded region is shown in Fig. 6.* In the limiting case, if the only 

Fig. 6. Forbidden region for zeros of a polynomial with no negative coefficients. 

nonzero coefficients of a polynomial are the first and last (i.e., if P(s) = 
sn + a0), then there will be a zero on the boundary |arg s| = π/n. Note 
that the converse of the theorem is not generally true; that is, if the 
zeros of a polynomial are excluded from the sector |arg s| < π / n , the 
coefficients need not all have the same sign. Thus the polynomials 

all have a real negative zero and the same right-half-plane factor 
s2 — 0.8s + 1 whose zeros do not lie in the sector |arg s\ < π /3; yet two 
of the polynomials have coefficients with different signs. 

* For a proof using the principle of the argument see Norman Balabanian, Network 
Synthesis, Prentice-Hall, Englewood Cliffs, N.J., 1958. 
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6 . 3 MINIMUM-PHASE AND NON-MINIMUM-PHASE NETWORKS 

Up to this point the discussion has been carried out in terms of functions. 
We shall now switch to a consideration of the networks of which these 
functions are transfer functions. The locations of transmission zeros of a 
network depend both on the types of elements contained in the network 
and on the structure of the network. Nothing definitive can be stated as to 
restrictions on the locations of transmission zeros due to element types. 
Thus RC networks, which have only one type of reactive component, 
can have complex transmission zeros, as well as real ones, and can even 
have zeros in the right half-plane. But structure alone does place restric
tions. 

LADDER NETWORKS 

The most notable restriction is given by the following theorem: 

Theorem 3. The transfer function of a passive, reciprocal ladder network 
without mutual coupling between branches is minimum-phase. 

The graph of a general ladder network is shown in Fig. 7. The series 

Fig. 7. General ladder network. 

and shunt branches need not be single elements but can be arbitrary 
two-terminal networks with no coupling between branches. The first 
and last shunt branches may or may not be present. Using topological 
formulas for network functions from Chapter 3, the open-circuit transfer 
impedance can be written as 

(26) 

The right-hand side follows because no shunt branch can appear in a 
two-tree that includes both nodes 1 and 2 but excludes node 0. The zeros 
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of z21(s) will occur where the numerator has zeros and where the denom
inator has poles that do not cancel with poles of the numerator. Every 
tree must contain node 0 and, hence, every tree product must contain at 
least one of the shunt-branch admittances, Y1, Y3 ... Y2m+1. Hence the 
poles of these admittances must be the poles of the denominator of z21(s). 
Some of the series branches may also be in a tree, but the poles of the ad
mittances Y2, Y4, etc., in these tree products cancel with the poles of the 
numerator of z21. The conclusion is that the zeros z21(s) occur at the 
zeros of series-branch admittances Y2, Y4, etc., and at the poles of shunt-
branch admittances Yi, Y3, etc. But the poles and the zeros of the 
admittance of a passive, reciprocal network cannot lie in the right 
half-plane. Hence, the result follows. 

Although the development was carried out for the z21 function, the 
result is true for other transfer functions also, as discussed in Problem 
48 of Chapter 3. 

It was shown above that the transmission zeros of a ladder network 
occur when a shunt-branch admittance has a pole (the branch is a short 
circuit) or a series-branch admittance has a zero (the branch is an open 
circuit). It is not true, however, that a transmission zero must occur at 
such points—only that these are the only points at which it can occur. 
Examples where a series-branch admittance zero and a shunt-branch 
admittance pole are not zeros of transmission are given in Problem 6. 

The foregoing becomes very useful in the synthesis of ladder networks. 
We shall not pursue it here, but the realization of a driving-point function 
as the open-circuit impedance or short-circuit admittance of a ladder 
network with certain prescribed transmission zeros utilizes this knowledge. 
However, if the job is to design a filter, say, with transmission zeros in the 
right half-plane, we at least know that a ladder network cannot realize 
such zeros; thus other structures must be sought. 

The simplest structures whose transfer functions can be non-minimum-
phase are the bridged tee, the twin tee, and the lattice, shown in Fig. 8. 
Whether they are actually non-minimum-phase will depend on the types 
of elements present and on their numerical values; for example, the twin-
tee network in Fig. 9 will be minimum phase for some values of the resistors 
and non-minimum-phase for other values, as shown by two particular 
cases in the figure. 

CONSTANT-RESISTANCE NETWORKS 

We saw in (25) that a non-minimum-phase transfer function can be 
written as the product of a minimum-phase function and an all-pass 
function. This has significance in synthesis; if Fm(s) and Fa(s) can be 
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Fig. 8. Potential ly non-minimum-phase networks: (a) bridged-tee; (6) twin-tee; (c) 
lattice. 

(a) (b) (c) 

Non-minimum-phase network 
Transmission zeros at 

Minimum-phase network 
Transmission zeros at 

Fig. 9. Twin-tee that can be either minimum- or non-minimum-phase. 

realized separately, an interconnection of the two realizations will give 
the desired network. Consider, for example, the cascade of 2 two-ports 
shown in Fig. 10, each one realizing one of the two types of functions. 

Fig. 10. Cascaded two-ports. 

M i n i m u m -
phase 

A l l -pass 



Sec. 6.3] MINIMUM-PHASE AND NON-MINIMUM-PHASE NETWORKS 409 

Unfortunately, this interconnection is not necessarily an appropriate 
realization, because the loading of the second one on the first one causes 
its transfer function to be changed. If it could be arranged that the two-
ports do not load each other in ways that are as yet unaccounted for, 
then the cascade realization can be used. 

One way of eliminating the loading is to make the two-ports constant-
resistance networks, as shown in Fig. 11. A constant-resistance network 

Fig. 11. Cascade of constant-resistance networks. 

Constant 
resistance 

Constant 
resistance 

is defined as a two-port whose input impedance at one port is R when the 
other port is terminated in a resistor R. Thus whatever the transfer function 
of the second two-port in Fig. 11 may be, the load it presents at the output 
port of the first two-port is a resistance R. If the transfer function of each 
two-port is realized with a termination R, they can then be cascaded 
without introducing any loading. What has just been described applies 
to any number of cascaded constant-resistance networks, and it applies 
whether or not the two-ports are minimum phase. 

By direct evaluation of the input impedance of various simple networks 
when terminated in R, it is found that the two-ports shown in Fig. 12 are 
constant resistance under the conditions Za Zb = R2; that is, when the 
impedances Za and Z b are inverses of each other with respect to R2. 
When each of these two-ports is terminated in R, the transfer function 
can be calculated. For concreteness we shall deal with the voltage gain 
G21(s) = V2/V1. It is found to be 

(for the lattice), (27a) 

(for the bridged-tee and ells). (27b) 

You should verify these. 
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Fig. 12. Some constant-resistance two-ports for Za Z b = B2: (a) lattice; (ò) bridged-tee; 
(c) right-ell; (6) left-ell. 

(a) (b) (c) (d) 

Constant-resistance networks provide a means of realizing a given 
transfer function of any order. The function can be decomposed into a 
product of any number of simple transfer functions, each one can be real
ized separately as a constant-resistance network, and the results can be 
connected in cascade. We shall now discuss this problem in some detail. 

Let us start with an all-pass function. Any all-pass function can be 
written as the product of the following first-order and second-order 
all-pass functions.* 

(28a) 

(28b) 

When these expressions are compared with (27a), we see that the forms 
are the same. Hence we can identify Za directly and then find Z b from 
the relation Za Z b = R2. Thus for the first-order lattice we get 

* Notice that the numerator factor in the first-order case is written as a — s rather than 
s — a. This amounts to changing the sign of the transfer function or inverting the polarity 
of the output voltage. Doing this will avoid the discontinuity of π radians in the angle. 
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(29) 

and for the second-order lattice, 

( 3 0 ) 

Thus the two-ports that realize first- and second-order all-pass functions 
take the form shown in Fig. 13. 

Fig. 13. Constant-resistance lattices: (a) first order; (6) second order. 

(a) (b; 
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The lattice network has the disadvantage of not having a common 
ground for its two-ports. This cannot be avoided in the first-order case 
because no common-terminal two-port can realize a zero on the positive 
real axis, as this lattice does. However, for the second-order all-pass 
lattice a common-terminal equivalent may exist. This will depend on the 
locations of the zeros. Bridged-tee and twin-tee equivalents of this lattice 
are discussed in Problem 10. 

With the all-pass functions accounted for, there remains the realization 
of minimum-phase functions. We shall illustrate the realization of a 
transfer-voltage-ratio function by means of constant-resistance networks 
in terms of an example. The realization of a minimum-phase function in 
the general case will become evident from this example. Let the load 
resistance R be 1 and let 

where K is a gain constant that we shall take to be 1 in this example. The 
given function has been multiplied and divided by the quadratic surplus 
factor s2 + s/2 + 1 in order to put the result in the form of an all-pass 
function times a minimum-phase function; G 2 1 = Fa Fm. The all-pass 
function is immediately realized by the second-order lattice in Fig. 13b. 
The angle of the transmission zero is 69°. Hence conditions for both the 
bridged-tee and twin-tee equivalents of the lattice discussed in Problem 
10 are satisfied. 

To realize Fm by means of one of the other networks in Fig. 12, we 
must write this function in the form of (27b). Thus 

From this we get 

With Za Zb = R 2 and R = 1, we get Z b = Ya. We see that the Za = 1 / Y a 
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branch is the parallel connection of a capacitor, an inductor, and a resistor. 
If we use Fig. 12d for the realization, the resistor R can be combined with 
the parallel resistor in the Za branch. The final realization is shown in 
Fig. 14, where one of the bridged-tee equivalents of the lattice has been 
used. 

Fig. 14. Realization of G21 

The minimum-phase part of the transfer function in the preceding 
example was realized by a left-ell network, which is a simple ladder. 
Although we shall not do so here, it can be proved that any minimum-
phase transfer function can be realized by a constant-resistance ladder 
(a cascade of ell networks) by choosing a sufficiently small value of the 
constant K.* In some cases this may require the introduction of surplus 
factors by which both numerator and denominator are multiplied, leaving 
the function unchanged but permitting the identification in the form of 
(27b). Thus a transfer function C21 = l/(s 2 + 2s + 2) can be written as 

(31) 

* For a proof, see Norman Balabanian, Network Synthesis, Prentice-Hall, Englewood 
Cliffs, N.J., 1958. 
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The surplus factor (s + 1) converts the transfer function into a product of 
two functions, each of which can be put in the form of (27b). 

The fact that all-pass functions have unit magnitude for all values of 
s = jω is utilized in the design of transmission systems by permitting an 
independent design for the magnitude and for the angle of the transfer 
function. Thus a network is designed to realize a desired magnitude 
function without concern for the angle. From the designed network, an 
phase function is then determined. Finally, a number of constant-
resistance all-pass lattices are cascaded with this network to correct for 
the angle. Further development of this idea will be left to books on syn
thesis. 

6 .4 DETERMINING A NETWORK FUNCTION FROM ITS 
MAGNITUDE 

The preceding sections have been largely concerned with the determin
ation of the properties of a network function. Given a rational function, it 
is possible to determine, among other things, its real and imaginary 
parts, and its magnitude and angle. We shall now consider the inverse 
operation: that of reconstructing a network function when only its real 
or imaginary part—or its magnitude or angle—is known. 

We start first with a consideration of the magnitude-square function. 
(This is simpler to talk about than the magnitude function.) The necessary 
conditions for a rational function G(jω) to be the magnitude square of a 
network function on the jω-axis are quite simple: G(jω) must be an even 
function of ω, and the degree of the numerator should not exceed that of 
the denominator by more than 2. This is because the network function 
cannot have more than a simple pole at infinity. In addition, any finite 
poles of G(s) on the jω-axis must be double, since the poles of a network 
function itself on the jω-axis must be simple. 

Given such a C(jω), we replace jω by s; then all that is left is to identify 
the poles and zeros of the network function F(s) from those of C(s). 
The poles and zeros of G(s) occur in quadrantal symmetry. Since F(s) 
must be regular in the right half-plane, we see, by looking at (15), that all 
the left-half-plane poles of G(s) must be assigned to the network function 
F(s). [The right-half-plane poles of G(s) will be mirror images of these and 
will automatically become poles of F(—s).] Any poles of G(s) on the jω-
axis will be double and will be assigned as simple poles of F(s). As for the 
zeros, the answer is not as clear-cut. There is generally no limitation on 
the locations of zeros of a network function, unless it is a driving-point 
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function, in which case the zeros must lie in the left half-plane. For trans
fer functions, we need not assign to F(s) all the left-half-plane zeros of 
G(s). Thus the zeros of F(s) are not uniquely determined from a given 
G(s), unless the transfer function is specified to be minimum-phase. In 
this case the zeros of F(s), as well as the poles, must lie in the left half-
plane. 

Let us now consider some examples that illustrate this procedure and 
are of practical interest. The requirements on most common electrical 
filters involve transfer functions whose j-axis magnitudes are ideally 
constant over a given frequency interval, which is referred to as the pass 
band, and are ideally zero over the rest of the jω-axis, which is referred to 
as the stop band. It is not possible for the j-axis magnitude of a rational 
function to behave in this ideal manner. (Why?) However, it is possible 
to find transfer functions whose j-axis magnitudes approximate the desired 
magnitude in some fashion or other. 

Consider the ideal low-pass filter function shown in Fig. 15a. Two 

Fig. 15. Approximations of low-pass filter: (a) ideal; (6) Butterworth; (c) Chebyshev. 

(a) (b) (c) 

possible ways of approximating this ideal function are shown in parts 
(b) and (c) of the figure. The first of these is called a maximally flat, or 
Butterworth, approximation, whereas the second one is called an equal-
ripple, or Chebyshev, approximation. The maximally flat approximation is 
monotonic in both the pass band and the stop band, the maximum error 
occurring near the edge of the band. On the other hand, the Chebyshev 
approximation is oscillatory in the pass band, the peaks of the ripples 
being equal. In this way the error is distributed more uniformly over the 
pass band. 

The analytical forms of these functions, aside from a scale factor, are 
given by 

(maximally flat) (32) 
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and 

(equal ripple), (33) 

where δ is a small number that controls the ripple amplitude, ω = 1 
corresponds to the edge of the passband, and Tn(ω) is a Chebyshev 
polynomial* defined by 

(34) 

which reduces on substituting s = jω to 

(35) 

Our problem now is to find the transfer function F(s) when its j-axis 
squared magnitude is known 

MAXIMALLY FLAT RESPONSE 

Let us first consider the Butterworth response. According to the pre
ceding discussion, we first replace ω 2 by — s 2 in (32). The result is 

(36) 

This function has no finite zeros, so we need only factor the denominator. 
In the present case this is a relatively simple task. The zeros of the de
nominator are found by writing 

(37a) 

which is simply 

(37b) 

where the minus sign applies for n even. Taking the 2nth root in (37a), 
we find the poles of G(s) to be 

(38) 

* The use of the letter T for the Chebyshev polynomial is a legacy of the past. Some 
of Chebyshev's work was first published in French, leading to the use of the French 
spelling "Tschebyscheff," or its variation "Tchebycheff." This spelling of the name has 
now been discarded in the American literature. 
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Thus, there are 2n poles, each of which has unit magnitude. The poles are 
uniformly distributed on the unit circle, as shown in Fig. 16 for the case 

Fig. 16. Butterworth pole distribution for n = 4. 

n = 4. Notice that the imaginary parts of the poles lie in the pass band— 
in the range ω 2 < 1. 

To form F(s) we simply take the n left half-plane poles of C(s). These 
are the ones given by values of k from 1 to n. For n = 4 these will be 

Finally, for the case n = 4, 

(39) 

The coefficients of the Butterworth polynomials up to order 10 and the 
factors of these polynomials are given in Tables 1 and 2, respectively, 
for reference purposes. 

The designation "maximally flat" is a result of the following considera
tion. Suppose a Taylor series of the function in (32) is written (by long 
division, say) for the region ω 2 < 1. The error between the desired magni
tude function in this range, namely 1, and the series will be 

(40) 
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Since the Taylor series for the error starts with the ω 2 n power, this means 
the first n — 1 derivatives with respect to ω 2 are 0 at ω = 0. Hence the 
name maximally flat. 

The Butterworth function just illustrated is particularly simple, since 
all of its zeros are at infinity. It is possible to introduce a modified maxi
mally flat function that will have some finite zeros. A glance back at the 
magnitude-squared functions in (32) and (33) shows that they are both of 
the form 

(41) 

where f(ω2) is an even function of ω; the argument is expressed as ω 2 

to accent this fact. In the case of the Butterworth function, f(ω2) is a 
power of ω 2 ; in the equal-ripple case, it is a polynomial. 

Now suppose that f (ω 2 ) is a rational function, 

(42) 

where 

is a polynomial whose order, 2k in ω, is less than 2n. Then |F( jω)| 2 and 
the difference between the desired function in the pass band, namely 1, 
and this function will become 

(43) 

and 

(44) 

In the last step a power series is obtained by long division. Again the 
series starts with the ω 2 n power, and so the first n — 1 derivatives of the 
error with respect to ω 2 are 0 at ω = 0. The magnitude-square function in 
(43) is therefore also maximally flat. In contrast with the Butterworth 
function, it has some finite zeros. 

As an illustration consider the following magnitude-square function: 
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Note that corresponding coefficients of numerator and denominator are 
equal up to the highest power of the numerator, as required by (43). 
Setting ω 2 = — s 2 leads to 

or 

Note that the double zeros of F(s) F(—s) are assigned equally to F(s) 
and to F(—s). The locations of the poles and zeros of F(s) are shown in 
Fig. 17 and are compared with the poles of the fourth-order Butterworth 
function. 

Fig. 17. Pole locations for example. Dots correspond to poles of Butterworth response. 
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CHEBYSHEV RESPONSE 

Next let us consider the Chebyshev response in (33). The first step is to 
replace jω by s. We then set the denominator equal to zero in order to 
locate the poles. The result using (34) will be 

(45) 

In order to solve this equation let us define a new variable w = x + jy 
and write 

(46a) 

and, consequently, 

(46b) 

If we now expand cosh nw in the last equation and set reals and imagin
aries equal on both sides of the equation, we will find the values of x and 
y that satisfy the equation. When these values are substituted in (46a) 
we find the corresponding values of s. These are the pole locations. If 
we designate them by sk = σ k +jωk, the result of the indicated operations 
will be 

(47a) 

(47b) 

You should verify these equations. 
In order to get some interpretation for these seemingly monstrous 

expressions, divide each of them by the hyperbolic function, square both 
sides, and add; the result will be 

(48) 
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This is the equation of an ellipse in the s-plane. The major axis of the ellipse 
will lie along the jω-axis, since the hyperbolic cosine of a real variable is 
always greater than the hyperbolic sine. The pole locations for n = 4 are 
shown in Fig. 18. 

Fig. 18. Chebyshev pole distribution for n = 4. 

Finally, the left half-plane poles of G(s) are alloted to -F(s), and the task 
is again complete. 

For a typical case, if the permissible ripple is given to be δ = 0.1 and 
the order n = 4, the pole locations are found from (47), and we get the 
transfer function 

6 .5 CALCULATION OF A NETWORK FUNCTION FROM 
A GIVEN ANGLE 

In the last section we found that—starting with an even rational 
function that satisfies necessary conditions for realizability as the square 
of the magnitude of a network function—we can determine a rational 
function F(s) (often more than one) such that the square of the j-axis 
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magnitude of F(s) is equal to the given function; the function becomes 
unique when it is required to be minimum-phase. 

In the present section we shall discuss the possibility of a similar 
procedure for determining a rational function from a given function of 
frequency that is claimed to be an angle function. An expression for the 
angle of a transfer function was given in (14b) and is repeated here: 

(49a) 

(49b) 

In the following discussion we shall assume that the function which is 
given is the tangent of φ(ω), to which we shall refer as the tangent function. 
In addition, since we shall be using the ratio on the left side of (49b) 
quite often, let us denote it with a single symbol. Let 

(50) 

We shall refer to this function simply as the A-function. 
With these preliminaries disposed of, note that for tan φ(ω) we can 

write 

(51) 

The last step follows from (49b) and (50). If we now invert this last 
equation and solve for A(jω), we get 

(52) 

Let us now inquire into the conditions that the tangent function must 
satisfy if it is to be a realizable function. Note that 

(53) 

where R and X are the real and imaginary parts of the network function. 
We know that these are, respectively, even and odd functions of ω. 
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Hence tan φ(ω) must necessarily be an odd rational function. There are no 
other requirements that we can place on this function unless we specify 
whether the desired F(s) is to be a driving-point or a transfer function. 

If an odd rational function is prescribed as the tangent function, the 
first step will be to form A(jω) according to (52). If we now replace jω by 
s, we get the ratio of F(s) to F(—s), according to (50), The question now is: 
How do we extract F(s) from this ratio? The situation here is not as 
simple as it was in the case of the magnitude function. 

In order to carry on, let us write F(s) as the ratio of two polynomials: 

( 5 4 ) 

Then A(s) can be written 

( 5 5 ) 

Our problem can now be restated as the problem of finding P±(s) and 
P 2(s) when the function on the right side of the last equation is known. 
Note that A(s) will always have zeros in the right half-plane, and it will 
usually have poles in the right half-plane also. It differs from an all-pass 
function in that it may have poles in the right half-plane as well as zeros. 
On the other hand, it is similar to an all-pass function in that each zero 
is the negative of a pole. As a matter of fact, it can be expressed as the 
ratio of two all-pass functions, but this has no utility for our present 
purpose. It can have neither zeros nor poles on the jω-axis, since, if P1(s) 
has a pair of such zeros, so also will P1(—s), so that they will cancel in the 
ratio; similarly if P 2(s) has j-axis zeros. 

Let us now consider assigning the poles of A(s) to P1(—s) or P 2 (s). 
If A(s) has any right half-plane poles these must belong to P1(—s), 
since P 2(s) cannot have right half-plane zeros. On the other hand, the 
left half-plane poles cannot uniquely be assigned to either P 2(s) or P\(— s). 
If we assign one of the left half-plane poles of A(s) to P1(—s), then P1(s) 
will have the corresponding right half-plane factor, indicating that the 
transfer function is a non-minimum-phase one. Of course, the distribution 
of poles and zeros will be dictated by the permissible degrees of numerator 
and denominator of F(s). 

Once P 2(s) and P1(—s) have been established from the denominator of 
A(s), it is not necessary to examine the numerator, since the transfer 
function will now be known; it is only necessary to replace —s by s in 
P1(—s) to get P1(s). 
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Let us now illustrate this procedure with an example. Suppose we are 
given 

(56) 

The first step is to substitute this into (52) to obtain A(jω). The result is 

If we now replace jω by s, we get 

We find that all the poles of A(s) are in the left half-plane, whereas all the 
zeros are in the right. Hence there is no unique way to assign the zeros and 
poles of F(s). Any one of the following functions will be suitable: 

(57a) 

(57b) 

(57c) 

Notice that the last two have right half-plane zeros. Each of these 
functions will have the same angle for all values of ω, but their magnitudes 
will be quite different. If F(s) is required to be minimum-phase, the answer 
is once again unique—in this case the first function of (57).* 

In our computations so far we have assumed that φ(ω) is specified to be 
a continuous function of ω. If, however, a function F(s) has either poles or 
zeros on the jω-axis, the corresponding phase function φ(ω) will have 
discontinuities of + π at each pole and zero. In such cases we consider the 

* Even this uniqueness is only to within a constant multiplier. The angle is obviously 
independent of a real positive gain constant. 
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discontinuities separately, applying the procedure above to the "con
tinuous part" of the function; that is, we write 

( 5 8 ) 

where φc(ω) is a continuous function. The index j runs over all the zeros 
and poles on the jω-axis, and the minus sign applies to the poles. 

We now have to identify the step discontinuities. For this we examine 
a typical factor in F(s) (pole or zero factor): 

Obviously this factor changes from —j to +j as ω increases through ω 0 . 
Therefore, as we go through a zero on the jω-axis, in the direction of 
increasing ω, the angle of F(s) increases abruptly by π; and as we go 
through a pole, φ(ω) decreases by π. Thus we can restore all the poles 
and zeros of F(s) on the jω-axis by observing the discontinuities in the 
given function. 

6.6 CALCULATION OF NETWORK FUNCTION FROM A 
GIVEN REAL PART 

In the last two sections we discussed the possibility of determining a 
network function from a specified rational function of ω which is to be the 
j-axis magnitude of the function or the tangent of its angle on the jω-axis. 
We found that in most cases it is not possible to obtain a unique answer 
unless the function is a minimum-phase one. Nevertheless, it is possible 
to calculate a number of functions that will satisfy the requirements. 
In the case of a specified magnitude we are able to find a number of trans
fer functions that have the given j-axis magnitude but differ from each 
other in their angles. Similarly, from a given tangent function, we are able 
to find a number of transfer functions that have the same angle on the 
jω-axis but differ in magnitude. In the present section we shall discuss 
some computational procedures that will permit us to calculate a network 
function from its j-axis real part. 

Again the question of uniqueness must be answered. Is a network 
function uniquely determined if its j-axis real part is known? We can 
very quickly think of several different networks whose network functions 
have the same real part, so that the question must be answered in the 
negative. As an example, suppose the desired function is a driving-point 
admittance function. Consider the network shown in Fig. 19a. In part (b) 
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Fig. 19. Two networks whose admittances have the same real part. 

(a) (b) 

of the figure an additional branch is connected at the input terminals. 
The admittance of the second network is 

Its j-axis real part is 

that is, the real parts of both admittances are the same, yet the admit
tances themselves are different. The function Y1(s) differs from Y(s) by 
having a pair of poles on the jω-axis. If the real part is given, we cannot 
tell whether to choose Y(s) or Y1(s) corresponding to this real part. As a 
matter of fact, an infinite number of functions that differ from Y(s) by 
having additional poles on the jω-axis will have the same real part on the 
jω-axis. What we can hope to do from a given real part, then, is to find 
the particular function that has no poles on the jω-axis.* 

THE BODE METHOD 

Let us turn back to Section 1 and look at the discussion of the real 
part of a function starting at (8) and ending at (13). If an even rational 
function of ω with no finite or infinite poles for real ω is specified to be the 
real part of a network function, we replace jω by s, and the result will be 
the even part of F(s). Thus 

(59) 

* Such a function is a minimum-susceptance function if it is an admittance, and a 
minimum-reactance function if it is an impedance. This condition on driving-point 
functions is the analogue of the minimum-phase condition on the transfer function. 
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The question is: How can we find F(s) from its even part? As discussed 
in Section 6.1, the poles of Ev F(s) have quadrantal symmetry. Its left 
half-plane poles belong to F(s); and its right half-plane poles, to F(—s). 
If F(s) has a nonzero value at infinity, then F(—s) will have this same 
value. It is, therefore, clear how to find F(s) from E v F(s): Expand 
Ev F(s) in partial fractions and group ail the terms contributed by poles 
in the left half-plane; if there is a constant term in the expansion, we add 
half of this to the group; finally, we multiply by 2; the result is F(s). 

To illustrate, let 

be a specified real part. The first step is to replace ω 2 by — s2, which leads 
to 

(60) 

We have already discussed the pole locations of this particular function 
in connection with the Butterworth response. The denominator can be 
easily factored, as shown, and the partial-fraction expansion obtained: 
F(s) is easily identified from the left half-plane poles. It is 

(61) 

The procedure described here was first proposed by Bode, so we shall 
refer to it as the Rode method. 

THE GEWERTZ METHOD 

An alternative approach was first described by Gewertz. To outline this 
procedure, let us write F(s) as the ratio of two polynomials. Thus 

(62) 
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where the m's refer to the even parts of the numerator and denominator 
and the n's refer to the odd parts. The even part of F(s) can now be 
written as in (11a). Thus 

(63) 

where the right side has been written in expanded form. When a real-part 
function is specified as an even rational function in ω, the right side of 
(63) is obtained when ω 2 is replaced by — s 2 . We first go to work on the 
denominator. Since the poles of Ev F(s) are those of both F(s) and F(—s), 
the ones belonging to F(s) are those that lie in the left half-plane. Hence, 
when we factor the denominator of (63), we assign all the left half-plane 
factors to F(s). In this manner the denominator of F(s) in (62) becomes 
known. 

Turn now to the numerator. Suppose we write F(s) as a rational function 
as in (62) with unknown literal coefficients in the numerator but with 
known denominator coefficients. We then form the expression m1m2 

— n1n2 and set it equal to the numerator of the given function in (63). 
Equating coefficients of like powers of s on the two sides of this equation 
will permit us to solve for the unknowns. Note that three sets of coeffi
cients are involved: the small a's the capital A's, and the small b's. Of 
these, the last two sets are known at this point; only the small a's are 
unknown. 

Let us carry out the process just indicated. Identifying m1, m2, n 1 , 
and n2 from (62), we can write 

(64) 

Equating the coefficients yields 

(65) 
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To find the unknown a's, we must solve this set of linear equations 
simultaneously. 

We shall now illustrate, using the function in (60) already treated by 
Bode's method. The left-half-plane factors in the denominator of that 
expression are 

Since the given R(ω) is zero at infinity, so also must F(s) be zero at infinity. 
(Why?) Hence the numerator of F(s) must be of the form 

By inserting the last two equations into (65) and utilizing the fact that 
all the capital "A" coefficients are zero except A0, which is unity, we get 

These equations are then solved to yield a0 = 1, a1 = 4/3 and a2 = 2/3. The 
network function thus obtained verifies the one previously found in (61). 

THE MIYATA METHOD 

A variation of these methods is due to Miyata. With F(s) given by 
(62), the even part is given by (63). Now consider a new function Fo(s) 
whose even part is 

(66) 

where m2 + n2 is the same denominator as that of F(s). Using either the 
Bode or the Gewertz method, find the function Fo(s) of which Ev F0 is 
the even part. Let it be written as 

(67) 

The numerator of the even part of this expression is m0 m2 — n0 n2 and, 
according to (66), equals 1. Next consider a new function F(s) formed 
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by multiplying F 0(s) by m1 m2 — n1 n2, which is the numerator of the 
even part of -F(s), and form its even part: 

(68a) 

(68b) 

The next-to-last step follows from the fact that m0m2 — n0n2 = 1. Thus 
F(s) and F(s) have the same even part; but F(s) in (68a) may have a high-
order pole at infinity (because the order of the numerator may be higher 
than that of the denominator). Suppose the denominator is divided into 
the numerator yielding a polynomial q(s) as a quotient and a remainder of 
order no higher than that of the denominator. Thus, 

(69a) 

and 

(69b) 

The even part of the polynomial q(s) is simply the sum of all its even 
powers, if any. If q(s) has any even powers, then the right side of the 
last equation will become infinite as s approaches infinity, whereas we 
know, by (68b), that the left side does not. The conclusion is that q(s) is an 
odd polynomial and has no even powers, so that Ev F = E v Fr and, hence, 
E v Fr = Ev F from (68b). Furthermore, this remainder function has the 
same poles as the specified function; consequently, it is the desired 
function—namely, Fr(s) = F(s). 

In summary, we may state that when an even rational function 
(m1m2— nin2)/(m2

2 — n,22) is specified, a network function -F0(s) whose 
even part is l / ( m 2

2 — n2

2) is determined. This function is then multiplied 
by (m1m2 — ni n2), following which a long division is carried out, yielding 
a remainder function with no pole at infinity. This is the desired function 
whose even part is the specified function. 

To illustrate, let 
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Then 

But this is the same function as previously considered in (60) and (61). 
Thus 

and 

Hence 

6 . 7 INTEGRAL RELATIONSHIPS BETWEEN REAL AND 
IMAGINARY PARTS 

In the preceding several sections, algebraic procedures were discussed 
for determining a network function as a rational function of s, given one 
of the components of the function as a rational function, where by " a 
component of a function" we mean one of the quantities: real part, 
imaginary part, angle (or tangent function), or magnitude (or log magni
tude). One drawback of these procedures is that the given component must 
already be in a realizable rational form. If, say, the real part is specified 
graphically or even analytically but not as a rational function, it is neces
sary first to find a realizable rational approximation to the given function 
before proceeding to find the network function and, from that, any of the 
other components. 

Network functions are analytic functions of a complex variable, 
and hence their real and imaginary parts are related by the Cauchy-
Riemann equations. However, these equations are implicit relationships 
and do not provide explicit formulas for computing one component from 
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the other. In this section we shall present a number of relationships 
between the parts of a network function. These are well known in mathe
matics as Hilbert transforms. However, since they were first used in net
work theory by Bode, we shall refer to them as the Rode formulas. One 
immediate advantage of these relationships is that the specified compo
nent of a function can be given merely as a graph; and beyond this, the 
Bode formulas have many useful implications and applications, some of 
which we shall discuss. 

Since we are dealing with analytic functions of a complex variable, 
one point of departure for relating components of a function could be 
Cauchy's integral formula (see Appendix 2), which states that 

(70) 

In this expression C is a closed contour within and on which F(s) is regular; 
z represents points on the contour, whereas s is any point inside. If we let 
the contour be a circle and express both z and s in polar coordinates, we 
shall be able to express the real and imaginary parts of F(s) in terms of 
either its real or its imaginary part on the circle. Finally, by means of a 
transformation, the circle is mapped into the imaginary axis. The result
ing expressions relating the real and imaginary parts are referred to as 
Hilbert transforms. 

An alternative approach, which we shall adopt, is to start with Cauchy's 
integral theorem. (See Appendix 2.) This theorem states that the contour 
integral of a function around a path within and on which the function is 
regular will vanish. In order to apply this theorem, it is necessary to know 
(1) the integration contour and (2) the function to be integrated. In the 
present problem the contour of integration should include the jω-axis, 
since we want the final result to involve the j-axis real and imaginary 
parts of a network function. Consequently, since the functions we are 
dealing with are regular in the entire right half-plane, the contour of 
integration we shall choose will consist of the jω-axis and an infinite 
semicircular arc in the right half-plane. By Cauchy's theorem, the complete 
contour integral will be zero. Hence it remains only to calculate the con
tributions of each part of the contour. 

Let F(s) be a network function of either the driving-point or the transfer 
type; in the usual way write 

(71a) 

(71b) 
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where α(ω) = ln | F(jω)\ is the gain function and φ(ω) is the angle function. 
If F(s) is a driving-point function, it will have neither zeros nor poles in 
the right half-plane. Hence ln F(s) will be regular there. If F(s) is a trans
fer function, then ln F(s) will be regular in the right half-plane only if 
F(s) is a minimum-phase function. Hence the results we develop will 
apply both to F(s) and to ln F(s) so long as F(s) is a minimum-phase 
function. 

Let us now consider possible poles of F(s) on the jω-axis. We know 
that any such poles must be simple. In carrying out the contour integra
tion such poles must be bypassed by a small indentation to the right. The 
contribution of this indentation to the total integral is 2πj times half the 
residue of the integrand at the pole. (See Appendix 2.) Our objective is to 
obtain expressions relating the real part of a network function to the 
imaginary part, so that when one of these is given, the other can be 
calculated. Thus we are not likely to know the residues at the j-axis poles. 
Hence we shall assume that F(s) has no poles on the jω-axis; this includes 
the points zero and infinity as well, so that F(s) is assumed regular at zero 
and infinity. 

If F(s) has a pole on the jω-axis, then ln F(s) will have a logarithmic 
singularity there. If the integrand in question involves ln F(s), we shall 
again indent the contour about this singularity. But because the singul
arity is logarithmic, this indentation will contribute nothing to the contour 
integral. (See Appendix 2.) Hence, in case the integrand we choose involves 
ln -F(s), we can permit F(s) to have simple poles on the jω-axis In the 
following discussion we shall always take the function in the integrand 
to be F(s). However, identical results apply if we replace F(s) by ln F(s). 
In the formulas, R(ω) can be replaced by α(ω), and X(ω) by φ(ω). 

Let us now consider integrating a network function F(s), which is 
regular on the jω-axis including zero and infinity, around the contour 
shown in Fig. 20a, which consists of the entire jω-axis and an infinite 
semicircular arc to the right. By Cauchy's theorem, the integral of F(s) 

Fig. 20. Path of integration. 

(a) (b) 
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will be zero. Our procedure will be to evaluate the contributions of those 
parts of the contour that we can evaluate and then to express the re
maining parts in terms of these. With these ideas, it is obvious that we 
shall not be able to obtain the type of relationship we are looking for with 
F(s) alone as the integrand. No particular point on the jω-axis is singled 
out and attention directed thereto. 

Suppose we divide F(s) by s — jω0 before integrating, where ω 0 is any 
value of ω. This will put a pole of the integrand on the jω-axis . In order 
to apply Cauchy's theorem, we shall have to bypass this pole with a 
small semicircular arc C2, as shown in Fig. 20b. The complete contour now 
consists of three parts, and the contribution of arc C2 will have to be 
evaluated. This will focus attention on the value of F(s) at s=jω0. 
Note that the result of the integration will not be a function of s, which 
is only a dummy variable of integration, but of ω 0 , which is an arbitrary 
point on the jω-axis. It will be convenient to use a different symbol for 
the dummy variable; let us use z = x+jy. Then the point jω0 can be 
relabeled jω. 

If F(s) is a network function that is regular on the entire jω-axis as 
well as on the right half-plane, application of Cauchy's theorem leads to 
the following result: 

(72) 

where the closed contour is the one shown in Fig. 20b. 
The complete contour consists of three parts: the large semicircle C1, 

the small semicircular indentation C2 about the point z=jω, and the 
imaginary axis. The contribution of the small indentation to the overall 
integral is 2πj times half the residue of the integrand at z =jω, which is 
simply F(jω). To compute the contribution of the infinite semicircle, 
let us initially assume it to be of finite radius, with z = R0ejθ. Then 

(73) 

where F(∞) is the value of F(s) at s = ∞ . Thus as R0 approaches infinity, 
the integral on C1 approaches — j π F ( ∞ ) . Since the imaginary part must 
be zero at infinity, F(∞) is also equal to R(∞). 
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Now it remains to consider the remainder of the contour. This can be 
written 

(74) 

Note that the integration along the imaginary axis must avoid the pole at 
z = jω in a symmetrical manner. This will yield the principal value of 
the integral on the right. In all the subsequent integrals we must keep 
this point in mind. Now collecting all these results and substituting into 
(72) we can write 

(75) 

If we next write F(jω) and F(jy) in terms of real and imaginary parts, and 
equate reals and imaginaries, we get, finally, 

(76a) 

(76b) 

We are leaving the algebraic details of these steps for you to work out. 
The message carried by these two expressions is very important. The 

second one states that when a function is specified to be the real part of a 
network function over all frequencies, the imaginary part of the function is 
completely determined, assuming the network function has no poles on the 
jω-axis. Similarly, if the imaginary part is specified over ail frequencies, 
the real part is completely determined to within an additive constant. 

Remember that the same results apply if F(s) is replaced by its logar
ithm. However, now we must require that F(s) be minimum-phase (if 
it represents a transfer function). On the other hand, we can relax the 
requirement of regularity of F(s) on the jω-axis. A simple pole of F(s) 
on the jω-axis becomes a logarithmic singularity of ln F(s), and such a 
singularity will contribute nothing to the integral, as mentioned earlier. 
Thus, for minimum-phase transfer functions, (76) with R and X replaced 
by α and φ, relate the gain and phase functions over all frequencies. 
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Let us now obtain alternative forms for the two basic expressions in 
(76) that will throw additional light on the relationships and will bring 
out points that are not at once apparent from these expressions. Remem
ber that the real and imaginary parts are even and odd functions of 
frequency, respectively. Let us use this fact and write (76b) as follows: 

(77) 

In the first of these integrals, replace y and —y and change the limits 
accordingly. The result is 

(78) 

The last step follows from the fact that R(y) = R(—y). Substituting this 
into (77), we get 

(79) 

In a completely similar way, starting with (76a) we get 

(80) 

In the last two expressions it still appears that the integrand goes to 
infinity on the path of integration at the point y = ω. This is really 
illusory, since we must understand the integral as the principal value. 
Even this illusory difficulty can be removed if we note by direct integra
tion that 

(81) 

again using the principal value of the integral. Hence we can subtract 
R(ω)/(y2 — ω 2 ) from the integrand in (79) and ω X(ω)/(γ2 — ω 2 ) from the 
integrand in (80) without changing the values of these integrals. The 
results of these steps will be 

(82a) 

(82b) 
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A very important feature of the results that we have established is the 
fact that it is not necessary to have the real part (or the imaginary part) 
as a realizable rational function. Corresponding to any given real part, 
whether in analytical or in graphical form, an imaginary part can be 
computed from the integral. As a matter of fact, the expressions are 
quite useful when a desired real part is specified in a vague sort of way 
and it is desired to obtain an approximate behavior of the imaginary part. 

For example, suppose it is desired to know the approximate behavior 
of the angle function in the pass band of a low-pass filter. In this discussion 
we shall interpret R and X to represent the gain α and the angle φ, 
respectively. In the pass band the gain is approximately zero up to some 
frequency ω 0 . Hence in (82b) the lower limit becomes ω 0 . Furthermore, 
the point ω, which lies in the pass band, is less than ω 0 ; thus in the inte
grand we can neglect ω compared with y, since y varies from ω 0 to 
infinity. Thus an approximate value is given by 

( 8 3 ) 

Now let us make the change of variable y = 1/p; then dy/y2 = —dp. After 
appropriately modifying the limits of integration as well, this equation 
becomes 

( 8 4 ) 

Note that the integral in (83) or (84) is not a function of ω and that, for a 
given value of the band edge ω 0 , it will be simply a constant. Thus the 
angle will be approximately a linear function of ω within the pass band.* 
Of course, the approximation will get progressively worse as we approach 
the band edge, since then ω can no longer be neglected in comparison to y 
in the integrand. 

REACTANCE A N D RESISTANCE-INTEGRAL THEOREMS 

The two pairs of expressions obtained so far in (76) and (82) relate the 
imaginary part at any frequency to the real part at all frequencies; 
or the real part at any frequency to the imaginary part at all frequencies. 

* Such a linear phase characteristic corresponds to a constant time delay in the trans
mission of sinusoidal functions over this range of frequencies. Therefore for signals that 
have essentially only this frequency range we get a distortionless transmission. For this 
reason a linear phase characteristic is desirable. 
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We should be able to find limiting forms for these expressions when fre
quency approaches zero or infinity. 

First consider (82a) when ω approaches zero. This leads immediately 
to the result 

(85) 

This expression is referred to as the reactance-integral theorem. It states 
that the integral of the imaginary part over all frequencies, weighted by 
the reciprocal of frequency, is proportional to the difference of the real 
part at the two extreme frequencies. It is also called the phase-area theorem, 
since the result remains valid when F(s) is replaced by its logarithm, R by 
α, and X by φ. 

A more convenient expression is obtained if a change to logarithmic 
frequency is made. Define 

(86) 

where ω is some arbitrary reference frequency. Then dy/y becomes du, 
and (85) can be written as follows: 

(87) 

Note the change in the lower limit, since u = — ∞ when y = 0. The argu
ment of X(y) has been retained a s y for simplicity, although the integrand 
should more accurately be written as X(ωe u ) . Alternatively, a new func
tion X\(u) = X(ωe u ) can be defined. However, this introduces additional 
new notation to complicate matters. In subsequent equations we shall 
retain y as the argument of the integrands and write X(y) or R(y), as the 
case may be, with the understanding that we mean to convert to a func
tion of u by the substitution y = ωeu before performing any operations. 
Thus we see that the area under the curve of the imaginary part, when plotted 
against logarithmic frequency, is proportional to the net change in the real 
part between zero and infinite frequency. 

Next let us multiply both sides of (82b) by ω and then take the limit as 
ω approaches infinity. Remember that the upper limit on the integral 
means that we integrate up to R0 and then let R0 approach infinity. 
Thus (82b) becomes 

(88) 
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There are two limiting operations involved on the right-hand side. If 
we interchange these two operations, the expression can be evaluated 
readily; but we must inquire whether this interchange is permissible. 
The answer is affirmative if the integral is uniformly convergent for all 
values of ω, which it is. Hence interchanging the two operations and taking 
the limits leads to 

(89) 

The result expressed by this equation is referred to as the resistance-
integral theorem. (It is also called the attenuation-integral theorem, since 
the result remains valid if F(s) is replaced by its logarithm.) If the asymp
totic behavior of the imaginary part of a network function is specified, 
then—no matter how the j-axis real part behaves with frequency—the 
area under the curve of the real part, with the horizontal axis shifted 
upward by an amount R(∞), must remain constant. Looking at it from 
the opposite viewpoint, when the integral of the real part of a function 
over all frequencies is specified, then the infinite-frequency behavior of 
the imaginary part is fixed. 

Consider the special case in which F(s) has a simple zero at infinity; 
then F(∞) = R(∞) = 0. Hence 

(90) 

However, according to the initial-value theorem, the limit on the right-
hand side is simply the initial value of the impulse response of the network 
represented by F(s). In this case, then, (89) becomes 

(91) 

where f(t) = £-1{F(s)} is the impulse response. Note that the dummy 
variable has been changed to ω to suggest the physical meaning. 

LIMITATIONS ON CONSTRAINED NETWORKS 

What has just been developed can be used to determine some basic 
limitations on the behavior of networks, when allowance is made for 
certain inevitable parasitic effects. Consider the situation depicted in 
Fig. 21a. The capacitance C accounts for parasitic effects that almost 
inevitably occur, such as junction capacitances in a transistor or just 
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Fig. 21. Network constrained to have a shunt capacitance across its input terminals. 

(a) (b) 

plain wiring capacitance. The presence of such a capacitance imposes some 
limitations that we shall now discuss. 

Let Z1(s) be the impedance of the network N beyond the capacitance. 
The total impedance Z(s) is given by 

(92) 

Whatever the behavior of Z1(s) may be at infinity, we observe that the 
total impedance Z(s) will have a simple zero at infinity. We shall initially 
assume that the network N does not start with a shunt capacitor as in 
Fig. 21b, meaning that Z1(s) has no zero at infinity. If it does, in fact, the 
result is an effective increase in the value of C. 

With these stipulations, (90) is valid with F(s) = Z(s). Inserting (92) 
into the right side of (90) and evaluating the limit yields 

Finally, when this is inserted into (91), the result becomes 

(93) 

We see that the shunt capacitance imposes an effective limit on the area 
under the curve of the real part. Although this resistance integral evolved 
as the limiting value of the general expression relating the real and imag
inary parts of a network function, it appears to provide a figure of merit 
of some sort for network capability. 
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Since the resistance-integral theorem applies to functions having no 
pole on the jω-axis, (93) is valid for such a function. If a function does 
have such poles on the jω-axis, the contour of integration must be indented 
around these poles and the contributions of these indentations must be 
taken into account. If one goes through the preceding development 
carefully, one finds that additional terms are subtracted from the right 
side of (93) in this case, these terms being proportional to the residues at 
the poles on the jω-axis. In the next chapter we shall show that all such 
residues of driving-point functions are real and positive. Hence, when 
Z(s) has poles on the jω-axis, the right side of (93) is reduced in value. 
For all cases, then, whether Z(s) is regular on the jω-axis or not, the result 
can be written as follows: 

(94) 

Further interpretation of this important result can be obtained from 
a consideration of Fig. 22, where a two-port is terminated in a resistor R2 , 

Fig. 22. Resistance-terminated two-port. 

Assuming sinusoidal excitation, a calculation of the real power delivered 
to the input terminals by the source and the power delivered by the net
work to the load will be 

power from source = (95a) 

power to load = (95b) 

Clearly, the load power cannot exceed the power from the source for a 
passive two-port. Hence the second expression can be no greater than the 
first; so 

(96) 
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The equality is valid when the two-port is lossless. Thus the squared 
magnitude of the current gain of a lossless two-port is proportional to the 
real part of the impedance at the input terminals of the two-port when the 
output is terminated in R2. Thus, with (96) inserted into (94), and with 
R(ω) interpreted as Re Z(jω), there results 

(97) 

Suppose the two-port in Fig. 22 is to be a filter with constant power 
gain over a given band of frequency and zero outside this band. Then the 
integral in (97) will simply equal the constant-power gain times the band
width. In the more general case, even though the transfer function may 
not be an ideal-filter function, the area under the curve represented by 
this integral is dimensionally power gain times bandwidth. For this 
reason the integral in (97) is generally called the gain-bandwidth integral. 
Thus we find a basic limitation on the gain-bandwidth product introduced 
by the presence of the shunt capacitor C. 

ALTERNATIVE FORM OF RELATIONSHIPS 

In the preceding discussion two sets of equivalent integral expressions 
relating the real and imaginary parts of network functions at all frequen
cies were found in (76) and (82). Still other forms are also possible, one of 
which is especially convenient for computation and leads to a simple 
evaluation of stability in closed-loop control systems. This form is most 
relevant when ln F (the gain and angle) is involved, rather than the net
work function itself. The expression utilizes the logarithmic frequency 
defined in (86). 

Let us start with (82b) and perform some preliminary manipulations 
utilizing the change-of-frequency variable. We shall also use α and φ 
instead of R and X. Thus 

(98) 
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Note the change in the lower limit, since u = — ∞ when y = 0. The 
argument of α(y) has been retained as y, as discussed earlier. 

As the next step, we integrate the last form by parts. Using the general 
formula 

with 

Hence (98) becomes 

(99) 

Note that coth u/2 is an odd function of u, being strictly positive when u 
is positive and strictly negative when u is negative. Hence its logarithm 
for negative u will be complex, the imaginary part being simply π. For 
negative u it can be written 

(100) 

When u = + ∞ , ln coth u/2 — 0; and when u = — ∞ , ln coth u/2 = jπ . 
Hence the integrated part of the last equation becomes simply j[α(0) 
- α ( ω ) ] . 

Now consider the remaining integral. If we use (100) for negative 
values of u, the result will be 



446 REPRESENTATIONS OF NETWORK FUNCTIONS [Ch. 6 

Finally, using all of these results in (99), we get 

(101) 

This equation is quite easy to interpret even though it looks somewhat 
complicated. Note that the gain α is not an even function of the logarith
mic frequency u, and so it is not possible to integrate over only half the 
range. The equation states that the angle at any frequency depends on 
the slope of the gain at all frequencies (when plotted against logarithmic 
frequency), the relative importance of different frequencies being deter
mined by the weighting factor 

(102) 

This function is shown plotted in Fig. 23. It rises sharply in the vicinity of 
u = 0(y = ω), falling off to very small values on both sides of this point. 
This means that most of the contribution to the angle at a frequency ω 
comes from the slope of the gain in the immediate vicinity of ω. 

Fig. 23. Plot of weighting factor 

Another useful form can be obtained by simply adding and subtracting 
the slope evaluated at u = 0(y = ω) under the integral in (101). We shall 
leave the details of this operation to you. The result will be 

(103) 
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Note that by dα(ω)/du we mean the slope of the gain as a function of u, 
evaluated when u = 0(y = ω). The slope dα(ω)/du is measured in nepers 
per unit change of u. A unit change of u means a change in frequency by 
a factor e. 

We see that the angle at any frequency is π/2 times the gain slope at 
the same frequency plus another term given by the integral. If the gain 
is a continuous function, then the difference in the integrand will be small 
in the vicinity of y = ω, just where the weighting factor has large values. 
Hence, in this case, the contribution of the integral to the angle will 
always be small. As a first approximation, then, we can say that the angle 
will have a value of π/2 radians whenever the gain slope is 1, a value of 
π radians whenever the gain slope is 2, etc. 

Now suppose a gain function is given in graphical form. We can first 
approximate the curve by a series of straight-line segments having slopes 
of n, where n is an integer. An approximation to the (minimum-phase) 
angle function corresponding to the given gain function can now be 
quickly sketched according to the discussion of the last paragraph. 

As an example of this procedure, suppose the gain plot* shown in Fig. 
24 is given. The straight line approximation is superimposed. Now an 
approximate sketch of the angle, using only the approximate gain plot 
and completely neglecting the integral in (103), is the discontinuous 
function shown by the solid lines in the figure. The actual angle function 
might have the form shown by the dotted curve. 

RELATIONS OBTAINED WITH D I F F E R E N T WEIGHTING FUNCTIONS 

In deriving the integral relationships of this section, we started with the 
integrand in (72) and the closed contour shown in Fig. 20. The function 
l /(z—jω) multiplying the network function F(z) in (72) is a weighting 

function. The same relationships derived here can also be derived by using 
different weighting functions with integration around the same basic 
contour. Of course, if the weighting functions introduce additional poles 
on the jω-axis, we must avoid these poles by small indentations; for 
example, the resistance-integral theorem can be derived in short order by 
integrating the function [F(z) — R(∞)] around the basic contour. The 
weighting function here is 1. Similarly, the reactance-integral theorem 
follows readily when we integrate the function F(z)/z around the basic 
contour with an indentation around the origin. The weighting function is 
1/z. You should verify these claims. 

* This is, with a scale change on both axes, the Bode diagram of |F(jω) | , which finds 
extensive use in control theory. The Bode diagram, which is just 20 log |F( jω) | versus 
log ω, is discussed in most basic texts on control systems analysis. 
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Fig. 24. Approximate angle corresponding to a given gain function. 

From this discussion it seems likely that additional relationships 
between the real and imaginary parts can be established by using different 
weighting functions. In fact, a great variety of relationships can be 
derived, but we have already presented the most important and useful 
ones. If we consider the two cases mentioned in the preceding paragraph, 
the criterion for choosing a weighting function appears to be to choose it in 
such a way that the term in which the known component of the network 
function appears is an even function of frequency, whereas the term in 
which the unknown component appears is an odd function. In this way the 
unknown component will disappear from the integration along the jω-axis 
and will appear only in the contributions from the indentations and from 
the infinite arc. It seems that this consideration in choosing a weighting 
function will apply quite generally. 
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So far in this section we have found that for a suitably restricted net
work function, when the real part is specified over all frequencies, the 
imaginary part is completely determined. Similarly, when the imaginary 
part is specified over all frequencies, the real part is completely determined 
(to within a constant). The question may be asked: Suppose the real partis 
specified over some frequency intervals and the imaginary part over the 
remainder of the entire frequency spectrum; is the function completely 
determined? 

Instead of considering this problem in a completely general form, let 
us suppose that the real part is known for all frequencies less than ω 0 and 
the imaginary part for all frequencies greater than ω 0 . We wish to find an 
expression that will give the unknown parts of the two components. The 
discussion concerning the choice of weighting functions suggests that if 
we can choose a weighting function that changes character at ω 0 —so that 
below ω 0 the term involving the real part is even while above ω 0 the term 
involving the imaginary part is even—our problem will be solved. What 
we need is a multivalued weighting function. 

Suppose we choose the following weighting function: 

Again z = x + j y is taken as a dummy variable. The irrational factor in 
the denominator is multivalued, with branch points at z = + j ω 0 . We 
must choose the branch cut in such a way that the integration along the 
j-axis will stay on a single sheet of the Riemann surface. This will be the 
case if, when z = jy , we take 

real and positive for — ω 0 <y < ω 0 , 

imaginary and positive for y > ω 0 , 

imaginary and negative for y < — ω 0 . 

With this choice, √ l — y 2 / ω 0

2 is an even function in the interval 
— ω 0 <y < ω 0 , whereas over the remainder of the axis it is odd. 
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The contour of integration consists of the basic contour shown in 
Fig. 20 but with indentations at z = +jω. In the present case the infinite 
arc contributes nothing, since the integrand goes down at least as fast 
as 1/z3 at infinity. The contributions of the indentations are jπ times the 
residue of the integrand at the corresponding pole, which is easily 
evaluated. There remains the integration along the jω-axis. This is broken 
up into two parts, one beween zero and ω 0 , the other between ω 0 and 
infinity. The details will be left for you to work out. The result will be 

(104) 

We have now answered the question posed at the start of this discussion, 
insofar as the present problem is concerned. If we are given the real 
part of a function over part of the imaginary axis and the imaginary part 
over the rest of the axis, then the function is completely defined. Our 
method of obtaining the result in the last equation can be extended if 
there are more than two intervals over which one or the other of the two 
components are known. Additional irrational factors are introduced 
giving additional branch points at appropriate points on the axis. The 
resulting expressions, however, become rather complicated and hence 
limited in usefulness. 

Let us now summarize the results of this section. Our objective is to 
obtain relationships between the real and imaginary parts of a network 
function F(s) (or between the gain and the phase), so that when one of these 
is prescribed the other can be calculated. The point of departure is 
Cauchy's integral theorem, the contour of integration consisting of the 
imaginary axis with an infinite semicircular arc joining the ends. An 
integrand is chosen involving F(s) or ln F(s), multiplied by a weighting 
function. The contour is indented to bypass poles of the integrand 
introduced by this function. 
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If the integrand involves a network function F(s), then the only 
restriction is that F(s) be regular on the jω-axis, including the points at 
zero and infinity. If the integrand involves ln F(s), then F(s) need not be 
regular on the jω-axis, but now it must have no zeros in the right half-
plane; it must be a minimum-phase function. 

The overall contour is divided into the straight segment consisting of 
the imaginary axis; the semicircular curves bypassing j-axis singularities 
deliberately introduced into the integrand; and the semicircular arc at 
infinity. The contributions of the semicircular contours can be computed, 
leaving only the integral along the imaginary axis. 

A very useful feature of these expressions is the fact that the prescribed 
function need not be given in a realizable analytical form. An approxi
mate graphical form is sufficient. Furthermore, the integrations them
selves can be performed graphically. 

6 . 8 FREQUENCY AND TIME-RESPONSE RELATIONSHIPS 

The preceding sections have been concerned with the frequency 
properties of network functions and the relationships among the compon
ents of such functions in the frequency domain. Since a network function is 
the ratio of Laplace transforms of a response function to an excitation 
function, we might expect relationships to exist between the components 
of a network function and the time response. In this section we shall 
examine such relationships. 

Let us refer to the notation in Chapter 5 and let wu(t) be the (scalar) 
response to a unit step excitation and wδ(t) be the response to a unit 
impulse excitation. The corresponding network function F(s) is related to 
these as 

(105a) 

(105b) 

We shall restrict ourselves to network functions having no poles on the jω-axis. 

STEP RESPONSE 

Now, from the definition of the Laplace integral, we get 

(106) 
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If we set s = jω, the exponential does not die out as t goes to infinity, 
but the integral will converge if wu(t) -> 0 as t -> ∞ . Next, from the final-
value theorem, we find that 

Thus, requiring that wu(t) -> 0 as t -> ∞ means that F(s) must have a zero 
at s = 0. With this stipulation we can now write (106) as 

From this it follows that 

(107a) 

(107b) 

Thus the real and imaginary parts of a network function can be obtained 
directly from the step response. 

Converse relationships giving the step response in terms of the real or 
imaginary part also exist. These can be obtained starting with the 
inversion integral for the step response. Since wu(t) = £_1{F(s)/s}, we 
get 

(108) 

We are still assuming that F(s) has no poles on the jω-axis, but let us not 
restrict it to have a zero at the origin for this development. Then the 
integrand in the last expression might have a pole at the origin. If it 
were not for this pole, the Bromwich path could be taken as the jω-axis. 
Instead, let us take the path shown in Fig. 25, which consists of the jω-
axis except for a semicircular arc that bypasses the origin. As the radius 
of the semicircle approaches zero, the path approaches the entire 
jω-axis. The three parts of the path have been labeled C1, C2, and C3. 
Equation 108 can now be written as follows: 

(109) 
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Fig. 25. Contours of integration. 

(a) (b) 

On the parts C1 and C3, s = jω and ds = jdω. On the part C2, which is 
shown expanded in part (b) of Fig. 25, we can write 

Hence (109) becomes 

( 1 1 0 ) 

The last integral on the right involves the radius R0 in a complicated way. 
However, we intend to let R0 approach zero, in which case this term 
reduces to F(0)/2. You should verify this. Note that if we place the addi
tional restriction that F(s) has a zero at s = 0, then this term will disap
pear. When we let R0 -> 0, the remaining two integrals in (110) combine to 
give the principal value of the integral running from — ∞ to + ∞ . Hence, 
finally, 

(111) 

(Note that, although it is not explicitly shown, we are to understand the 
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last integral as representing the principal value.) This expression can be 
further simplified by writing F(jω) in terms of its real and imaginary 
parts, expanding the exponential and using the odd and even properties 
of the resulting functions to change the range of integration to the positive 
ω-axis. The details will be left to you. The result is 

(112) 

We have replaced F(0) by R(0), since X(0) = 0. Observe that this ex
pression is defined for negative as well as positive values of t. However, 
Wu(t) = 0 for negative values of t. Hence in the two ranges of t we get 

or 

When we substitute the last equation into (112), we obtain the final result: 

(113a) 

(113b) 

Up till now we have performed various mathematical manipulations to 
put the relationships between F(jω) and wu(t) in various equivalent 
forms. But now we have something new. The last equation shows that the 
step response of the network can be computed when only the real part of 
the network function along the jω-axis is known. Note that this relation
ship does not require that R(0) = F(0) be zero. With the step response 
determined, (107b) can be used to compute the imaginary part of F(jω). 
However, from the derivation of (107b) we know that the asymptotic 
value of the step response that is to be used in (107b) must be zero. 
Hence, before using wu(t) as computed from (113b), we first subtract its 
asymptotic value, R(0), in case it is not equal to zero. In this way F(jω) 
is completely determined from a knowledge of its real part alone. 

Similarly, starting with the imaginary part X(ω), we can compute the 
step response from the integral in (113a). The portion of the step response 
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computed from this integral will approach zero as t approaches infinity. 
To the value thus computed we can add any constant, which will become 
the zero-frequency value of R(jω), denoted by R(0) in (113a). However, 
omitting this step, we can now compute the real part R(ω) from (107a). 
Thus F(jω) will be completely determined, except for an additive 
constant, from a knowledge of the imaginary part alone. 

The procedures just discussed for finding a network function from its 
real or imaginary part are quite different from those discussed in earlier 
sections. They are also apparently more complicated, since they involve 
evaluating two integrals. However, it should be noted that the real or 
imaginary part need not be given as a rational function; a graph is suffi
cient. 

IMPULSE RESPONSE 

Let us now turn to the impulse response. Everything that was done 
starting from (106) can be duplicated (with appropriate changes) in terms 
of the impulse response. We shall list the results and leave the details of 
the development to you. It will still be required that F(s) be regular on the 
jω-axis, but now it need not have a zero at s = 0. Instead, application of 
the inversion integral to F(s) will require that F(s) have a zero at infinity. 
If we retrace the steps starting at (106), we shall get the following 
equations: 

(114a) 

(114b) 

(114c) 

(114d) 

The first two of these are the counterparts of (107), whereas the last two 
are to be compared with (113). As a matter of fact, the last two equations 
can be obtained from (113), in view of the fact that the impulse response is 
the derivative of the step response. (No impulses will be involved, since 
we assumed F(∞) = 0.) 
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Equation (114d) shows that the impulse response of the network can be 
computed even if only the imaginary part X(ω) is known. Note that X(ω) 
will approach zero as ω approaches infinity, even though F(∞) may not be 
zero. With the impulse response computed, the real part of R(ω)—or 
R(ω) — R ( ∞ ) if R(∞) = F(∞)≠0—can now be found from (114a). 
Thus F(jω) is determined to within the additive constant F(∞) = R(∞) 
by its imaginary part alone. 

Similarly, starting from a knowledge of only the real part of R(ω)—or 
R(ω) — R(∞) if R(∞) = F(∞) ≠ 0—the impulse response can be com
puted from (114c). Having found the impulse response, the imaginary part 
X(ω) is now calculated from (114b). Thus we find that a transfer function 
is completely determined from a knowledge of its real part alone. 

In each of the above cases, once the step response or impulse response 
has been calculated from a given R(ω) or X(ω), it is then necessary to find 
only the Laplace transform, since £{wu(t)}= F(s)/s, and £{w(5(t)}= F(s). 
In this way one of the integrations of (107) and (114) can be avoided. 

Examples 

Suppose the following is specified to be the real part of a network 
function on the jω-axis: 

(115) 

We see that this has a nonzero value at infinity, and so (114b) cannot be 
used directly. If we subtract its infinite-frequency value, we get 

We can now apply (114b), which leads to 

(116) 

The second line follows from the use of the exponential form of cos ωt. 
If in the second integral in this line we replace ω by —ω and appropriately 
change the limits, the last line will follow. 
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Now consider the following contour integral in the complex s-plane: 

where the contour consists of the entire jω-axis and an infinite semi
circle to the left. The integrand satisfies the conditions of Jordan's lemma, 
since the rational function in the integrand vanishes at infinity as 1/s 2. 
Hence the contribution of the infinite arc will be zero, and the complete 
integral reduces to its value along the jω-axis. B y the residue theorem, 
the value of the integral equals 2πj times the sum of the residues at the 
left half-plane poles. In the present case there are only two simple poles, 
at s = —1 and s = — 2 , in the left half-plane and their residues are easily 
computed. Hence we get 

When this expression is substituted into (116), we get 

The transfer function can now be found by taking the Laplace transform. 
The result will be 

This function has a zero at infinity. To this we should add the infinite-
frequency value of R(ω), which is F(∞) and which we subtracted from the 
original function at the start. Thus 

This is the desired network function. 
As a second example, let the real part of a network function be specified 

by the ideal curve shown in Fig. 26. By using (114c), the impulse response 
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Fig. 26. Specified real part. 

is computed to be 

This is then inserted into (114b) to yield* 

* The last two lines may be obtained from integral 412, in R. S. Burington, Handbook 
of Mathematical Tables and Formulas, 2nd ed., Handbook Publishers, 1940. 
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PROBLEMS 

1. For the networks shown in Fig. P1, verify that the nonzero eigenvalues of 
the A matrix in the state equation are the same as the nonzero zeros of 
the loop impedance matrix and of the node admittance matrix. 

Fig. P I 

(a) (b) 

2. Find the even part, Ev F(s), and the odd part, Od F(s), of the following 
functions from the even and odd parts of the numerator and 
denominator: 

(a) (b) 

3. The polynomial P1(s) = s2 — 6s + 12 has a pair of zeros in the right 
half-plane. It is to be multiplied by another polynomial, P 2(s), of 
degree n so that the resulting polynomial has no negative coefficients. 
What is the minimum value of n? 

4. Let a transfer function be given by 

The angle function is defined as 

which is consistent with (49) when s = jω. The delay function is defined 
as 
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(a) In F(s) let ai = 0 for all i and insert into the expression for the 
delay function. Find the value of the bi coefficients if the delay is to 
be a maximally flat function for the cases m = 3, m = 4, and m = 5. 
(b) Repeat if ai ≠ 0 and n= m — 1. 

5. Prove that if all the coefficients of a real polynomial P(s) of degree n 
have the same sign, then P(s) will have no zeros in the sector |arg s| 
<π/n. 

6 . In Fig. P6 find z21 and verify that there is no transmission zero at 
s = —1 even though the left hand shunt branch has an admittance 
pole at s = —1. 

Fig. P6 

7. The shunt branch admittances in the diagrams in Fig. P7 have a pole 

Fig. P7 

at infinity and zero, respectively. Show that the overall two-ports 
must have transmission zeros at these frequencies (unlike the case in 
the previous problem), no matter what the rest of the network 
contains. 

8. A symmetrical lattice has series and cross branch impedances Za 
and Z0, respectively. Show that when it is terminated in a resistance 
R, the input impedance equals R if Za Z b = R2. Verify that for this 
constant-resistance case the voltage gain function is 
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9. Verify that the bridged-tee in Fig. 12b and the ell-networks in Figs. 
12c and 12d are each constant-resistance networks when terminated in a 
resistance R if Za Z b = R2. Verify also that under this condition the 
voltage gain function is 

10. Figure P10a shows a symmetrical lattice. 
(a) Find the y parameters (possibly using topological formulas) and 
show that the Fialkow condition (defined in Problem 47 of Chapter 3) 
will be satisfied under any one of the three conditions listed. 

(b) Figures P10b and 10c show two bridged-tee networks. Show that the 
first has the same y parameters as the lattice under condition (1) above, 
and hence is equivalent to the lattice. Show also that the second one 
has the same y parameters as the lattice under condition (2) above, 
(c) If the y parameters of the lattice are expanded in partial fractions, 
the result will have the form: 

On the right side a fraction of the finite pole has been combined with the 
pole at infinity and the rest of it is combined with the pole at the 
origin. Show that each of the tee networks in the twin-tee shown in 
Fig. P10d has one of the sets of y parameters within the above 
parentheses. Determine the range of values of α and show that this 
range of values exists if condition (3) above is satisfied. Thus under this 
condition the twin-tee is equivalent to the lattice, 
( d ) Determine the angle of the transmission zeros of the bridged-tees 
and twin-tee determined by the three conditions in part (a). 

11. Find a two-port network terminated in a 100-ohm resistor whose 
voltage gain function is given by each of the following all-pass functions. 
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In each case involving a lattice determine if a common-terminal 
equivalent exists, and convert to it if it does. 

(a) (b) 

(c) 

Fig. P10 

(a) 

(b) (c) 

(d) 

12. Find a two-port network terminated in a 50-ohm resistor whose voltage 
gain function is given by each of the following nonminimum-phase 
functions. Select any convenient value of K. Convert any lattices to 
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common-terminal equivalent networks where possible. 

(a) (b) 

(c) 

13. The following functions are specified as the tangent functions of a 
transfer function. Find the corresponding transfer function F(s). If 
the answer is not unique, give all possibilities. 

(a) (b) 

(c) (d) 

(e) (f) 

14. The following functions are specified as the real part of an impedance 
function F(s). Use any one of the methods of Bode, Gewertz or Miyata 
to find the function F(s). 

(a) (b) 

(c) (d) 

15. Suppose each function in Problem 14 is the j-axis magnitude squared 
of a network function. Find the function. If there is more than one 
possibility, find them all. 

16. Give a derivation for (103) in the text starting with (101). 
17. Give a derivation for (104) in the text. 
18. Derive the reactance integral theorem in (85) by integrating the function 

F(s)/s around the basic contour with a small indentation around the 
origin. 
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19. Derive the resistance integral theorem in (89) by integrating the func
tion F(s) — R(∞) around the basic contour consisting of the jω-axis 
and an infinite semicircle to the right. 

20. Derive (79) by integrating the function F(z)/(z2 + ω 2) around the basic 
contour with indentations at z = + jω. 

21. Derive (80) by integrating the function z[F(z) — R(∞)]/(z2 + ω 2) 
around the basic contour with indentations at z = +jω. 

22. By integrating the function [F(z) — R(0)]/z(z2 + ω 2) around the basic 
contour with indentations at z = 0 and at z = +jω, derive the following 
relationship: 

Compare this with (82a) in the text. 
23. Each of the curves in Fig. P23 is the magnitude | F(jω)| of a transfer 

function for ω > 0. Assuming the function is minimum-phase, find the 
corresponding angle function making appropriate approximations. 

Fig. P23 
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24. Let the magnitude of a function be the maximally flat function in (32). 
Show that the angle is given by the following expression: 

25. Let the real part of a function on the jω axis be given by the following 
functions. Find the corresponding step response using (113b) and the 
impulse response using (114c). 

(a) (b) 

(c) (d) 

26. Suppose the imaginary part of a network function is as shown in Fig. 
P26. Use (113a) to compute wu(t) and then use (107a) to determine 
the real part of the network function. 

Fig. P26 

27. Suppose the step response wu(t) of a network is as shown in Fig. P27. 
Use (107a) to determine R(ω) and the use (114c) to determine the 
impulse response wδ(t). Verify this result by finding wδ(t) directly 
from wu(t). 

The next 3 problems marked with an asterisk involve the preparation of a 
computer program to help in implementing the solution of some problems. In 
each case, prepare a program flow chart and a set of program instructions, in 
some user language like FORTRAN IV, for a digital computer program to 
carry out the job specified in the problem. Include a set of user instructions 
for the program. 
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Fig. P27 

28.* Suppose f(ω 2) in (41) is a rational function of ω 2 . Let / (ω 2 ) be 
characterized by a list of numbers: The first two numbers will be the 
numerator degree and the denominator degree; these will be followed 
by a stream of numbers which are the numerator and denominator 
coefficients. Prepare a program to accept these data as a description 
of f(ω 2) and compute a stable minimum phase F(s), where F(jω) 
satisfies (41). Assume a subroutine exists which will determine all the 
zeros of a polynomial.† 

29.* Prepare a program to determine a stable minimum phase F(s) from 
tan φ(ω) which is assumed to be a rational function in ω. Use an input 
data format similar to that in Problem 28. Assume a subroutine exists 
which will determine all the zeros of a polynomial. 

30.* Prepare a program to determine F(s) from Ev F(s) using: (a) Bode's 
method; (b) Gewertz's method; (c) Miyata's method. Use an input 
data format similar to that in Problem 28. Assume a subroutine exists 
which will determine all the zeros of a polynomial. 

† One algorithm which might be the basis of such a subroutine program is the quotient-
difference algorithm. This algorithm is described in H. Henrici, Elements of Numerical 
Analysis, John Wiley and Sons, New York, 1964, Chap. 8. 



. 7 . 

FUNDAMENTALS OF 
NETWORK SYNTHESIS 

Network synthesis is the process of designing and constructing a network 
to provide a prescribed response to a specified excitation. This is the 
converse of the analysis problem where a response is to be calculated when 
a prescribed excitation is applied to a given network. In contrast with the 
latter, the synthesis problem may not have a unique solution. In fact, it 
may not have any solution, since there may be no network that has the 
desired response to the given excitation. At the outset, then, one may be 
faced with the necessity of approximating the desired response with one 
that is obtainable. 

Specification of the response and its approximation may be either in the 
time domain or in the frequency domain. In the frequency domain the 
end result of the approximation process is the specification of one or more 
network functions that characterize the desired network. From these 
functions it is then necessary to realize the network. The realization is 
guided by the fact that there are various classes of networks. These 
classes can be characterized by the number of external terminals, by the 
type of components (lossless, active, RC, etc.), by the structure (ladder, 
grounded, etc.), and so forth. 

The first task in the realization process is to determine the properties 
of network functions that are appropriate for each class of network. These 
properties include permissible locations of poles and zeros, the signs of 

467 
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residues and real parts, and the relative size of coefficients. This is the 
task on which we shall largely concentrate in this chapter. 

In order to establish the analytical properties of network functions, it 
will be necessary to introduce some additional mathematical topics. The 
first two sections will be devoted to this effort. We shall not strive for 
completeness of exposition but shall often be content simply with the 
statement of a result with some discussion of plausibility. 

7 . 1 TRANSFORMATION OF MATRICES 

Given a square matrix A, a number of operations can be performed on 
it to yield another matrix B. This matrix, of course, will be related to the 
original matrix A, the specific relationship depending on the operations 
that are performed. The matrix A is said to be transformed in some way. 

ELEMENTARY TRANSFORMATIONS 

A number of specific operations have properties that are of great impor
tance. They are very simple operations and are collectively called ele
mentary transformations. Given a matrix A, the elementary transformations 
of A are the following: 

1. The interchange of any two rows or two columns of A. 
2. The addition of the elements of one row or column of A to the correspond

ing elements of a second row or column. 
3. The multiplication of each element of a row or column of A by a 

scalar constant. 

Clearly these transformations do not change the order of A. From the 
properties of determinants discussed in Chapter 1, the first transformation 
simply changes the sign of the determinant of A; the second one leaves the 
determinant unchanged; the third one multiplies the determinant by a 
constant. Hence, if matrix A is nonsingular, then the matrix obtained 
after an elementary transformation is also nonsingular. In fact, an ele
mentary transformation of a matrix cannot change its rank, even when 
the rank is less than the order. (See Problem 5.) 

The operations on a matrix A represented by the elementary trans
formations can be carried out by multiplying A by certain simple, 
nonsingular matrices. These matrices, called elementary matrices, are 
themselves obtained by carrying out the corresponding operation on a 
unit matrix. Thus, adding the third row to the second row of a third-order 
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unit matrix leads to the elementary matrix on the left below; similarly, 
adding the third column to the second column of a third-order unit 
matrix leads to the elementary matrix on the right: 

When a matrix A having three rows is premultiplied by the elementary 
matrix on the left, the effect is to add the third row of A to the second row. 
When a matrix A having three columns is postmultiplied by the ele
mentary matrix on the right, the effect is to add the third column of A to 
its second column. Thus 

Note that A need not be square; it must, of course, be conformable with 
the elementary matrix. 

Since an elementary transformation of a unit matrix will not change its 
rank, any elementary matrix is nonsingular. Since the product of two non
singular matrices is nonsingular, this leads to the conclusion that the 
product of any number of elementary matrices is nonsingular. A question of 
greater significance is, Does it work backwards? Can any nonsingular 
matrix be decomposed into elementary matrices? The answer is yes. It 
can be shown that any nonsingular matrix can be written as the product of a 
finite number of elementary matrices. 

As further illustrations, suppose it is desired (1) to add the first row of a 
(4 × 3) matrix A to its third row after multiplying the first row by 5, and 
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(2) to interchange the third column and the second column after the second 
has been multiplied by 3. The two elementary matrices that will accom
plish this are the following: 

The first one should premultiply A; the second one, postmultiply A. 
You should confirm this result. 

The further exposition of the details of elementary matrices will be left 
to an extended set of problems. In the following development it will be 
assumed that the results of these problems are available. 

EQUIVALENT MATRICES 

Let A and B be two matrices of the same order. We say that B is 
equivalent to A if it can be obtained from A by a finite number of ele
mentary transformations. If all the transformations are carried out on the 
rows, B is row equivalent to A; if all the transformations are carried out 
on the columns, it is column equivalent. Carrying out a number of con
secutive elementary transformations means multiplying A by the product 
of a number of elementary matrices. Such a product can be represented 
by a single matrix that is necessarily nonsingular, since each of the 
elementary matrices is nonsingular. Hence the general definition of 
equivalence can be restated as follows. 

Theorem 1. Let A and B be two matrices of the same order. Matrix B is 
equivalent to A if and only if 

(1) 

where P and Q are nonsingular. 

Since P and Q are nonsingular, then A = P - 1 B Q - 1 . This is of the same form 
as (1); hence, if B is equivalent to A, then A is equivalent to B; that is, 
the equivalence of two matrices is a mutual property. 

Since an elementary transformation of a matrix does not change its 
rank, a sequence of elementary transformations leaves the rank of a 
matrix unchanged. Hence two equivalent matrices have the same rank. 
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In particular, if a square matrix A is nonsingular, a matrix equivalent to 
A is also nonsingular. 

In fact, if A is a nonsingular matrix, it can always be reduced to a unit 
matrix by successive elementary transformations; that is, there will 
always be nonsingular matrices P and Q (each one being the product of 
elementary matrices) such that 

(2) 

Then 

(3) 

Thus, if A is nonsingular, it can always be factored into the product of 
two nonsingular matrices P — 1 and Q - 1 . This, of course, is an "exis tence" 
statement; it does not specify an algorithm for carrying out the factoring. 

The fact that a nonsingular matrix is equivalent to a unit matrix, as 
expressed in (2), is a special case of a more general case. Let A be a 
matrix of order (m × n) and of rank r. Then by elementary transformations 
it can always be reduced to a matrix B of the form 

(4) 

The upper-left-hand submatrix is a unit matrix of order r. When A is 
square and nonsingular, n = m = r, and (4) reduces to (2). The matrix on 
the right side of (4) is called the normal form of matrix A. 

In (1), suppose that Q = U; the result is B = PA. The nonsingular 
matrix P is the product of elementary matrices. Multiplying A by P means 
carrying out elementary transformations on the rows of A. In the product 
matrix B, then the rows are simply linear combinations of the rows of A. 
Consequently, if two matrices are row equivalent, the rows of one are 
linear combinations of the rows of the other, and vice versa. In a similar 
way, if two matrices are column equivalent, the columns of one are linear 
combinations of the columns of the other; for example, in Chapter 2 it was 
found that the fundamental cut-set matrix Q f of a network is obtained by 
premultiplying the incidence matrix A by the nonsingular matrix A t . 
So we should expect the rows of Q f to be linear combinations of the rows 
of A or, equivalently, the cut-set equations to be linear combinations of 
Kirchhoff's-current-law equations at nodes, which we know to be true. 
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SIMILARITY TRANSFORMATION 

In the equivalence relation (1), there need be no relationship between 
the matrices P and Q. However, when there are certain specific relation
ships, the equivalence takes on such useful properties that it becomes 
convenient to classify and to name the corresponding transformations. 

Suppose that in (1), A is a square matrix and P = Q — 1 . Then 

(5a) 

or 

(5b) 

This transformation is a similarity transformation; A and B are called 
similar matrices. This transformation has already been discussed in 
Chapter 1, where we saw that two similar matrices have the same eigen
values. It is included here for completeness. 

CONGRUENT TRANSFORMATION 

Another special kind of equivalence is the following. In (1) suppose 
P = Q'. Then the transformation 

(6) 

is called a congruent transformation; B is said to be congruent to A . 
Since Q can be written as a product of elementary matrices, Q' will 

equal the product of the transposes of these elementary matrices, but in 
reverse order. Hence Q'AQ is obtained from A by carrying out pairs of 
elementary transformations, one transformation on the rows and a 
corresponding one on the columns. 

A comparison of the similar transformation in (5) and the congruent 
transformation in (6) shows that the two will be identical if Q — 1 = Q'. 
This property is given a special name. A matrix having the property 

( 7 ) 

is called an orthogonal matrix. 
If A is a real symmetric matrix of rank r, we can prove by means of a 

sequence of elementary transformations that it is congruent to a diagonal 
matrix D in the form 

( 8 ) 
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where D r is a diagonal matrix of order r and rank r, and Q is nonsingular. 
This resembles the normal form in (4), but there are a number of differ
ences. In the general case of (4), A need not be square, and the two matrices 
P and Q need not be related. 

The nonzero elements on the diagonal of D may be positive or negative. 
The rows and columns can always be interchanged to place the positive 
elements first. The corresponding product of elementary matrices can 
be lumped into Q. When the positive and negative terms are shown expli
citly, the result can be written as follows: 

(9) 

where both D p and D r _ p are diagonal matrices with positive diagonal 
elements, the order and rank of D p being p, and the order and rank of 
D r — p being r — p. 

Let us now define a matrix 

( 1 0 ) 

where 

( 1 1 ) 

Then after a further congruent transformation of D by the matrix D-1/2 

(9) may be written as 

( 1 2 ) 

Since D-1/2 is nonsingular, so also is QD - 1 / 2 . Hence the right-hand side is 
simply a congruent transformation of A. It is said to be a canonical 
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matrix; the congruent transformation of A in (12) is said to put A in 
canonical form. The integer p in this expression is called the index of 
the matrix. 

7.2 QUADRATIC AND HERMITIAN FORMS 

The subject of this section is a mathematical form that arises in net
works from a consideration of power dissipated or energy stored. In 
order to see how it arises, before we delve into its mathematical properties, 
let us consider a purely resistive network with a branch-resistance matrix 
R; the branch voltage and current vectors at any time are v(t) and i(t). 
The power dissipated in the network at any time is p(t) = i(t)'v(t). When 
the branch relation v = Ri is introduced, the power becomes 

(13) 

For a network with three branches, for example, the quantity on the 
right is 

This expression is quadratic in the currents and illustrates what we shall 
now describe. To indicate that the results are general we shall use a general 
notation. 

DEFINITIONS 

Let A = [aij] be a real, square matrix and x = [xi] be a column vector, 
real or complex. The expression 

(14) 
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when x is a real vector (i.e., the elements of x are real), and the expression 

(15) 

when x is a complex vector, are called quadratic forms. The reason for the 
name becomes clear when we perform the indicated matrix multiplica
tions and get 

(16) 

when the x's are real, and 

(17) 

when the x's are complex. We see that these are homogeneous expressions 
of degree 2 in the variables x1, x2, ..., xn. 

The matrix A in (14) through (17) is called the matrix of the quadratic 
form. We consider the x's to be variables, so that the matrix essentially 
defines the quadratic form. We shall concern ourselves with quadratic 
forms in which the matrix A is real and symmetric. Actually, any real 
quadratic form with a real matrix can be converted into a quadratic 
form with a symmetric matrix, because, if the x's and the aij's are real, 
we can write 

( 1 8 ) 

We see that the contribution to the quadratic form of the two terms on 
the left of this equation will remain unchanged if we replace both aij 

and aji in the matrix by half their sum. Thus, if A is not symmetric, we 
define the symmetric matrix B as 

(19) 

The matrix B is called the symmetric part of A. This operation leaves the 
diagonal elements of A unchanged, whereas the off-diagonal elements are 
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modified in the manner just described. From the preceding discussion it 
follows that 

(20) 

Let us now turn our attention to a quadratic form in which the vector 
x is complex. As long as the matrix A of the quadratic form is real and 
symmetric, the quadratic form x*Ax will be real. To prove this result, 
observe that 

(21) 

The second line is a consequence of A being symmetric, whereas the last 
term in the last line is a result of the fact that xjxi is the conjugate of 
×iXj. Everything in the last line is now real, thus proving the result. 

TRANSFORMATION OF A QUADRATIC FORM 

Let us now observe what happens to a quadratic form when the vector 
x is subjected to a real, nonsingular linear transformation. Let x = Qy, 
where Q is nonsingular and y is a column vector. The quadratic form 
becomes 

(22) 

where we used the fact that Q is real to write Q* = Q'. Within the paren
theses we find a congruent transformation of A. It was observed earlier 
that a real, symmetric matrix A can always be reduced to the canonical 
form of (12) by means of a nonsingular, congruent transformation. Hence 
the quadratic form can be reduced to 

(23) 

We can state this result as the following theorem: 
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Theorem 2. Every real quadratic form x*Ax in which A is real and 
symmetric can be reduced by means of a real, nonsingular, linear trans
formation x = Qy to the canonical form given in (23) in which Γ is the rank 
of A and p is the index. 

This theorem is, of course, an existence theorem, it does not give any 
guidance as to how one goes about finding the appropriate linear trans
formation. One procedure for doing this is called the Lagrange reduction, 
which consists of repeatedly carrying out a process similar to completing 
the square. Let us illustrate this with a number of examples. 

Examples 

1. For simplicity, suppose x is a real vector. Let 

In this process 4 x 2

2 was added and subtracted to complete the square. 
Now set 

Then 

In this case the rank of A equals its order (2) and the index is 1. 
2. This time let x be a complex vector and 
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The first set of terms can be written as a magnitude square by adding 
(x2 + 3x 3)(x 2 + 3x 3 ) , which means subtracting the same quantity from 
the second set of terms. The result of this operation is 

In the last step, 9x 3 x3 was added and subtracted in order to " complete 
the square " in the preceding step. Now let 

Then the quadratic form finally becomes 

(24) 

DEFINITE A N D SEMIDEFINITE FORMS 

It can be observed from (23) that the value of the quadratic form will 
normally depend on the values of the y-variables. However, it may happen 
that the value of the quadratic form will remain of one sign independent 
of the values of the variables. Such forms are called definite. In particular, 
a real, quadratic form x*Ax is called positive definite if for any set of 
complex or real numbers x1, x2, ..., xn, not all zero, the value of the 
quadratic form is strictly positive. Similarly, we say the quadratic form 
is positive semidefinite if 

(25) 

for all x ≠ 0, provided there is at least one set of values of the variables 
for which the equality holds. Since the positive property of such a quad
ratic form is not dependent on the values of the variables, it must be 
associated with the matrix A of the quadratic form. The following 
terminology, then, appears quite natural. A real, symmetric matrix A 
is said to be positive definite or semidefinite according as the quadratic form 
x*Ax is positive definite or semidefinite. 

We need to find means for determining whether or not a quadratic 
form is positive definite. An approach to this is obtained by considering 
the canonic form in (23). The matrix A of the form is characterized by 
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three integers: the order n, the rank r, and the index p. If the index is less 
then the rank (but greater than zero), the matrix can be neither positive 
definite nor positive semidefinite. 

Suppose that the index equals the rank: p = r. Then all the signs in 
(23) will be positive. There are two possibilities: (1) the rank is equal to 
the order, r = n, so that A is nonsingular; or (2) r < n, so that A is singular. 
Suppose r < n. Then choose y1 up to yr = 0 and y r + 1 to yn ≠ 0. This will 
cause the quadratic form to vanish but, with x = Qy, not all the x's will 
be zero. For any other choice of y-variables, the quadratic form will be 
positive. Hence the quadratic form satisfies (25) and is positive semi-
definite. The converse is, clearly, also true. 

On the other hand, if r = n (with p still equal to r), so that A is non
singular, then every nonzero choice of the y's (and hence of the x's) will 
lead to a positive value of the quadratic form. The conclusion is the follow
ing theorem: 

Theorem 3. A quadratic form having a real, symmetric matrix A of order n, 
rank r and index p is positive definite if and only if A is nonsingular and 
the index equals the rank: p = r = n. It is positive semidefinite if A is 
singular and p = r. 

If a quadratic form is positive definite, then it can be seen from (23) 
that its canonical matrix will be a unit matrix; that is, the nonsingular 
linear transformation x = Qy leads to 

(26) 

It is possible to find the determinant of A by taking the determinant of both 
sides of this expression. Since det U = 1, and the determinant of a product 
of matrices of the same order equals the product of determinants, we get 

(27) 

Since Q and its transpose have the same determinant, which is nonzero 
since Q is nonsingular, we obtain, 

(28) 

This result expresses the fact that the determinant of a positive 
definite matrix is positive. Furthermore, suppose we set the last variable 
xn in the quadratic form equal to zero. Then none of the coefficients ani 

or ain of the matrix A will appear in the quadratic form. This is most 
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easily seen from (16) with xn = 0. Hence we might as well remove the 
nth row and column of A and consider it to be of the (n — l ) th order. 
For this new matrix (28) still applies. But the determinant of the new 
matrix is the principal cofactor of the old matrix obtained by removing 
the last row and column. Since permuting the variables has no effect on 
the quadratic form, it is immaterial which one of the variables we call 
xn. It follows that all the first principal cofactors of a positive definite 
matrix will be positive. 

This argument can now be repeated by setting two of the variables 
equal to 0, then 3, and so on, up to all but one. We shall find that all the 
principal cofactors of A will be positive. In the last case, with all but one 
of the variables equal to zero, we find that all the elements of A on the 
principal diagonal must be positive. (These elements are the (n — l ) th 
principal cofactors of A). 

What we have succeeded in proving is that, if a matrix is known to be 
positive definite, then its determinant and all its principal cofactors will 
be positive. Actually, what we need for testing a given matrix is the 
converse of this result. It happens that this is also true. The proof, how
ever, is quite lengthy and will not be given. For future reference we shall 
list this result as a theorem. 

Theorem 4. A real symmetric matrix A is positive definite if and only 
if its determinant and principal cofactors are all positive. It is positive 
semidefinite if and only if its determinant is zero and all its principal 
cofactors are non-negative. 

As an example, consider the real matrix previously used to illustrate 
the Lagrange reduction. It is required to form the determinant and 
principal cofactors. 

We observe that the diagonal elements are all positive. Since this is a 
third-order matrix, the diagonal elements are the second cofactors. The 
first principal cofactors are easily formed: 

They are all positive. This leaves the determinant, which is found to be 
—4. This is less than zero, and hence A is not positive definite, or semi-
definite. 
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HERMITIAN FORMS 

Up to this point we have been dealing with quadratic forms having real 
matrices that are symmetric. If the matrix of a quadratic form is complex, 
it is possible to replace the matrix by its Hermitian part without changing 
the value of the form, just as a real matrix_was replaced by its symmetric 
part. Let H be a Hermitian matrix (hji = hij). The expression 

(29) 

is called a Hermitian form. When H is real, the Hermitian form reduces to 
a quadratic form. It should be expected, then, that the properties of 
Hermitian forms are analogous to those of quadratic forms. We shall 
merely list a few, without extensive comment. 

By carrying out an expansion as we did in (21) for a quadratic form, it 
can be shown that the value of a Hermitian form is real. 

A Hermitian form of rank r can be reduced to the canonical form given 
on the right side of (23) by a nonsingular linear transformation x = Qy, 
where Q is generally complex. 

The terms " positive definite " and " semidefinite " apply to Hermitian 
forms and are defined in the same way as for quadratic forms. The theorem 
relating to the determinant and principal cofactors of positive definite and 
semidefinite matrices applies to a Hermitian matrix also. 

7 . 3 ENERGY FUNCTIONS 

Now that a mathematical background has been presented, we are 
ready to turn to a consideration of network functions. Specifically, we 
shall relate certain network functions to the energy stored and dissipated 
in the network. Then, from a physical knowledge of the nature of this 
energy, we can draw some conclusions about the properties of network 
functions. 

Consider a multiport network excited by voltage sources at each port. 
Figure 1 shows the use of a two-port network, but the discussion will be 

Fig. 1. Excited two-port. 
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carried out in terms of a general multiport. The network, which is linear 
and time invariant, is assumed to be initially relaxed. Now consider 
writing a set of loop equations for this network. Referring back to Chapter 
2, we find that it will have the form 

(30a) 

(30b) 

where Z m is the loop impedance matrix, and R m , L m , and D m are the 
loop-parameter matrices; E is the equivalent loop source voltage vector. 
Since there are no other sources except the ones at the ports, and the 
loops are chosen such that each voltage source lies on only one loop, and 
the loop orientation relative to the source is as shown in Fig. 1, then 
an element of E will be nonzero for the loops that include a port and 0 
for the internal loops. 

In (30), the variables are Laplace transforms of voltages and currents. 
When excitations are sinusoids of the same frequency, the same expres
sions, (30), are valid, with the transform variables replaced by phasors 
and s replaced by jω. (See Problem 50.) Let us use the subscript p to 
designate phasors; for example, Ip is a complex number whose magnitude 
is the rms value of a sinusoidal current and whose angle is its phase. Then, 
assuming an n-port so that E p has n nonzero components, and assuming 
m loops so that I m p has m components, (30) becomes 

(31) 

Let us now compute the power supplied to the network. The complex 
power supplied at port k is Impk VV]c. The total complex power delivered 
at all the ports is therefore I ^ E ^ . The real part of this is the real, 
average power. The imaginary part is proportional to the net average 
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energy stored in the network, the difference between the average energy 
stored in the inductors and in the capacitors. Thus, 

(32a) 

(32b) 

The complex power input to the network can be obtained by premulti
plying both sides of (31) by I * . The result becomes 

(33) 

(On the right side appear only those loop currents that are port currents, 
so that the m subscript can be omitted.) We find that the complex power 
input on the right equals the sum of three terms on the left. We recognize 
each of these terms as a quadratic form. 

For a nonreciprocal network the loop-parameter matrices are not 
symmetric. However, as discussed in the last section, the value of the 
quadratic form is unchanged if the matrix of the form is replaced by its 
symmetric part. We shall assume that this has been done. Each of the 
quadratic forms on the left side of (33) is real. Hence comparing (32) and 
(33) leads to the conclusion that 

(34a) 

(34b) 

(34c) 

It is possible to obtain equivalent expressions for each of these quad
ratic forms. The matrix of each form is one of the loop-parameter matrices. 
Returning to Chapter 2, we find that the loop-parameter matrices can be 
written in terms of the branch-parameter matrices, as follows: 

(35a) 

(35b) 

(35c) 
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where R, L, and D are the branch-parameter matrices, and B is the loop 
matrix. 

Let us consider the quadratic form that involves R m . Using (35a). 
results in 

(36) 

Recall from (56) in Chapter 2 that B T m p = I p is the loop transformation 
that specifies the branch currents Ip in terms of loop currents. Thus 

(37) 

where b is the number of branches in the network. For a general non
passive, nonreciprocal network, nothing specific can be stated about this 
quadratic form. 

PASSIVE, RECIPROCAL NETWORKS 

Let us now restrict consideration to passive, reciprocal networks. In 
this case, the branch-resistance matrix is diagonal. Then (37) becomes 

(38) 

We know that the real power supplied cannot be negative for such net
works. Hence the quadratic form must be at least positive semidefinite. 
It will be positive definite if none of the branch resistances is zero. This is 
true because in that case the diagonal matrix R will be nonsingular. The 
same conclusion follows from the right side of (38), as it should, since Rk 

is non-negative for all k. 
Tracing through identical arguments for the other two quadratic forms 

involving the loop-inductance and inverse-capacitance parameters leads 
to 

(39a) 

(39b) 

Note the differences on the right-hand sides of these two expressions. The 
branch-inverse-capacitance matrix is diagonal, whereas the branch-
inductance matrix is not necessarily diagonal. When there is no mutual 
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inductance, L is also diagonal. Again, from the interpretation in (34) 
as average energy stored, these quadratic forms must be positive semi-
definite. 

For purposes of convenient reference we define the following notation: 

(40a) 

(40b) 

(40c) 

From their physical interpretations, these quantities are collectively 
called energy functions, even though the first one is dimensionally not 
energy. The choice of symbols for these functions is an unfortunate one, 
since they can be confused with other quantities having similar symbols; 
but they have become quite standard in the literature, so we shall con
tinue to use them. 

The positive semidefinite condition on T( jω) imposes conditions on the 
sizes of mutual inductances. If mutual coupling in a network is always 
between pairs of branches only, the semidefinite condition is equivalent 
to the usual constraint that the coupling coefficient cannot exceed unity. 
If more than two branches are mutually coupled, the restriction of the 
coupling coefficient to values less than unity is not sufficiently strong to 
insure positive semidefiniteness; that is, in this case positive definiteness 
is a stronger condition than unity coupling. (See Problem 17.) 

As an illustration, consider the network in Fig. 2. Both sources are 

Fig. 2. Illustrative example for energy functions. 

sinusoidal at an angular frequency ω. The loop-parameter matrices are 
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The energy functions are 

Since Ipl + Ip2 equals branch current 3, the term R3|Ipl + Iρ2|2 is the 
power dissipated in R3 and |Ipl + Ip2|2 I)3/2ω2 is the energy stored in 
I)3. The positive semidefinite nature of T(jω) is not evident from the 
right-hand side. Observe, however, that the matrix L m is singular only for 
Li L2 — M2 = 0, which is the condition of unity coupling. 

To summarize the result so far obtained, the loop resistance, inductance, 
and reciprocal-capacitance matrices R m , L m , and D m of a passive, 
reciprocal network are positive semidefinite. This result was established by 
giving physical interpretations to certain quadratic forms based on a 
sinusoidal steady-state analysis. 

Let us now return to the original loop equations in (30) in which the 
variables are Laplace transforms. Without any concern for physical 
interpretation, let us premultiply both sides by I*(s). The result will be 

(41) 

Again we find the same quadratic forms we had before, only now the 
variables are loop-current transforms rather than phasors. The quadratic 
forms in this equation do not have an energy interpretation like those of 
(33). However, the matrices of these quadratic forms are identical with the 
former ones. Hence these quadratic forms are positive semidefinite. We 
therefore give them symbols similar to those of (40) and continue to call 
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them energy functions, although even dimensionally they do not re
present energy. 

(42a) 

(42b) 

(42c) 

When this notation is used, (41) becomes 

(43) 

(The notation on the right side has been modified in two ways. The m 
subscripts have been dropped because the only loop currents that remain 
in the product I*E are those that are the same as port currents. Also, the 
only nonzero components in E are the port voltages. Hence I * E can be 
replaced by I*V, where I and V are the port vectors.) 

Let us digress here for a moment. This entire development started from 
the loop equations. Alternatively, a completely dual development can 
proceed on the basis of the node equations. Instead of the loop-parameter 
matrices R m , L m , and D m , the conductance, inverse-inductance, and 
capacitance node-parameter matrices G n , Γ n , and C n , respectively, will 
appear. Energy functions can now be defined in terms of these parameter 
matrices and the node-voltage vector V n . These will have the same form 
as (42) with V n in place of I m and with the node-parameter matrices in 
place of the loop-parameter ones. From these it is concluded that the 
node conductance, capacitance, and inverse-inductance matrices G n , C n , 
and Γ n of a passive, reciprocal network are positive semidefinite. An equation 
similar to (43) can now be written with these new energy functions, with 
V and I interchanged. This alternative development is not needed to carry 
on the subsequent discussion, just as the node system of equations itself 
is really superfluous. However, just as node equations provide helpful 
viewpoints and often simplify computation, so also this alternative 
approach may sometimes be useful. You should work out the details of 
the procedure just outlined if you are interested. 

Look again at (43). The quantities appearing on the left side are defined 
in terms of loop-current variables (or branch-current variables through 
the loop transformation). But on the right we find port variables. Of 
course, the port voltage and current variables are related to each other. 
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If this relationship is used on the right side of (43), an extremely important 
result follows. As a relation between the vectors V and I, we can use 

(44a) 

or 

(44b) 

The first of these can be inserted directly into (43); the second can be 
inserted after taking the conjugate transpose of (43) which leads to 

(45) or 

This follows because the quadratic forms are real scalars. The result of 
inserting (44a) into (43) and (44b) into (45) is 

(46a) 

(46b) 

It is from these expressions that some of the most fundamental proper
ties of network functions originate. We shall now embark on a study of 
these properties. 

THE IMPEDANCE FUNCTION 

Let us consider first the simplest multiport; namely, a one-port. In this 
case Z o c is the scalar Z(s), the impedance of the one-port, and I reduces to 
the scalar input current. From (46a) the expression for Z(s) becomes 

(47) 
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Note that the quadratic forms are functions of s only through the fact that 
the loop currents are functions of s. The real, positive semidefinite nature 
of the quadratic forms does not depend on the current variables, but only 
on the loop-parameter matrices, which are constant matrices. 

The preceding expression can be separated into real and imaginary 
parts after replacing s by σ + jω. Thus 

( 4 8 a ) 

( 4 8 6 ) 

Notice that these equations apply no matter what the value of s may be, 
except at zeros of I(s). These two are extremely important equations, from 
which we can draw some interesting conclusions. For later reference let 
us state these results as a theorem. 

Theorem 5. Let Z(s) be the driving-point impedance of a linear time-
invariant, passive, reciprocal network N. Then the following statements 
are true. 

(a) Whenever σ ≥ 0, Re [Z(s)] ≥ 0. 

(b) If N contains no resistances (F 0(s) = 0), then 

σ > 0 implies Re [Z(s)] > 0, 
σ = 0 implies Re [Z(s)] = 0, 
σ < 0 implies Re [Z(s)] < 0. 

(c) If N contains no capacitances (V 0(s) = 0), then 

ω > 0 implies lm [Z(s)] > 0, 
ω = 0 implies lm [Z(s)] = 0, 
ω < 0 implies lm [Z(s)] < 0. 

(d) If N contains no inductances (T 0(s) = 0), then 

ω > 0 implies lm [Z(s)] < 0, 
ω = 0 implies lm [Z(s)] = 0, 
ω < 0 implies lm [Z(s)] > 0. 

These results follow immediately from (48). Part (a) states that the 
value of Z(s) corresponding to a value of s lying in the right half-plane 
must itself lie in the right half-plane. It leads to the discussion of positive 
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real functions, which we shall take up next. Part (b) leads to the historic
ally important reactance theorem of Foster. Parts (c) and (d) lead to 
Cauer's results on RL and RC networks. 

CONDITION ON ANGLE 

Another property of the impedance function can be determined from 
(47). Note that |I|2, F0, T0, and V0 are all positive constants for any 
value of s. Hence Z(s) can be written as 

(49) 

where each of the coefficients is positive. Let s0 = σ 0 + j ω 0 be a point in 
the right half-plane; that is, σ 0 > 0, as shown in Fig. 3. Each of the 

Fig. 3. Demonstration that |arg Z| < |arg s\ for |arg s\ < π / 2 . 

(a) (b) 

terms on the right of (49) can be represented by a directed line in the 
complex plane, as shown in Fig. 3b for the corresponding value of s. 
Whatever the legnths of these lines may be, the sum cannot lie outside the 
cross-hatched sector shown in Fig. 3a. By observing from the diagram 
what happens for a number of possible angles of s, including 0 and π/2 
radians, the following result is obtained: 

(50) 
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This seems to be a stronger condition on the impedance than the condi
tion Re [Z(s)] ≥ 0 for Re s ≥ 0. Not only must Z(s) be in the right half-
plane when s is but its location there is limited by a condition on its angle. 
It is not, however, a stronger condition, since it followed from the 
previous one. 

What has been done in this section is to start with a class of networks 
and to derive some properties that the driving-point impedance of such 
networks necessarily satisfies. This was done from considerations of 
energy in the frequency domain. An alternative approach would be to 
start from the definition of a passive network given in Chapter 1 and 
repeated here for a one-port: 

( 5 1 ) 

Suppose the current and voltage at the terminals of a passive network 
are 

( 5 2 a ) 

( 5 2 b ) 

where so = σ 0 + j ω 0 with σ 0 > 0 and I0 = |I0| e j α . We assume these signals 
were initiated at t = — ∞ , at which time there was no initial energy stored 
in the network. Because e σ 0 t = 0 for t = — ∞ , both signals start from 0. 
There is, then, no question of a transient, and the given expressions for 
current and voltage represent the excitation and total response. 

Inserting these expressions for v and i into (51) leads, after some man
ipulation, to 

( 5 3 ) 

Now express the multiplier of the exponential in the last brackets in terms 
of its magnitude and angle: 

( 5 4 ) 

When this is inserted into the preceding equation, the result will be 

( 5 5 ) 
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The worst case occurs when the cosine equals — 1 . For this case the con
dition reduces to 

or 

(56) 

Each side of this expresssion is the real part divided by the magnitude of 
a complex quantity, which equals the cosine of the corresponding angle. 
Hence 

(57) 

from which it follows that 

(58) 

Since Re s0 = σ 0 > 0, this is identical with (50). 
This completes the development of the general necessary properties of 

impedance functions of passive networks. Completely similar properties 
could have been developed for the admittance function by starting from 
(46b) instead of (46a). Thus Theorem 5 and Eq. (50) are true when Z(s) is 
replaced by Y(s). We shall now define a class of mathematical functions 
having these same properties and shall investigate the detailed behavior 
of this class of functions. 

7.4 POSITIVE REAL FUNCTIONS 

A positive real function F(s) is an analytic function of the complex 
variable s = σ + jω, which has the following properties: 

1. F(s) is regular for σ > 0. 
2. F(σ) is real. 
3. σ ≥ 0 implies Re [F(s)] ≥ 0. 

This is a mathematical definition for a class of mathematical functions. 
Our motivation in making this definition is the fact that a network func-
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tion of interest—namely, a driving-point impedance (or admittance)— 
possesses these properties. By making a mathematical study of positive 
real functions we can perhaps determine things about impedances that 
we could not establish from physical reasoning alone. The concept of a 
positive real function, as well as many of the properties of positive real 
functions that we shall consider, are due to Otto Brune. 

We shall now show that, if a function is rational and satisfies the last 
two of the above conditions, it will automatically satisfy condition 1. We 
shall do this by showing that a pole of order n of a real rational function 
is surrounded by 2n sectors in which the real part of the function is 
alternately positive and negative. Let s0 be a pole of order n of the rational 
function F(s). The case n = 3 is illustrated in Fig. 4. In the neighborhood 

Fig. 4. Pole of order 3. 

of the pole of order n, the function has a Laurent expansion of the form 

(59) 

If a sufficiently small neighborhood of s0 is chosen, the first term of the 
Laurent expansion can be made much larger in magnitude than the rest; 
hence the real part of F(s) in this neighborhood will take on both positive 
and negative values. We show this as follows: If we write 

(60a) 

(606) 

then 

(61) 
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Since θ is a fixed angle and φ can vary from 0 to 2π in this neighborhood, 
we see that the real part of the dominant term changes sign 2n times as φ 
varies from 0 to 2π. Therefore the real part of F(s) also changes sign 2n 
times (although not necessarily at exactly the same values of φ, due to the 
other terms in the Laurent expansion). 

Now suppose that the function F(s) satisfies the last two conditions in 
the definition of a positive real function, but it has a pole in the interior 
of the right half-plane. According to what we have just proved, the real 
part of F(s) will then take on both negative and positive values in the 
right half-plane, which contradicts condition 3. 

We conclude that in the case of rational functions, whose only singular 
points are poles, condition 1 of the definition of a positive real function is a 
consequence of the other two conditions and hence is unnecessary. 

As a further aid to the understanding, the definition of a positive real 
function can be interpreted as a conformal mapping. A positive real func
tion W= F(s) maps the real s-axis into the real W-axis, and maps the 
right half s-plane into the right half W-plane. This is illustrated in Fig. 5. 

Fig. 5. Mapping by positive real functions. 

s-plane W-plane 

An immediate consequence of this interpretation is the fact that a posi
tive real function of a positive real function is itself positive real; that is, if 
F1(s) and F2(s) are pr (this is used as an abbreviation for positive real), 
then 

(62) 

is also pr; because the right haJf s-plane goes into the right half F2-plane 
since F2(s) is positive real. Also, the right half F2-plane goes into the right 
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half F1-plane since F1 is positive real. The composite mapping therefore 
maps the right half s-plane into the right half F3-plane. The real axis is 
preserved throughout. 

This is a useful result. We can use it to show immediately that, if F(s) 
is pr, so are 1/F(s) and F(l/s). To prove this result we merely observe that 

(63) 

is a pr function. Now we use 1/s and F(s) as Fi(s) and F2(s) in (62), in 
both possible ways, and the result follows immediately. 

From the fact that the reciprocal of a pr function is itself pr, it follows 
that a positive real function can have no zeros in the right half-plane; 
because if it did, then its reciprocal would have poles in the right half-
plane, which is impossible. Since the impedance of a passive reciprocal 
network is a pr function, its reciprocal—the admittance—is also a pr 
function. 

From a conformal-mapping point of view, the points F(s) = 0 and ∞ 
(these are the zeros and poles of the function), which are on the boundary 
of the right half F-plane, cannot be images of any interior points of the 
right half s-plane. Let us now inquire into the properties resulting when 
other boundary points of the right half F-plane are images of boundary 
points of the right half s-plane; that is, let a point on the jω-axis be mapped 
by a pr function F into a point on the imaginary axis of the F-plane. 
If j ω 0 is the point in question, then 

(64) 

where X 0 is real (positive, negative, or zero). 
Consider a neighborhood of j ω 0 in the s-plane and the corresponding 

neighborhood of j X 0 in the F-plane, as shown in Fig. 6. Let si denote a 
point in the right half-plane, in this neighborhood of j ω 0 . Let us now 

Fig. 6. Conformal mapping by positive real functions. 
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expand F(s) in a Taylor series about j ω 0 and evaluate it at s = s1. The 
result is 

(65) 

where F(n)(jω0) is the first nonvanishing derivative of F(s) at j ω 0 . 
As si approaches j ω 0 , the dominant term on the right will be the first 

term. Let us define. 
(66a) 

(66b) 

(66c) 

Then, in the limit, we shall find from (65) that 

(67) 

But the positive real condition requires that |φ| ≤ π/2 as long as |ö| ≤ π/2. 
Therefore we conclude from (67) that 

(68a) 

(68b) 

Thus the first nonvanishing derivative is the first one, and its angle is 
zero at s = j ω 0 . This is a very important result. For future reference we 
shall state it as a theorem: 

Theorem 6. If any point on the jω-axis is mapped by a positive real function 
F into a point on the imaginary axis in the F-plane, then at this point the 
derivative dF/ds is real and positive. 

A number of other results follow from this important theorem. Note that 
if F(s) has a zero or a pole on the jω-axis, the conditions of the theorem 
are satisfied. In the case of a zero ( X 0 = 0), a point on the jω-axis is 
mapped into the origin of the F-plane, which is on the imaginary axis. 
Hence the derivative dF/ds is real and positive. This also implies that the 
zero is a simple one, since at a higher order zero the first derivative will be 
zero. If F(s) has a pole on the jω-axis, its reciprocal will have a zero there 
and the theorem will apply to the reciprocal. However, d(l/F)/ds evaluated 
at a pole of F(s) is the reciprocal of the residue of F(s) at the pole. (See 
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Appendix 2.) These considerations can now be stated as the following 
theorem. 

Theorem 7. If a positive real function has any poles or zeros on the jω-axis 
(including s = 0, ∞ ) , such poles or zeros must be simple. At a simple zero 
on the jω-axis the derivative is real and positive. At a simple pole on the jω-
axis, the residue is real and positive. 

NECESSARY A N D SUFFICIENT CONDITIONS 

We have up to this point collected quite a number of necessary condi
tions that a positive real function satisfies. What we would like to do is to 
find a set from among these necessary conditions which proves to be 
sufficient as well. The result is contained in the following theorem: 

Theorem 8. A rational function F(s) with real coefficients is positive 
real if and only if 

(a) F(s) is regular for σ > 0; 
(b) Poles on the jω-axis (including s = 0, ∞) are simple, with real positive 

residues; 
(c) Re [F(jω)] ≥ 0 for all ω, except at the poles. 

That these conditions are necessary is obvious from the definition of a 
pr function and from Theorem 7. Therefore only the sufficiency needs to be 
proved; that is, let us assume that a function F(s) satisfies these conditions 
and show that the function must be positive real. Let ω1, ω 2 , ..., ω k be 
the poles on the jω-axis and let us examine the principal parts at these 
poles. If there is a pole at the origin, the principal part is 

where k0 is real and positive. It is evident that F0(s) is itself pr and, in 
addition, that 

Similarly, the principal part at a possible simple pole of F(s) at infinity is 

where k∞ is real and positive; F∞(s) is also pr and, in addition, its real 
part on the jω-axis is zero; that is, 
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Any other poles on the jω-axis must occur in conjugate pairs and with 
conjugate residues, since F(s) is a real function. Since the residues are 
real by hypothesis, the two residues are equal. Taking the principal parts 
at the conjugate poles j ω i and —jω i together, we get 

where ki is real and positive. This function is also positive real, and, in 
addition, has the property 

(We may note that F0(s) is the impedance of a capacitance, F∞(s) that of 
an inductance, and Fi(s) that of a parallel tuned circuit.) 

Thus we can subtract from the given function F(s) the principal parts 
at all of its poles on the jω-axis. The remainder function Fr(s) still has 
property (c) of the theorem; that is, 

(69) 

The remainder function Fr(s) is a function that is regular in the right 
half-plane and its entire boundary, the jω-axis, including the point at 
infinity. For such a function the minimum value of the real part through
out its region of regularity lies on the boundary. This can be proved by 
using the maximum-modulus theorem (see Appendix 2) in the following 
way. Let G(s) = e - i Γ r ( s ) This function will have the same region of regular
ity as Fr(s). Hence, according to the maximum-modulus theorem, the 
maximum magnitude of G(s) for all σ ≥ 0 lies on the jω-axis. Since 

(70) 

the maximum magnitude of G(s) will correspond to the smallest value of 
Re[F r(s)]. This proves the desired result that the minimum value of 
Re [Fr(s)] for all σ ≥ 0 occurs on the jω-axis. Since according to (69) this 
value is nonnegative, the real part of Fr(s) must be non-negative every
where in the right half-plane; that is, 

Since, in addition, Fr(σ) is real, we conclude that Fr(s) is a positive real 
function. Now we can write 

(71) 
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We have shown that each term on the right is pr. You can easily show 
that the sum of two (or more) pr functions is itself pr. Hence, F(s) is 
positive real. This completes the proof of the sufficiency of the stated 
conditions. 

Since the reciprocal of a pr function is also pr, we can restate these 
necessary and sufficient conditions in terms of the zeros of F(s). 

Theorem 9. A real rational function F(s) is positive real if and only if— 

(a) F(s) has no zeros in σ > 0. 
(b) Zeros on the jω-axis (including s = ∞) are simple, with real positive 

derivatives. 
(c) Re [F(jω)] ≥ 0 for all ω (except at poles). 

This theorem follows directly from the preceding one if we remember that 
the residue of a function at a simple pole is the reciprocal of the derivative 
of the reciprocal of the function. 

In testing a given function to determine positive realness, it may not 
always be necessary to use the necessary and sufficient conditions listed 
in the preceding two theorems. It may be possible to eliminate some 
functions from consideration by inspection because they violate certain 
simple necessary conditions. Let us now discuss some of these conditions. 

We have seen that a rational positive real function has neither zeros 
nor poles in the right half s-plane. We previously defined a Hurwitz poly
nomial as one that has no zeros in the right half-s-plane. This definition 
permits zeros on the jω-axis. With this terminology, we see that a positive 
real function is the ratio of two Hurwitz polynomials. 

The factors that constitute a Hurwitz polynomial must have one of the 
following two forms: (s + a) for real zeros or (s2 + as + b) for a pair of 
complex zeros, with a being non-negative and b being positive. If any 
number of such factors are multiplied, the result must be a polynomial 
all of whose coefficients are non-negative. Furthermore, unless all the 
factors correspond to zeros on the jω-axis, all the coefficients of the poly
nomial will be strictly positive. If we introduce the added condition that 
zeros on the jω-axis be simple, then it is found that, when all the zeros are 
on the jω-axis, every other coefficient will be zero and the remaining 
coefficients will be strictly postive. Even though this is a necessary 
condition for a Hurwitz polynomial, it is not sufficient, as the following 
counter-example readily demonstrates: 

(72) 

The polynomial on the right has no missing powers of s and ail coefficients 
are positive, yet it has a pair of zeros in the right half-plane. 
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Hence, if a rational function is presented as a candidate for positive 
realness, this criterion can serve as a negative type of test. If the numerator 
or denominator polynomials have any negative coefficients, or missing 
coefficients (other than all alternate coefficients as described above), the 
function can be discarded. On the other hand, if this test is passed, 
nothing definite can be said about the function. 

Another simple test follows from the fact that a positive real function 
can have no more than a simple pole or a simple zero at zero or infinity 
(which are on the jω-axis). This requires that the highest powers of s in 
numerator and denominator not differ by more than unity; and similarly 
for the lowest powers. 

To illustrate we shall list some rational functions and see if they can 
be ruled out rapidly as not satisfying certain necessary conditions for 
positive real functions. 

Function Remarks 

No more than simple pole at infinity; pos
itive coefficients. Might be positive real. 

Coefficient of cubic term missing. Not 
positive real. 

Double zero at infinity. Not positive real. 

Coefficients missing in numerator looks 
bad, but all even powers missing. Might 
still be positive real. (In fact, it is.) 

No negative or missing coefficients, but 
triple pole at s = —2 might seem peculiar. 
Not ruled out. (In fact, it is pr.) 

THE ANGLE PROPERTY OF POSITIVE REAL FUNCTIONS 

An important property of the impedance of a passive network that was 
found earlier was the angle property given in (50). This property can be 
proved mathematically, without recourse to energy considerations, 
simply from the definition of a positive real function. However, the proof 
is somewhat lengthy even though it is straightforward. It will therefore 
not be given but will be outlined in a problem. Furthermore, assuming 
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the truth of (50) for a real function F(s), it follows that F(s) is positive 
real. 

Thus this angle property is not only necessary but sufficient as well. We 
shall therefore state it here as a theorem. 

Theorem 10. A real rational function F(s) is positive real if and only if 

(73) 

B O U N D E D REAL FUNCTIONS 

It is possible to relate another function to a positive real function 
through a bilinear transformation. The function so obtained possesses 
some interesting properties. Consider the following bilinear transformation: 

(74) 

The mapping between the F- and W-plane is shown in Fig. 7. The right 
half of the F-plane is mapped into the inside of the unit circle in the W-
plane. The jω-axis becomes the contour of the unit circle. 

If F(s) is a pr function, right-half-plane values of s map into right-half-
plane values of F and so are mapped inside the W-plane unit circle. When 

Fig. 7. Mapping of bilinear transformation. 

F-p lane W - p l a n e 
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s=jω, F(jω) takes on values in the right-half-plane or on the jX-axis, 
and these fall inside or on the W-plane unit circle. Hence, if F(s) is pr 
and W(s) is related to F through (74), then 

(75) 

Now consider the poles of W(s). From (74), these occur where 
F(s) = — 1. Values of s for which this is true cannot lie in the closed 
right half-plane if F(s) is pr, since that would require Re F < 0 for 
Re s ≥ 0. Hence W(s) must be regular both in the right half-plane and 
on the jω-axis. 

A function W(s) having these properties—namely, W(s) regular in the 
closed right half-plane and | W(jω)| ≤ 1—is called bounded real. Thus a 
bilinear transformation of a positive real function is bounded real. The 
converse of this is also true; that is a bilinear transformation of a bounded 
real function is positive real. Sketching the few steps in the proof is left to 
you . 

This relationship of bounded real and positive real functions leads to an 
interesting conclusion. Suppose a pr function F(s) is written as 

(76) 

where πii and m2 are even polynomials, and n± and n2 are odd. Then the 
bilinear transformation (74) gives 

(77) 

The magnitude squared | W(jω)|2 becomes 

(78) 

Now suppose mi and m2 are interchanged; the value of | W(jω)| will 
clearly not be affected, as observed from (78), neither will the poles of 
W(s), as observed from (77), although the zeros of W(s) will. Let the new 
W-function obtained by interchanging mi and m2 be called W(s). It is 
clearly a bounded real function. From (77), W is found to be 

(79) 
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The corresponding pr function F(s) is found from the bilinear transforma
tion to be 

(80) 

This is simply the original F(s) with the even powers of the numerator and 
denominator interchanged. Since F(s) is a bilinear transformation of a 
bounded real function, it is pr. The reciprocal of F is also pr. But the 
reciprocal of F is the same as the original F(s), with ni(s) and n2(s) inter
changed. The conclusion is given as the following theorem: 

Theorem I I . If in a positive real function the even powers of the numerator 
and denominator, or the odd powers, are interchanged, the result is a positive 
real function. 

THE REAL PART FUNCTION 

Since the real part of a pr function plays such a central role in its 
properties, we should examine the behavior of the real part of such a 
function on the jω-axis. Remember that the j-axis real part of F is equal 
to the even part evaluated at s = jω; that is, 

(81) 

so that statements made about the even part can easily be interpreted in 
terms of the real part on the jω-axis. 

We already know that R(ω) is necessarily an even function of ω and 
non-negative for all ω. It is also easy to establish that the even part of 
F(s) can have no poles on the jω-axis. Any poles of the even part would 
also have to be poles of F(s); but on the jω-axis, these are simple. If we 
consider F(s) expanded in partial fractions as in (71), the function F(—s) 
will contain the same terms, but all those involving the poles on the jω-
axis will have a negative sign. Hence, in forming the even part, 
F(s)+ F(—s), these will all cancel, leaving the function with no poles 
on the jω-axis. Interpreted in terms of the real part, this means that R(ω) 
must be bounded for all ω. 

Now let U S consider a possible zero of R(ω). Figure 8 shows a sketch 
of R(ω) versus ω in the vicinity of a zero. Because of the positive real 
requirement, R(ω) must remain positive on both sides of the zero. It 
follows that a zero of R(ω) on the ω-axis cannot be of odd multiplicity; 
it must be of even multiplicity. 
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Fig. 8. Sketch of real part of positive real function. 

We have here determined certain necessary conditions for the j-axis 
real part of a positive real function. Let us now list a set of necessary and 
sufficient conditions as a theorem. 

Theorem 12. A real function R(ω) of a real variable ω is the j-axis real 
part of a rational positive real function F(s) if and only if— 

(a) R(ω) is an even rational function with real coefficients. 
(b) R(ω) is bounded for all ω. 
(c) R(ω) ≥ Ofor all ω. 

We have already seen that these conditions are necessary. As a matter of 
fact, it has already been demonstrated in Chapter 6, by actual construc
tion, that conditions (a) and (b) are sufficient to find a real rational func
tion F(s) from a given R(ω). If condition (c) is also satisfied by R(ω), this 
is sufficient to make the rational function in question a positive real func
tion. 

7 . 5 REACTANCE FUNCTIONS 

Let us now turn our attention to some special types of positive real 
functions. These arise from a consideration of networks containing only 
two types of elements (LC, RC, RL). Historically, such networks were 
studied before the more general ones, starting with the work done by 
Foster in 1924. 

We shall initially consider networks that have no resistance. Such net
works are referred to as lossless, or reactance, networks. In Theorem 5 we 
noted that the driving-point impedance of a lossless network is purely 
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imaginary on the jω-axis; that is, Re [Z(jω)] = 0. Stated in terms of a 
transformation, the impedance of a lossless network maps the imaginary 
axis of the s-plane into the imaginary axis of the Z-plane. Having observed 
this property of the impedance of a network, we shall now revert to 
mathematics and make this property the basis of a definition. We shall 
make the following definition: A reactance function is a positive real function 
that maps the imaginary axis into the imaginary axis. In this terminology, 
the driving-point impedance of a lossless network is a reactance function. 

Let us now establish some properties of reactance functions. In the 
first place we shall show that the poles and zeros of a reactance function 
all lie on the jω-axis. 

To prove this theorem note that, just as a function that maps the real 
axis into the real axis has symmetry about the real axis [i.e., F(s) = F(s)], 
so a function that maps the imaginary axis into the imaginary axis has 
symmetry about the imaginary axis. To see this clearly let us rotate the 
two planes (the s-plane and the F-plane) clockwise by π /2 radians. We do 
this by defining 

(82a) 

(82b) 

These transformations are shown in Fig. 9. Note that the real s-axis 

Fig. 9. Transformation that rotates axes by π/2 radians. 

(a) (b) 

becomes the imaginary z-axis, and vice versa. A similar case obtains for 
the other transformation. When z is real, the argument of F(jz) is 
imaginary, so by hypothesis F(jz) will also be imaginary. Hence ψ(z) will 
be real when z is real. It follows from the reflection property given in (6) 
of Chapter 6 that 

(83) 
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If we now translate back through the transformations in (82) this relation 
becomes 

(84) 

Note that the point —s is the image of the point s with respect to the 
imaginary axis. A similar case obtains for the points — F and F. Hence 
the result in (84) states that image points with respect to the imaginary 
axis in the s-plane go into image points with respect to the imaginary axis 
in the F-plane. 

It follows that, if F(s) has a pole or a zero in the left half-plane, then the 
image point in the right half-plane is also a pole or a zero, which is not 
possible for a pr function. Hence the poles and zeros of a reactance function 
must all lie on the jω-axis. 

Let U S turn back to Theorem 6 for a moment. There we saw that if a pr 
function maps a point on the jω-axis into a point on the imaginary axis, 
then the derivative of the function at that point is real and positive. But 
according to Theorem 5, a reactance function maps the entire jω-axis into 
the imaginary axis in the F-plane. Hence for such a function the derivative 
property will hold at all points on the jω-axis (except at poles). This is 
the basis of another very important property; namely, the poles and zeros 
of a reactance function alternate on the jω-axis; that is, between any two 
poles is a zero and between any two zeros is a pole. 

As already noted, Theorem 6 applies at all points on the jω-axis except 
at poles. Hence the derivative dF/ds evaluated at s=jω is real and 
positive. Let us compute the derivative along the jω-axis, which we are 
permitted to do since the derivative exists. The result will be 

(85) 

We have used the usual notation F(jω) = R(ω) +jX(ω), and, since F is 
here a reactance function, R(ω) is zero. Notice that X(ω) is a real function 
of a real variable. Therefore, if there is no pole between two zeros of X(ω), 
the derivative will become negative somewhere in between, which, as we 
have just shown, is impossible. A similar conclusion applies to successive 
poles. Figure 10 illustrates the form that X(ω) should have for successive 
zeros or poles without intervening poles or zeros, respectively. 

The property that we have just proved is referred to as the alternation 
property of the poles and zeros. From this property it is clear that the 
plot of X(ω) against ω must have the general shape shown in Fig. 11. 

Since X(ω) is an odd function of ω and the alternation of poles and 
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Fig. 10. Impossible behavior of a reactance function. 

Fig. 11. Behavior of a reactance function. 

zeros must hold on the entire imaginary axis (positive and negative values 
of ω), we conclude that the point s = 0 is either a zero or a pole of a react
ance function. 

Note that, if F(s) is a pr function mapping the imaginary axis into the 
imaginary axis, so is the function F(l/s). With the transformation s -> 1/s, 
the point ∞ in the s-plane goes into the origin in the 1/s-plane. Hence, by 
using the immediately preceding result, we find that the point s = ∞ is 
either a zero or a pole of a reactance function. 

We have now discussed several properties of reactance functions. We 
should also note that certain properties of general pr functions apply in 
particular to reactance functions. Thus, since we have shown that poles 
and zeros of a pr function that lie on the jω-axis are simple and that 
residues at such poles are real and positive, we conclude that all poles 
and zeros of reactance functions are simple and that residues at all poles 
are real and positive. 

We are now in a position to consolidate our results about reactance 
functions and to state necessary and sufficient conditions for a rational 
function of s to be a reactance function. 
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Theorem 13. A real rational function ψ(s) is a reactance function if and 
only if— 

1. All of its poles are simple and lie on the jω-axis; 
2. The residues are all real and positive; 
3. The function has either a pole or a zero at s = 0 and at s = ∞ ; and 
4. Re ψ(jω) = Ofor some ω. 

Notice that this statement involves only the poles and the residues, 
not the zeros. We have already shown these conditions to be necessary; it 
remains to prove that they are sufficient; that is, assuming a rational 
function to satisfy the stated conditions, we must show that the function 
is a reactance function. This is most easily done by considering the partial-
fraction expansion of such a function. If we combine the two terms due to 
conjugate poles, the most general form of the partial-fraction expansion 
will be* 

(86) 

where the summation runs over all the poles, and all the k's are positive. 
Of course, the pole at the origin or at infinity, or both, may be absent. 
This expression is consistent with (71) with Fr(s) = 0, since in the present 
case there are no other poles except these on the jω-axis. The desired 
result follows immediately. Each term in this expansion is imaginary for 
imaginary values of s, so that ψ(s) maps the imaginary axis into the imagin
ary axis, which makes ψ(s) a reactance function by definition. 

The alternation property of the poles and zeros forms the basis of an 
alternate set of necessary and sufficient conditions, stated as follows: 

Theorem 14. A real rational function of sis a reactance function if and only 
if all of its poles and zeros are simple, lie on the jω-axis, and alternate with 
each other. 

Again, we have already proved that a reactance function necessarily 
satisfies these conditions. It remains to show that the conditions are 
sufficient. A rational function that satisfies the given conditions must have 
the following form: 

(87) 

* In the absence of condition 4 of Theorem (13) a constant term would be permitted 
in the expansion of (86). Condition 4 is required to eliminate this constant, which cannot 
be part of a reactance function. 
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where 

(88) 

In (87) K is a positive constant, and k = 2n — 2 or 2n according as ψ(s) 
has a zero or a pole at infinity. If ψ(s) has a pole at s = 0, we take ω 0 to 
be zero. A factor s will then cancel. The desired result now follows 
immediately. Each of the quadratic pole and zero factors in (87) is real 
when s is imaginary. This means that, due to the factor s, ψ(s) is imaginary 
when s is imaginary. Hence, ψ(s) is a reactance function, by definition.* 

REALIZATION OF REACTANCE FUNCTIONS 

At the start of this discussion we showed that the driving-point 
impedance of a lossless network is necessarily a reactance function. Note 
that the driving-point admittance of a lossless network is also a reactance 
function; that is, 

(89) 

is also imaginary for imaginary values of s if Z(s) is. 
The question now arises as to whether the converse of this condition is 

also true; that is, given a reactance function, is this the driving-point 
impedance (or admittance) of some lossless network? In order to answer 
this question in the affirmative, we shall have to construct a lossless 
network that has the given reactance function as its impedance or admit
tance. The question was answered in 1924 by Foster in his famous 
reactance theorem (although not in the form given here). 

Theorem 15. A rational function of s is a reactance function if and only if 
it is the driving-point impedance or admittance of a lossless network. 

We have already established the sufficiency. It remains to show that, 
given a reactance function, it is necessarily the impedance or the admitt
ance of a lossless network. To show this, turn back to the partial-fraction 
expansion of a reactance function given in (86). We can recognize each of 
the summands of the partial-fraction expansion to be the impedance or 
admittance of a very simple reactance structure. The structures are shown 
in Fig. 12. Thus, if ψ(s) is to be an impedance, we can represent it as a 

* It appears that this argument requires only that ψ(s) be an odd rational function: 
ratio of two even polynomials with an additional factor of 5 in numerator or denominator. 
But, in addition to mapping the imaginary axis into the imaginary axis, a reactance 
function has to be pr. Without the alternation property, an odd rational function will 
not be pr. 
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Fig. 12. Representation of partial-fraction summands. 

Network representation 

Function Impedance Admittance 

series combination of the elementary one-port networks in column 2 of 
Fig. 12. Or, if ψ(s) is to be an admittance, we can represent it as a parallel 
combination of the elementary one-port networks in column 3. The forms 
of the resulting networks are shown in Fig. 13. They are referred to as 
Foster's first and second form. 

Fig. 13. Foster's forms of lossless one-ports. 

(a) (b) 

We have now proved the theorem with a vengeance. We found that a 
given reactance function can be both the impedance and the admittance 
of some lossless network (not the same network, of course). 

Let us illustrate this result with the following function. Let 

(90a) 
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or 

(90b) 

In the first of these, the term 4s is recognized as the impedance of a 
four-unit inductor. Similarly, 9/s is recognized as the impedance of a 
^-unit capacitor. (The units are not henry or farad because this is presum
ably a normalized function.) The impedance of a parallel LC branch is 

Hence, by direct comparison, the values of L and C are found to be C = , 
L = λ£-. The network takes the form shown in Fig. 14a. 

Fig. 14. Reactive network realizations. 

(a) (b) 

The admittance in (90b) is seen to consist of two terms, each of which 
can be realized by an inductor and a capacitor in series. The admittance 
of such a series-tuned circuit is 

Hence the values of L and C for each of the two branches can be found by 
comparison of this expansion with each of the numerical terms in the 
given function. The result is shown in Fig. 14b. 

The two networks obtained are entirely equivalent at their terminals. 
No measurements made there could distinguish one from the other. 



512 FUNDAMENTALS OF NETWORK SYNTHESIS [Ch. 7 

The Foster forms are not the only possible networks that realize a 
given function. (There are, in fact, an infinite number of alternative 
structures.) Let us illustrate one possible alternative with the example 
already treated, before generalizing. The impedance in (90) has a pole at 
infinity. If this entire pole is subtracted from Z(s), the remaining 
function will no longer have a pole at infinity and so it must have a zero 
there. Thus 

The result of subtracting 4s from the impedance means removing a 
four-unit inductor from the network as illustrated in Fig. 15a. leaving a 

Fig. 15. Ladder-network realization of impedance. 

(a) (b) (c) 

(d) 

network whose impedance is Z1. Now the reciprocal of Z1 will have a pole 
at infinity. This pole can be totally removed by subtracting s/24, leaving 
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The equivalent of subtracting s/24 from the admittance is to remove a 
^ - u n i t capacitor from across the input terminals of Z1, as shown in 
Fig. 15b. The admittance Y2 remaining after this removal has no pole at 
infinity, but its reciprocal, Z 2 , does. This can be removed, leaving 

The network equivalent of sutbracting an impedance of 48s/5 is to remove 
a ^ unit inductor, as shown in Fig. 15c. The remaining impedance Z 3 is 
simple enough to identify as a capacitor. The final network is shown in 
Fig. 15d. It is in the form of a ladder network. 

A ladder network having arbitrary branches is shown in Fig. 16. Its 

Fig. 16. Ladder network with arbitrary branch impedances. 

impedance can be written in the following continued-fraction form: 

( 9 1 ) 

In the example just treated the process carried out step by step is 
actually a continued-fraction expansion, where each of the Z i and Yi 

functions in (91) is of the form ks, in which k is inductance or capacitance. 
The expansion deals exclusively with the pole at infinity, removing this 
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pole alternately from the impedance and then the remaining admittance. 
The result of this process for an arbitrary reactance function will have the 
network structure shown in Fig. 17a. 

Fig. 17. First and second Cauer forms of lossless ladders. 

(a; (b) 

An alternate continued fraction expansion can be made by dealing with 
the pole at the origin, s = 0. The expansion is obtained by removing the 
pole at s = 0 alternately from the impedance and then the remaining 
admittance until the function is exhausted. For the example previously 
treated the expansion is 

The result is like Fig. 17b with the first four elements being C1 = 
L 2 - ¥ , C 3 = ^ , a n d L 4 = W -

To summarize, we have shown that the impedance and admittance of a 
lossless network are reactance functions; and conversely, given any 
reactance function, a number of networks can be found whose impedance 
or admittance is equal to the given reactance function. 

HURWITZ POLYNOMIALS A N D REACTANCE FUNCTIONS 

We have found that a reactance function is an odd rational function, 
the ratio of an odd to an even polynomial, or vice versa, as observed in 
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(87). If we denote even and odd polynomials by m(s) and n(s), respectively, 
then a reactance function ψ(s) can be written as 

(92) 

where m and n have no common factors. 
Now consider the parallel combination of a lossless network and a 

one-ohm resistance. Taking ψ(s) to be the admittance of the lossless net
work, the impedance of this combination will be 

(93) 

where (92) is used for ψ(s). The impedance of this RLC network will 
be pr and regular on the jω-axis; hence its poles cannot lie in the closed 
right half-plane. The polynomial m + n in (93) is therefore a strictly 
Hurwitz polynomial. This is a very useful result. We shall state this result 
and its converse as a theorem. 

Theorem 16. IfP(s) = m(s) + n(s) is a Hurwitz polynomial, then the ratio 
m/n is a reactance function. Conversely, if the ratio of the even and odd parts 
of a polynomial P(s) is found to be a reactance function, then P(s) will differ 
from a strictly Hurwitz polynomial by at most a multiplicative even poly
nomial.* 

This theorem provides us with a means for easily determining whether 
a given rational function is regular in the right half-plane, as positive 
realness requires. We take the ratio of the even and odd parts (or its 
reciprocal) of the denominator polynomial, then expand in a continued 
fraction or a partial fraction. To illustrate, let 

* A proof is outlined in problem 43 for you to work out. An alternate proof is given 
in Norman Balabanian, Network Synthesis, Prentice-Hall, Englewood, Cliffs, N.J., 
1958, pp. 77-81. 
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Now form the ratio m/n and expand in a continued fraction. The result 
will be 

The elements in a lossless-network realization of this continued fraction 
will all be positive. Hence m/n is a reactance function and P(s) is a strictly 
Hurwitz polynomial. In this example we assumed without detailed 
investigation the absence of a multiplicative even polynomial. A criterion 
for verifying this will evolve from the next example 

As another illustration consider 

Then 

Observe that n/m = s/2 is a reactance function; but the continued-frac
tion expansion terminates prematurely because a polynomial 

is a factor of both even and odd parts. This is an even polynomial that 
has two zeros in the right half-plane and two in the left. The original 
polynomial is 

and is exactly a Hurwitz polynomial times an even polynomial, in accor
dance with the theorem. 

To conclude: Given a polynomial P(s) = m(s) + n(s), in order to detect 
the presence of an even polynomial factor, we note that this must be a 
factor of both the even and odd parts. Hence, when the ratio is formed 
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and a continued-fraction expansion is carried out, the premature termina
tion of the expansion will signal the presence of such an even factor. The 
final divisor, just before the termination, will be the even polynomial in 
question. 

7 . 6 IMPEDANCES AND ADMITTANCES OF RC NETWORKS 

Let us now turn to another type of two-element network: namely, RC 
networks. We can, if we like, carry out a complete discussion of this case, 
without referring to the discussion of LC networks. However, this would 
be a waste of time, since it is possible to interrelate the driving-point 
functions by means of suitable transformations. The procedure we shall 
follow was first used by Cauer in extending Foster's work to RC and RL 
networks. 

Let Z(s) be the driving-point impedance of an RC network N. With the 
usual choice of loops, let the loop impedance matrix of N be 

(94) 

where the elements of the matrix are 

(95) 

Let us replace each resistance in N by an inductance of equal value 
(R ohms becomes R henrys). Then the loop impedance matrix of the new 
network N' becomes 

(96) 

The driving-point impedance of network N' is found from a solution of the 
corresponding loop equations; it will be given by the ratio of det ( ζ m ) and 
one of its first principal cofactors. The impedance of network N will equal 
the ratio of det ( Z m ) and one of its first principal cofactors. But ζ m and 
Z m are related through (96). Hence, remembering the effect on the 
determinant of multiplication of a matrix by a scalar s, we find the 
driving-point impedance of the network N' to be 
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The network N' contains only capacitance and inductance, so that ψ(s) 
in the last equation is a reactance function. Thus we have found that the 
impedance of an RC network can be transformed to a reactance function 
by replacing s by s2 and then multiplying by s. 

It would be of interest to see if the converse is also true; that is, given 
a reactance function ψ(s), can we convert to the impedance of an RC 
network with the opposite transformation? To do this, consider the reac
tance function to be expanded in partial fractions, as shown in (86). 
Now divide the entire result by s and replace s by √s. (This is the opposite 
of the transformation just used.) The result will be 

Each term on the right can be recognized as the impedance of a simple RC 
structure. The term k0/s is a capacitor; and k∞ a resistor. Each of the other 
terms represents the impedance of a branch consisting of R and C in 
parallel, given by (l/C)/(s + 1/RC). The values of R and C are obtained by 
comparing the two expressions. As a matter of fact, the representations of 
column 2 in Fig. 12 will apply, with inductances replaced by resistances. 
For convenient reference let us state this result as follows: 

Theorem 17. If Z R C ( s ) is the driving point impedance of an RC network, 
then 

(97) 

is a reactance function. Conversely, if ψ(s) is a reactance function, then 

(98) 

is the driving-point impedance of an RC network. 

Let us now consider the admittance of an RC network. B y using (98), 
it can be expressed as 
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But the reciprocal of a reactance function ψ is itself a reactance function. 
Hence, given a reactance function ψ(s), to obtain an RC admittance we 
replace s by λ /s , then multiply by √s. For convenient reference we shall 
state this as follows: 

Theorem 18. If Y R C ( s ) is the admittance of an RC network, then 

(99) 

is a reactance function. Conversely, if ψ(s) is a reactance function, then 

(100) 

is the driving-point admittance of an RC network. 

Here we find a basic distinction between reactance functions and RC 
impedance-and-admittance functions. Whereas the reciprocal of a react
ance function is again a member of the same class of functions, the recip
rocal of an RC impedance is a member of the class of RC admittances, and 
vice versa. 

With the preceding transformations we are in a position to translate 
all the properties of reactance functions into properties of RC impedances 
and admittances. The procedure for establishing these results is quite 
straightforward. To start with, let us apply (98) and (100) to the partial-
fraction expansion of a reactance function given in (86). With appropriate 
changes in notation for the poles and residues, the results will be 

(101) 

(102) 

where the k's and σ's are all real and positive. Note that we have used the 
same symbols for the residues and poles in both cases, but these are general 
expressions for classes of functions and the two are not supposed to be 
related. 

Equation (102) is not a partial-fraction expansion of YRC(s). It is, rather 
an expansion of YRC(s)/s, after which the result is multiplied through by s. 
If we divide (102) by s, we find that the form is identical with (101). 
This shows that an RC admittance function divided by s is an RC im-



520 FUNDAMENTALS OF NETWORK SYNTHESIS [Ch. 7 

pedance function. We see that the poles of both these functions are 
negative real, and the residues of Z R C and YRC/s are all positive. 

By differentiating the last two equations along the real axis (s = σ), 
we obtain a result that is the counterpart of the positive-slope property 
of a reactance function; that is, 

(103a) 

(103b) 

Thus the curves of RC driving-point functions plotted for real values 
of s are monotonic; Z R C ( σ ) is strictly decreasing, whereas YRC(σ) is 
strictly increasing. Just as in the case of reactance functions, this implies 
that the zeros and poles of both must alternate, in this case along the real 
axis. 

Sketches of typical RC driving-point functions for real values of s are 
shown in Figs. 18 and 19. In Fig. 18 note that the first pole near the origin 
may in fact move into the origin, making F(0) infinite. Also, the last 
zero on the negative real axis may move out to infinity, causing F(∞) 
to become zero. Similarly, in Fig. 19 the first zero may be at the origin, 
causing F(0) to be zero. Also, the final pole may move out to infinity, 
causing F(∞) to become infinite. 

Let us now collect all of these results and state them in the form of 
theorems. Theorems 19 and 20 are for RC impedances; Theorems 21 and 
22, for RC admittances. 

Theorem 19. A rational function F(s) is the driving-point impedance of an 
RC network if and only if all of its poles are simple and restricted to the 
finite negative real axis (including s = 0), with real positive residues at all 
poles and with F(oo) real and non-negative. (This is the counterpart of 
Theorem 13 for reactance functions.) 

Theorem 20. A rational function F(s) is the driving-point impedance of an 
RC network if and only if all the poles and zeros are simple, lie on the negative 
real axis, and alternate with each other, the first critical point (pole or zero), 
starting at the origin and moving down the negative real axis, being a pole. 
(This is the counterpart of Theorem 14 for reactance functions.) 

Theorem 21. A rational function F(s) is the driving-point admittance of an 
RC network if and only if all of its poles are simple and restricted to the 
negative real axis (excluding the point s = 0, but including infinity), with 
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F(0) real and non-negative, and with all the residues of F(s)/s real and posi
tive. 

Fig. 18. Typical ZRC(σ). 

Fig. 19. Typical YRC(σ). 

Theorem 22. A rational function F(s) is the driving-point admittance of an 
RC network if and only if all the poles and zeros are simple, lie on the negative 
real axis, and alternate with each other, the first critical point (pole or zero), 
starting at the origin and moving down the negative real axis, being a zero. 
(The only difference between this theorem for admittances and Theorem 
20 for impedances is the last word.) 

We have already sketched the proofs of all these theorems in the pre
ceding discussion. You may organize the proofs as an exercise. 
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We have now stated several sets of necessary and sufficient conditions 
for a rational function to be the driving-point impedance or admittance 
of an RC one-port network. Generally, when it is desired to prove the 
sufficiency of a set of conditions for a given function to be the driving-
point (or transfer) function of a network from a class of networks, it is 
done by showing that a network (at least one) of the given class can be 
realized from the given function. In the present case we tied up the proof 
with reactance functions by showing that the given function can always 
be transformed to a reactance function. This function can then be realized 
as an LC network. The desired RC network is then obtained by performing 
the inverse transformation. This step amounts to replacing each L in the 
LC network with an R of equal value. 

Alternatively, we can work on the given function itself, expanding it in 
partial fractions just as we did for reactance functions. We have already 
obtained the desired forms in (101) and (102). Each term in these expres
sions can be recognized as the impedance or admittance of a simple RC 
structure. The series or parallel connection of these structures (depending 
on whether the function is to be impedance or admittance) gives the 
desired result. The networks have the same form as the Foster forms of 
lossless networks shown in Fig. 12. Hence they are referred to as Foster 
realizations of RC networks, although it was Cauer who first gave these 
results. Figure 20 shows the realizations of the terms in (101) and (102). 

Fig. 20. Foster realizations of RC components. 

To illustrate, let the given function be 
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The poles are real, negative, and simple; and the residues are positive, as 
the partial-fraction expansion shows. The constant term can be recognized 
as a two-unit resistor. The term 3/(s + 1) represents a parallel RC branch. 
By reference to Fig. 20, the values of C and R are found to be C = \, 
R = 3. The last term has the same form as the second one and can be 
realized by the same kind of branch. The complete realization is given in 
Fig. 21a. 

Fig. 21. BC networks realizing a given function. 

(a) (b) 

Now consider the reciprocal of the function under consideration: 

The right side is obtained by first expanding Y(s)/s in partial fractions 
and then multiplying by s. By reference to Fig. 20, the realization shown 
in Fig. 21b is obtained. You should verify that both networks have the 
same impedance. 

LADDER-NETWORK REALIZATION 

Since a one-to-one correspondence has been established between 
reactance functions and RC driving-point functions through appropriate 
transformations, we should expect that whatever procedures are used to 
obtain a network realization of a reactance function can also be used to 
obtain realizations of RC functions. The Foster forms have already been 
obtained. The ladder (Cauer) forms can also be obtained by expanding 
ZRC and YRC in continued fractions. We shall not give the detailed 
development in the general case, since it should be quite obvious. Instead, 
an illustrative example will be given, with the same function for 
which Foster-form realizations were obtained above. There will be some 
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characteristic differences in obtaining the continued-fraction expansion of 
ZRC or YRC compared with that of a reactance function, because Z R C 

cannot have a pole at infinity and YRC cannot have a pole at zero. Also, 
(see Problem 31) the smallest value of the real part occurs for different 
values of s for Z R C and YRC. 

Starting with the previously given Z(s), a continued-fraction expansion 
dealing with the infinite-frequency behavior at each step is obtained as 
follows: 

The corresponding network is shown in Fig. 22a. 

Fig. 22. Ladder-network realizations. 

(a) (b) 

An alternative realization is obtained by starting with the admittance 
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and dealing with the zero-frequency behavior. Thus 

The corresponding network is shown in Fig. 22b. 

RESISTANCE-INDUCTANCE NETWORKS 

What has been done for RC networks can be duplicated for RL net
works. The starting point is again a transformation that will take a reac
tance function into an RL impedance or admittance. It is immediately 
found that the class of RL impedance functions is identical with the 
class of RC admittance functions, and vice versa. Hence there is no need 
to duplicate the detailed development. In any theorem involving RC 
networks it is only necessary to replace the word " impedance " with the 
word " admittance " (or " admittance " with " impedance ") to arrive 
at a valid theorem for RL networks. We shall not pursue this subject 
here but will suggest some of the results as problems. 

7 . 7 TWO-PORT PARAMETERS 

In the last three sections we studied some of the most important 
properties of driving-point functions of linear, time-invariant, passive, 
reciprocal one-port networks. We stall now go on to a consideration of 
multiport networks; in particular, two-ports. The groundwork was 
already laid in (46) for a consideration of the open-circuit impedance and 
short-circuit admittance matrices. These expressions are repeated here 
for convenience. 

(104a) 

(104b) 
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The left-hand side of each of these equations is a positive real function. 
(The left-hand side of the second equation is the conjugate of that of the 
first). The right-hand side of each equation is a quadratic form that is 
now seen to equal a positive real function. Just as we say that the matrix 
of a positive definite quadratic form is positive definite, so also we say that 
the matrix of a positive real quadratic form is positive real. The conclusion 
is as follows: 

Theorem 23. The open-circuit impedance and short-circuit admittance 
matrices of a linear, time-invariant, passive, reciprocal multiport are 
positive real matrices. 

The same result can be demonstrated in a different way. It will be 
illustrated for a two-port by the network shown in Fig. 23. The two pairs 

Fig. 23. Brune's demonstration that the z- and y-matrices are positive real. 

of terminals of the two-port are connected in series through ideal trans
formers whose turns ratios are x± : 1 and x2 : 1 , respectively. The voltage 
and current at the input terminals will be given by 

( 1 0 5 a ) 

( 1 0 5 6 ) 

If we now compute the driving-point impedance Z(s) = V/I at the input 
terminals, we shall get 

( 1 0 6 ) 
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Since the impedance is positive real, this proves that the quadratic form 
on the right is also positive real. To prove the condition for the y-matrix, 
the two pairs of terminals can be connected in parallel through ideal 
transformers and the overall input admittance calculated. This is left 
for you as an exercise. 

Let us now restrict ourselves to two-ports; the extension of the sub
sequent results to higher order multiports is simple and will become 
evident. The fact that Z o c and Y s c are positive real matrices has some 
interesting consequences. Let x± and x2 be two arbitrary real numbers. 
Since the quadratic forms 

( 1 0 7 a ) 

( 1 0 7 6 ) 

are positive real functions, it follows that any pole of these functions on 
the jω-axis must be simple, and the residue at such a pole must be real and 
positive, Suppose, for instance, that the z-parameters have a pole at 
s = jωt. Since this pole is a simple pole of the quadratic form, the residue 
of Qiis 

( 1 0 8 ) 

If we give the residues of z11, z21(= z12), and z22 at the pole s = j ω i the 
labels k1i(i), k2i(i), and k22

(i), respectively, then the residue of the quad
ratic form will become 

( 1 0 9 ) 

Thus the residue itself is a quadratic form whose matrix is the matrix of 
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residues of the z-parameters. However, this residue must be real and 
non-negative for all values of x\ and x2. Hence the matrix of residues of 
the z-parameters at any poles on the jω-axis must be positive definite or 
semidefinite. As discussed in Section 7.2, this requires that the deter
minant of the matrix and all of its principal cofactors be non-negative; 
that is, 

(110a) 

(110b) 

The first line in these expressions is already known, since zn and z22 

are driving-point functions and therefore positive real. The second line, 
however, is a new and important result. It is known as the residue 
condition. 

What was done for quadratic form Qi is also valid for Q 2/s. Thus the 
same conclusions follow for residues of Y S c / s . We shall state this result as 
a theorem. 

Theorem 24. At any pole on the jω-axis of Z 0 C or Y$c/s of a linear, time-
invariant, passive, reciprocal two-port network, the residues of the parameters 
satisfy the condition 

(I l l ) 

where kfj is the residue of z i j or y i j / s at the jω-axis pole. 
(The superscript has been omitted for simplicity.) 

In particular, if the network is lossless, all the poles zij and yij are on the 
jω-axis, and hence the residue condition (111) applies at all the poles. One 
of the implications of this fact for a lossless network is that it is impossible 
for z21 to have a pole that is not also a pole of zn and z22, nor for y21 

to have a pole that is not also a pole of yn and y22. For if either kπ or 
k22 is zero when k21 is not, the residue condition will be violated. On the 
other hand, it is possible for zn or z22 (or both) to have a pole not shared 
by the other parameters. We refer to such poles as private poles of zn or 
z22. A similar statement applies to the y-parameters. 

Let us now turn to another consequence of the positive real nature of 
Z o c and Y s c . By definition, positive realness is linked with the real part 
of a function. Hence we should expect to obtain some relationship among 
the real parts of the z- and y-parameters. Let us denote these real parts 
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r11, r21(= r12), and r22 for the z-parameters and gn, g21(= g12), and g22 

for the y-parameters. The real part of the quadratic forms Q1 and Q2 in 
(107) can then be written as follows: 

(112a) 

(112b) 

Whenever s lies in the right half-plane or on the jω-axis, these quadratic 
forms must be positive semidefinite or definite, since Qi and Q% are positive 
real functions. As in the case of the matrix of residues, it follows that 

(113) 

for the real parts of the z-parameters, and 

(114) 

for the real parts of the y-parameters. Again the first lines in each set 
carry no surprises, since zn, z22, yn , and y22 are driving-point functions 
and hence positive real. The second lines, however, express a new result, 
which is called the real-part condition. In fact, the real part condition 
alone is a sufficient condition that Z o c or Y s c be positive real matrices. 
(Verify this statement.) 

RESISTANCE-CAPACITANCE TWO-PORTS 

As a final note, observe that what was said about lossless two-ports is 
also true for RC two-ports, by virtue of the transformations previously 
discussed and with appropriate and obvious modifications. Thus for RC 
two-ports, the z- and y-parameters will have all their poles on the negative 
real axis, and the residue condition will apply at these poles. No pole of 
z21 can fail to be a pole of both zn and z22, but zn and z22 can have 
private poles; and similarly for the y-parameters. 

As an illustration, consider the RC two-port shown in Fig. 24. The short-
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Fig. 24. Resistance-capacitance two-port. 

circuit admittance parameters of this two-port as are follows: 

Note, first, that all three functions have the same poles. The zeros of yn 
are at (approximately) — f and — T h u s the zeros and poies of both 
yn and y22 alternate on the negative real axis, and they have the appro
priate behavior at infinity (which is?), so that both are RC admittance 
functions. On the other hand, y21 does not have all the properties of an 
RC admittance; among other things, the residues of y21/s are not all 
positive. 

A test for the residue condition shows that it is satisfied at all the poles; 
in fact, the residue condition is satisfied with the equals sign. To distinguish 
when the residue condition is satisfied with the equals sign and when it is 
not, we say the pole is compact if the residue condition at the pole is 
satisfied with the equals sign. Thus, for the illustration, all the poles 
(including the constant term) are compact. Verification that the real-part 
condition is satisfied will be left to you. 

For driving-point functions of networks containing two kinds of ele
ments only we found sets of necessary conditions that were also proved 
to be sufficient. In fact, actual procedures for realizing one or more net
works from a given function were obtained. The case for a two-port is not 
as simple, since a set of three parameters is involved. Although necessary 
conditions on these parameters have been obtained, these conditions turn 
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out to be generally sufficient for realizability only if we admit the inclusion 
of ideal transformers. If transformers are not permitted, a general set of 
sufficient conditions is not available. We shall not pursue this subject any 
further in this book. 

7 . 8 LOSSLESS TWO-PORT TERMINATED IN A RESISTANCE 

Up to this point we have accomplished the following. For a linear, 
time-invariant, passive, reciprocal network with two kinds of elements, 
we have established necessary and sufficient conditions for the driving-
point functions. Given a function satisfying these conditions, procedures 
have been discussed for finding a network having a given function as its 
impedance or admittance. More generally, we have seen that positive 
realness is a necessary condition for the impedance or admittance of the 
most general network of the class under discussion. We have not, however, 
shown that this is a sufficient condition. This was shown initially by 
Brune in 1932, but we shall here discuss an alternative structure first 
developed by Darlington in 1939. He showed that any positive real func
tion can be realized as the impedance of a lossless network terminated in a 
single resistance. 

Consider the network of Fig. 25. It consists of a lossless network 

Fig. 25. Resistance-terminated lossless two-port. 

terminated in a resistance R. The impedance at the input terminals can be 
written in terms of R and the two-port parameters as 

(115a) 

or 

(115b) 
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(See Chapter 3.) In the final form all impedances have been normalized to 
R, which is equivalent to taking the value of R to equal 1. 

Now suppose a rational positive real function Z(s) is given. The even and 
odd parts of its numerator and denominator can be separated, and the 
function can be written in the usual form. Then this expression can be 
placed in the same form as (115b) in two possible ways, as follows: 

(116) 

(case A) (117) 

(case B) (118) 

For each of these two cases, formal identifications can be made by compar
ing these expressions with (115b). Thus 

Case A Case B 

(119) 

Since Z(s) is positive real, both mi + n\ and m2 + n2 are Hurwitz 
polynomials. Hence the ratios mi/ni and m2/n2, and their reciprocals, 
are reactance functions. Also, using Theorem 11 (concerning the inter
change of the even or odd parts of numerator and denominator of a pr 
function), the ratios mi/n2 and ni/m2 are also reactance functions. Thus 
all the functions in (119) are reactance functions. 

There remains the task of determining z21 from the expressions in (119), 
so that a complete set of parameters of the lossless two-port in Fig. 25 will 
be available. To do this, observe that 

(case A), 

(case B). 

(120) 
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Since 

we get for z21, by using (120) and (119): 

(case A), 

(case B). 

(121) 

Of course, once the z-parameters are known, the y-parameters can also be 
found. (See Table 1 in Chapter 3.) The complete results are tabulated in 
Table 1. 

The question is, do these open-circuit or short-circuit parameters satisfy 
realizability conditions for a passive, reciprocal, and lossless two-port? 
The first difficulty appears to be that z21 is not a rational function because 
of the indicated square root. However, if m\ m2 — n\ n2 is a perfect square, 
the apparent difficulty will disappear. Observe that mi m2 — ni n2 is the 
numerator of the even part of Z(s). Because Z(s) is a positive real function, 
zeros of its even part on the jω-axis must necessarily have even multi
plicity. There is no such requirement, however, on any other zeros. Hence, 
unless some remedy can be found, it appears that z21 will generally be 
irrational. 

A remedy has been found in the following way. Suppose the given Z(s) 
is augmented by multiplying its numerator and denominator by a strictly 
Hurwitz polynomial m0 + n0, which certainly does not change the func
tion. Thus 

(122) 

The new even part of Z(s) will be 

(123) 

The new z21 for case A will be 

(124) 
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It is now clear how to make z21 a rational function: we set m0

2 — n0

2 equal 
to the product of all factors in mi m2 — ni n2 that are of odd multiplicity 
and thus cause z21 to be irrational in the first place. Since m0

2 — n0

2 = 
(mo + no)(m0—no), the augmenting polynomial m0 + no is found by 
taking the left-half-plane zeros of m0

2 — n0

2. 
The question arises as to the significance of cases A and B. When is one 

appropriate and when is the other? We observe from Table 1 that the 
denominator of z21 ( ory 2 1 ) is odd for case A and even for case B. Since z21 

should be an odd rational function, the numerator of z21 should be even 
for case A and odd for case B. If m\ m2 — n± n2 has s2 as a factor, taking 
the square root will make the numerator of z21 odd, and so case B is 
appropriate. On the other hand, if mi m2 — ni n2 does not have s2 as a 
factor, case A will be appropriate. The only way in which s2 can be a 
factor of mi m2 — ni n2 is for either mi or m2 to have its constant term 
missing. This means that case B applies when Z(s) has a pole or a zero at 
s = 0, and case A applies if Z(s) has neither a pole nor a zero at s = 0. 

TO illustrate the preceding, let 

This function has a zero at s = 0; hence case B is appropriate. We form 

This is a complete square, so that augmentation is not needed. Hence, 
from Table 1. 

Also, 

Whatever the given Z(s), it is possible to make z21 an odd rational func
tion by augmenting the original function if necessary. Now let us consider 
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the other realizability conditions. The real-part condition of (113) and 
(114) is satisfied identically with the equals sign when s = jω. Since the 
functions are regular in the right half-plane, the maximum modulus 
theorem can be used to show that the real-part condition will be satisfied 
anywhere in the right half-plane. 

There remains the residue condition. The residue of a function can be 
calculated as the numerator divided by the derivative of its denominator, 
evaluated at a zero of the denominator. For the z-parameters the residues 
at finite nonzero poles are given in Table 2, in which the primes indicate 

Table 2. 

Condition 

Case A 

Case B 

the derivative with respect to s. Thus, by forming kn k22 — k2

21, it is 
found that at all the finite nonzero poles the residue condition is satisfied, 
and, furthermore, it is satisfied with the equality sign. Hence all the 
finite, nonzero poles of the z-parameters are compact. 

It is also true that the residue condition is satisfied at a possible pole 
at infinity or at zero, but not always with an equality sign. (See problem 
53.) A similar development can be carried out for the y-parameters 
divided by s, leading to similar results. The conclusion is that the residue 
condition is satisfied by both the z-parameters and the y-parameters 
divided by s at ail their poles. 

We have now established that, given a positive real function, it is 
possible to find a set of open- or short-circuit parameters that satisfy 
realizability conditions of a lossless two-port terminated in a unit resist
ance. There remains the task of actuaily realizing (constructing) the two-
port. One procedure for doing this was developed by Cauer. It starts by 
expanding, say, the z-parameters into partial fractions. The terms in 
each z-parameter corresponding to a particular pole are lumped together; 
they are simple enough so that a lossless two-port realizing this set of 
parameters can be recognized. The component two-ports so obtained are 
then connected in series. However, as the discussion of interconnecting 
two-ports in Chapter 3 described, in order to permit a series connection it 
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may be necessary to use ideal transformers. The series structure of two-
ports is not a very desirable one; one objection is that all but one of the 
two-ports will be floating above ground. 

A more desirable structure is a cascade structure. Darlington's contri
bution was to show that such a realization is possible. We shall do no more 
here than outline his procedure. Observe, first, that if the given impedance 
function has poles and zeros on the jω-axis, these can be removed as the 
branches of a ladder network. Such branches are shown in Fig. 26 as type 

Fig. 26. Canonic sections for cascade realization: (a) Type A; (b) type B; (c) type C; 
(d) type D. 

(a) 

(b) (c) (d) 

A and type B. These branches may consist of a single inductance or 
capacitance, a series-tuned circuit, or a parallel-tuned circuit. 

After all poles and zeros of Z(s) on the jω-axis have been removed by 
branches of type A and B, the even part of the remaining impedance will 
have three types of zeros: real, imaginary, and complex. A typical even 
part will be 

(125) 

All zeros are shown as double zeros. For a positive real function, those on 
the jω-axis must necessarily be double. If the other zeros are not initially 
double, the function is augmented to make them so. The transmission 
zeros of the lossless two-port are exactly the zeros of the even part of Z(s). 

It turns out that a type C section, as shown in Fig. 26, has a pair of 
transmission zeros that are either real or imaginary (depending on the dot 
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arrangement of the ideal transformer), and a type D section has a quad
ruplet of complex transmission zeros. Removal of a type C section is found 
to leave a reduced impedance whose even part has all the other zeros 
except the pair realized by the section. Similarly, removal of a type D 
section leaves a reduced impedance whose even part has all the other zeros 
except the quadruplet realized by the section. Hence a cascade connection 
of these four types of two-ports will realize the desired lossless two-port. 
We observe that, generally, ideal transformers are required in the realiz
ation. 

It is not our purpose here to examine the details of the realization of the 
lossless two-port but simply to observe the result. Thus it is now possible 
to state the following (Darlington) theorem: 

Theorem 25. A positive real function can be realized as the impedance of a 
lossless two-port terminated in a unit resistance. 

This actually constitutes an existence theorem; it proves the sufficiency 
of the positive real condition for the realizability of a passive, reciprocal 
network. 

For specific functions other, more useful, structures of the two-port may 
be found than the type C and type D sections with their ideal transformers. 
To illustrate this point, let 

It appears that we shall need a type C section in the lossless two-port N to 
realize the pair of imaginary transmission zeros, as well as something for 
the transmission zero at infinity. Suppose the z-parameters are now formed 
by using Table 1. The result will be as follows: 

Observe that z11 has a private pole at infinity; this can be removed as a 
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J unit inductance, leaving a set of z-parameters having the same poles. 
The partial result is shown in Fig. 27a. The z-parameters remaining after 

Fig. 27. Realization of impedance as lossless ladder termination in R. 

(a) (b) 

(c) 

the series inductor is removed are pertinent to the two-port Ñ. 
Let us now invert these and find the y-parameters of N. The result 

will be as follows: 

This can be rewritten as 
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where 

Notice that, in addition to a common term Y, y11 and y22 have an extra 
term. These terms can each be realized by a capacitor, one across the input 
and one across the output of N, as shown in Fig. 27b. That leaves Y, 
which is simple to realize; a type A section, as in Fig. 26a, with ZA = 1/Y, 
has exactly the y-parameters y11 = y22 = —y21 = Y The complete net
work, then, is shown in Fig. 27c. It is in the form of a lossless ladder net
work terminated in a unit resistance. No ideal transformer, as required by 
the type C section, appears. 

It was earlier found that the impedance of a passive, reciprocal network 
is a positive real function. What has now been established is the converse; 
namely, that a positive real function can always be realized as a passive 
reciprocal network. In particular, the network will be a lossless two-port 
terminated in a resistance. In the most general case, the lossless two-port 
may require the use of type C and type D sections. In some cases, these 
complicated sections can be avoided. Certain sufficient conditions exist 
under which a realization avoiding type C and D sections can be found 
but we shall not pursue it further here. 

7 . 9 PASSIVE AND ACTIVE RC TWO-PORTS 

Let us now look back over the procedure followed in the last section 
to observe if there are features of a general nature that can serve as 
guides to other kinds of networks. The first step was to consider a network 
structure representative of a particular class. In Fig. 25 this was a lossless 
two-port terminated in a resistance. An expression was then written for 
the function of interest in terms of the component parts of the structure, 
as in (115). Then a rational function of the class under consideration was 
manipulated to make it take on this same form, as in (117) and (118). 
Finally, the pertinent functions of the component parts of the network 
were identified. Of course, it must be verified that these functions satisfy 
realizability conditions for the class of networks under consideration. 
Furthermore, procedures must be established for realizing these functions. 

In this section we shall carry out similar procedures for networks con
sisting of resistance, capacitance, and possibly active devices. A number of 
considerations make such networks of practical importance. These include 
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the relatively large size and weight of inductors, the low cost of transistors 
and other active devices, and the fact that realization of resistance, 
capacitance, and active devices is obtainable in integrated circuits. 

CASCADE CONNECTION 

Consider first the network shown in Fig. 28, in which two RC two-ports 

Fig. 28. Cascaded BC two-ports. 

are connected in cascade. The function of interest is the open-circuit 
transfer impedance z21 = V2/I1. This function can be written in terms of 
the open-circuit parameters of the individual two-ports as follows:* 

(126) 

If a rational function is specified as the transfer impedance of an RC 
two-port, this function must be manipulated into the form of (126). 
In the first place, for an RC network we know that the poles of z21 must be 
real and negative (possibly including s = 0), but there are no restrictions 
on the locations of the zeros. There should, however, be no more finite 
zeros than poles; for example, two possible functions are the following: 

(127a) 

(127b) 

The first has a single finite zero, which is real. The second has two pairs 
of complex zeros. Each of these is a realizable RC transfer impedance for 
any value of the constant K. 

* See Chapter 3. 
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Observe from (126) that the denominator is the sum of two RC impe
dances—which is, again, an RC impedance; but the denominator of any 
given rational function will be a polynomial. The situation is remedied by 
dividing numerator and denominator of the given function by an auxil
iary polynomial D(s). The degree and the zeros of this polynomial must be 
chosen to make QjD an RC impedance. This is easy to do: the degree of 
D(s) must be equal to, or be one greater than, the degree of Q(s) ; and its 
zeros must alternate with those of Q(s). Thus, if the first function of (127) 
is used as an example, 

(128) 

The choices 

with 

are both acceptable. Let us choose D(s) = (s + l)(s + 3)(s + 5). Then, by 
comparison with (126), we can write 

(129) 

Observe that choosing one of the zeros of D(s) at s = —5 has the collateral 
advantage of a cancellation in z21az21b. This is not a general feature for 
all cases. 

The identification of the individual parameters from the last set of 
equations is not unique. Choosing the constant K as f f , the following 
identifications can be made: 

Each of these two sets is now easily recognized. Two port Na is easily seen 
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to be a degenerate tee network with a shunt branch only (like the type B 
section in Fig. 26b), as shown in Fig. 29a. As for Nb, in addition to a 

Fig. 29. Realization of numerical example showing: (a) Na ; (6) IV& ; (c) the overall net
work with a cascade connection. 

(a) (b) 

(c) 

common term between z21b and z l l b , which will lead to a degenerate tee 
network, there are private terms in z l l b that will appear in series with the 
input. The network Nb is shown in Fig. 29b, and the overall network is 
shown in Fig. 29c. You should verify that this network has the given func
tion as its transfer impedance. 

To review the procedure, the first step when presented with a realizable 
transfer function P(s)IQ(s) (having real and negative poles) is to divide 
both numerator and denominator by the auxiliary polynomial D(s), so 
chosen as to make QjD an RC impedance. Then QjD is expanded in partial 
fractions. An assignment of terms from this expansion is made to z22b and 
z l l b . This assignment is guided by the decomposition that is to be made of 
PjD into the product of z21a and z21b. Clearly, the realization is not 
unique. 

CASCADING A NEGATIVE CONVERTER 

In the synthesis procedure just discussed, when a function z21 = P(s)/ 
Q(s) is given, it is required that a polynomial D(s) be selected to make QjD 
an RC impedance. Thus the poles of the original function must be real and 
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negative. This is a limited class of functions. If this restriction is removed 
and the poles are permitted to lie anywhere in the left half-plane, the 
function will not be realizable as an RC network. The function QjD will 
have complex zeros (some), and the residues at the poles will not all be 
positive. This latter observation provides a clue as to a remedy. 

Suppose a negative converter of the voltage-conversion variety is 
cascaded between the two component two-ports, as shown in Fig. 30. 

Fig. 30. BC network with a negative converter cascaded between two-ports. 

Negative 
converter 

The load on Na is not simply Nb, as it was before, but Nb preceded by a 
negative converter. Assuming a conversion ratio of one, the impedance at 
the input terminals of the negative converter is — z l l b , and this replaces 
+ z l l b in (126). The overall transfer impedance now becomes 

(130) 

Now suppose a rational function P(s)IQ(s) with complex poles is given. 
We divide numerator and denominator by an auxiliary polynomial D(s) 
with an appropriate number of real, negative zeros. Next we expand QjD 
in partial fractions. Some of the residues will be positive and some nega
tive. If these are collected together, the result will be 

(131) 

where the subscripts p and n stand for "pos i t ive" and "negative." 
The identification of z 2 2 α and z l l b is now immediate: all those terms in the 
partial-fraction expansion of QjD having positive residue belong to z 2 2 a ; 
those with negative residue, to z l l b . The factors of the numerator poly
nomial P(s) are assigned to z21a or z21b with the requirement that z21a 
have no pole that z22a does not have and that z 2 1 b have no pole that z l l b 
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does not have. (The term " p o l e " includes the behavior at infinity. Thus, 
if z21b is nonzero at infinity, z l l b must also be nonzero.) 

As an illustration take a fourth-order Chebyshev function with two 
pairs of jω-axis transmission zeros thrown in: 

The auxiliary polynomial must be at least of the fourth degree; suppose 
we choose D(s) = s(s + l)(s + 2)(s + 3). Then 

Clearly, each of the quadratic factors in P(s) must be assigned to one of 
the component two-ports. It is clear that two poles (at 0 and —2) belong 
to Na, and two poles (at —1 and —3) belong to Nb. Also, one of the pairs 
of imaginary zeros must be assigned to Na; the other pair, to Nb. Thus 

Both of these are nonzero at infinity, and so both z22a and z l l b must be 
nonzero at infinity. However, in the partial-fraction expansion of Q/D, 
no constant term appears among the negative-residue terms. This is 
remedied by adding and subtracting a constant, say 1. Hence 
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Each of the pairs of functions z 2 2 a , z21a and z l l b , z21b is realizable as an 
RC two-port. There remains the job of carrying out the realization. 
Because the transmission zeros are not real, the problem is somewhat more 
difficult than the preceding example. Nevertheless, routine procedures are 
available for doing the job, but we shall not pursue the details here. (See 
Bibliography on Synthesis.) 

PARALLEL CONNECTION 

As another configuration, consider the network in Fig. 31a. An RC 

Fig. 31. Parallel-connected two-ports with a negative converter. 

(a) 

Negative 
converter 

(b) 

Negative 
converter 

two-port Nb is cascaded with a negative converter of the current-conver
sion variety, and the combination is connected in parallel with another 
RC two-port Na. The function of interest is the voltage gain V2(s)/Vi(s), 
which is given in terms of the overall y-parameters as V2/V1 = — y 2 1 / y 2 2 . 
For parallel-connected two-ports the overall y-parameters equal the sum 
of the corresponding component y-parameters. However, the presence of 
the negative converter reverses the sign of y21b and y22b (assuming a 
unity conversion ratio), and hence the desired function becomes 

(132) 

Now when a rational function P/Q is given, the usual auxiliary poly
nomial D(s) can be used to divide numerator and denominator, and the 
result manipulated to the form of (132). We shall not carry out this 
general development but shall replace the general two-ports in Fig. 31a 
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with a specific configuration, as shown in Fig. 31b. This does not limit the 
class of transfer functions that can be handled. 

When the y-parameters of these simple networks are calculated and 
substituted into (132), the result becomes 

(133) 

The denominator of this expression contains the numerator added to 
another term. Now when a transfer function is given as P(s)/Q(s), it must 
be manipulated to the form of (133). Thus 

(134) 

In this expression a multiplying constant K has been shown explicitly. 
The polynomial KP(s) was added and subtracted in the denominator, and 
then the usual auxiliary polynomial D(s) with real, negative zeros was 
introduced. Comparison of the last two equations leads to 

(135a) 

(135b) 

After a partial-fraction expansion of Y/s is made, the terms with positive 
residues and those with negative residues are grouped together. The terms 
with positive residues in the two expressions are identified with Ylα and 
Y2a, respectively; and those with negative residues, with Ylb and Y2b, 
respectively. From their manner of construction each of these quantities 
will be a realizable RC admittance function, and a realization can be 
easily obtained. 

As an illustration, take the Chebyshev function treated in the last sub
section: 



548 FUNDAMENTALS OF NETWORK SYNTHESIS [Ch. 7 

For convenience K had earlier been taken as ^. The auxiliary polynomial 
chosen earlier was of degree 4 and had a factor s . An RC admittance can
not have a pole at s = 0, and therefore s cannot be a factor of the auxiliary 
polynomial in the present case. Also, since an RC admittance can have a 
pole at infinity, let us choose D(s) = (s + l ) ( s + 2)(s + 3). Then 

The value of K can be chosen with a view toward simplifying the network. 
Since KP/D is to be subtracted from Q/D, K can be chosen to cancel one of 
the terms. Thus, with K = 3.75/52 = 0.072, we get 

Finally, 

The complete network is shown in Fig. 32. 
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Fig. 32. Realization of numerical example. 

Negative 
converter 

For the structure under consideration, it is necessary to realize only 
two-terminal RC networks. This circumstance makes the design effort 
relatively small. 

THE ~C-AMPLIFIER CONFIGURATION 

In the preceding subsections the active device used in conjunction with 
RC networks has been a negative converter. Obviously, other network 
configurations can be found that utilize different active devices. The 
simplest possibility would be an amplifier in a feedback arrangement. The 
amplifier can be represented in its simplest form as a controlled source 
(voltage or current). Although many different configurations are possible, 
we shall treat only one and suggest others as problems. 

Consider the configuration in Fig. 33. This contains two voltage ampli-

Fig. 33. Feedback-amplifier configuration. 
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fiers (voltage-controlled voltage sources), each having a different polarity. 
Note that the overall output voltage is taken as the input voltage of the 
second amplifier. An evaluation of the voltage gain function for this 
configuration leads to 

(136) 

We shall assume that the second amplifier gain α 2 is greater than 1. 
Now, given a rational function P(s)/Q(s) as the voltage gain, we divide 

numerator and denominator by the usual auxiliary polynomial D(s) 
having an appropriate degree (equal to, or one less than, the degree of Q 
or P, whichever is greater) and distinct real, negative zeros. Each of the 
functions P/sD and Q/sD is expanded in partial fractions, and the 
positive-residue and negative-residue terms are collected. Finally, 
identification of the admittances in (136) is made by comparison with this 
expression. Thus 

(137a) 

(137b) 

From the first of these we get 

(138a) 

( 1 3 8 6 ) 

When these are inserted into (137b), Y3 and Y4 can be identified. Thus 

(139) 
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General expressions for Y3 and Y4 cannot be written, because there will be 
uncertainties in the right-hand side; for example, the constant term 
ko — ko may be positive or negative. In the former case, the constant term 
will go to Y3 ; in the latter case, to Y4. Furthermore, the set of poles 
— σ i p is contained in the set {—σ i p , — σ i n } , since the latter is the set of all 
zeros of D(s). Hence there will be some cancellations of terms, with 
uncertainty in the general case as to the resultant sign. These uncertain
ties disappear, of course, when dealing with a specific case. This will be 
clarified with an example below. In any case, it is required only to realize 
two-terminal RC networks. Also, it will be necessary to specify the ampli
fier gains. 

In an actual realization it would be useful for elements to appear at 
appropriate places at the input and output of the amplifier to account 
for parameters of an actual amplifier other than the gain. An equivalent 
circuit of an amplifier is shown in Fig. 34. The actual amplifier that is 
used to realize the controlled source will have input, output, and feedback 
impedances, as represented by Ga, Cb, and Gc in Fig. 34. Look back at 

Fig. 34. Amplifier equivalent circuit. 

Fig. 33. Because of the position of Y2, it is possible for this branch to 
account for the output impedance of the first amplifier. Similarly, Y3 and 
Y4 can be made to account for the input, output and feedback impedances 
of the second amplifier. It is therefore useful to have a constant term in 
the expansion of Y3. If it does not appear there by virtue of the fact that 
ko ≥ ko in (139), then an appropriate constant can be added and sub
tracted on the right side of (139). 

As an illustration, take the following all-pass function: 
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In the present case, the degree of D(s) need be no more than 1. Let 
D(s) = s + l . T h e n 

from which 

We observe that there is no constant term on the right side. Hence, in 
order to account for the input impedance of the second amplifier, we add 
and subtract a constant G. Identifications for Y3 and Y4 become 

For concreteness let αi = 5, α 2 = 2, and G = 1; Y4 then becomes 

Thus Y4 is realized as a ^-unit resistance in series with a parallel RC 
branch. The complete realization is shown in Fig. 35. Note that the realiz
ation does not account for the input impedance of the first amplifier. 
If the input impedance of the actual amplifier is not to have any influence, 
then the network should be driven by a voltage source, or at least a source 
whose output impedance is small in magnitude compared with the input 
impedance of the amplifier. 

To summarize this section: we have illustrated the classical pattern of 
formal network synthesis in terms of RC passive and active two-ports. 
The first step is to seek a specific structure incorporating components of the 
class of networks under consideration and to write the appropriate trans
fer function in terms of the parameters of the components. Then a rational 
function is manipulated into the same form, after introducing an auxiliary 
polynomial by which the numerator and denominator are divided. This 
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Fig. 35. Realization of BC amplifier. 

Ampli f ier 1 Ampl i f ier 2 

permits an identification of the parameters of the component networks, 
care being taken to ensure that they are realizable. The final step is to 
realize the components. 

PROBLEMS 

Elementary Matrices. Elementary matrices are of three types, corres
ponding to the three types of elementary transformation. Use the following 
notation: 

Type 1: r E i j is the elementary matrix which interchanges rows j and i. 
c E i j is the elementary matrix which interchanges columns j and i. 

Type 2: r E i + j is the elementary matrix which adds row j to row i. 
c E i + j is the elementary matrix which adds column j to column i. 

Type 3: rFαi is the elementary matrix which multiplies row i by α. 
cEσì is the elementary matrix which multiplies column i by α. 

1. Construct the single matrix that will perform the following operations 
on a matrix A: 
(a) Interchange the third and second rows after the third row is multi
plied by 2. Order of A: (3,5). 
(b) Add the first column to the third after multiplying the first by 3 and 
the third by 4. Order of A = (2,3). 
(c) Add the second row to the first after multiplying the first by —1. 
Order of A: (3,3). 
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2. Find the single matrix which will perform the following operations on a 
matrix A: 
(a) Multiply the first row by k and add it to the third row, then 
multiply the second row by 3 and interchange this row with the first. 
Order of A: (4,4). 
(b) Add the second column to the first, then multiply the second column 
by —2 and add it to the third, then interchange the second and third 
columns. Order of A = (4,3). 

3. Write the single matrix which performs each of the following operations 
on the rows of a matrix A: 
(α) Multiply row 3 by —2, then add to row 1, then interchange row 1 
with row 3. Order of A: (3,3). 
(b) Interchange row 4 with row 2; then multiply row 1 by 5 and add to 
row 3; then subtract row 3 from row 2. Order of A: (4,4). 

4. Repeat Problem 3 if the operations are performed on the columns. 
5. Let a matrix A of order (m,n) with m < n have rank r. Show that the 

product of any elementary matrix with A will have the same rank, r. 
Do this by multiplying A by each type of elementary matrix and 
determining the effect of this on the determinant of appropriate sub
matrices of A. 

6. Show that the inverse of an elementary matrix is an elementary matrix 
of the same type. 

7. Prove that a nonsingular matrix A can always be written as the product 
of a finite number of elementary matrices. 

8 . Prove that two matrices A and B of order (m,n) are equivalent if and 
only if they have the same rank. 

9. For each matrix A given below find matrices P and Q such that PAQ 
is the normal form of A. 

(a) (b) 

(c) 
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10. Reduce the following matrices to normal form: 

(a) (b) 

(c) (d) 

11. Reduce the following matrices to canonic form using the Lagrange 
reduction procedure: 

(a) (b) 

(c) 

12. Determine whether the following matrices are positive definite: 
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13. Prove that a symmetric matrix A is positive definite if and only if A - 1 

is symmetric and positive definite. 

14. (α) Prove that a real symmetric matrix A is positive definite if and 
only if there exists a nonsingular real matrix B such that A = BB'. 
(b) Prove that a real symmetric matrix A of order n and rank r is 
positive semidefinite if and only if there exists a matrix B of rank r 
such that A = B'B. 

15. Let A be a real symmetric matrix of order n and B a real matrix of 
order (r,n) and rank r. Prove that if A is positive definite, then BAB' 
is positive definite. 

16. Let A be a real nonsymmetric matrix and x a complex vector. A can be 
written as the sum of its symmetric and skew symmetric parts, As 

and Ass, respectively, where 

Show that 

(a) 

(b) 

17. In the network of Fig. P17 all three inductances are mutually coupled. 
Suppose it is possible to have the given inductance matrix in which all 
mutual inductances are less than unity. Verify that this inductance 
matrix is not positive definite or semidefinite. Setting RL = R2 = R3 = 1 
for convenience, compute the natural frequencies. 

Fig. P17 
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18. Let A = [a i j ] . The ascending principal cofactors of a square matrix A are 
defined as: 

Prove the following stronger condition for positive definiteness than 
Theorem 4 in the text. A real matrix symmetric A is positive definite if and 
only if all ascending principal cofactors are positive. 

19. (a) Find the rank of each of the following matrices. (They will be 
different.) 

(b) Verify that the quadratic forms X'AX and X'BX are equal. 

20. Let A be a real, symmetric, positive definite matrix. Prove that A 2 is 
also positive definite. 

21. Let F(s) be a positive real function. Prove the angle property, namely 
that |arg F(s)| < |arg s| for 0 < |arg s| < π/2. Hint: make the following 
bilinear transformations: 

Observe how the right half F and s-planes are mapped into the W and p 
planes. Show that W(p) satisfies Schwarz's lemma (see Appendix 2), then 
substitute the above transformations in the lemma. 

22. It is claimed that the functions below are not positive real for n > N0. 
Verify this claim and determine the value of N0 for each function. 

(a) (b) 
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23. Let F(s) be a reactance function and let F(jω) = jX(ω). Prove that 

(Hint: use energy functions.) 
24. Prove that a bilinear transformation of a bounded real function is 

positive real. 
25. Let 

The even part of this positive real function has a zero (double) on the 
jω axis. Hence, this function maps this point on the jω axis to a point 
on the jX axis in the Z-plane. Verify that the derivative dZ/ds at this 
point is real and positive. 

26. Let Z(s) = (mi + ni)/(m2 + n2) be a positive real function. Prove that 

is a Hurwitz polynomial, where α, b, and c are positive constants. 
27. Let P(s) be a Hurwitz polynomial. Prove that F(s) is a pr function, 

where 

28. Let Z(s) = P(s)/Q(s) be a positive real function. Prove that the following 
function is also positive real: 

29. Let 

To obtain a realization for YRC it is suggested that the first branch across 
the terminals be a resistor of 1/2-ohm. The remaining admittance will 
h e YRc — 2. Is this a pr function? 
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30. Using the partial fraction expansions in (99) and (100), show that 

(a) lm [ZR C(jcυ)] $ 0 for ω ξ 0, respectively. 
(b) I m [ Y R C ( j ω ) ] ξ 0 for ω ^ 0, respectively. 
(c) Re [Zjic(jω)] is a monotonically decreasing function of ω for ω ≥ 0. 
(d) Re [YRC(jω)] is a monotonically increasing function of ω for ω ≥ 0. 

31. From the result of Problem 30, show that: 
(a) 

(b) 
32. The results of Problem 30 can be described as a mapping of the upper 

half s-plane into the lower half Z-plane and a mapping of the lower half 
s-plane to the upper half Z-plane. Use this to obtain an alternative proof 
that dZRC(s)/ds is negative on the real axis. 

33. Using the approach of Problem 32 show that, for the impedance Z R L ( s ) 
of a passive RL network, dZRL(s)jds is real and positive on the real axis. 

34. Let Z1(s) and Z 2(s) be RC impedance functions. Prove that Z1/Z 2 is a 
positive real function. 

35. Find one or more realizations of the following reactance functions: 

(a) (b) 

36. The following rational function is given: 

It is also known that 

(a) (b) 

Find a realization as a ladder network and as one of the Foster forms. 
37. Let P(s) be a polynomial whose zeros are all imaginary. Prove that 

is a reactance function. 
38. The admittance of a passive RC network has zeros at s = 0, —1 and —3. 

At each of these points the slope of Y(σ) equals 2. For large values of 
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s = σ, Y(σ) approaches 4. Find a ladder network and a network in one of 
the Foster forms to realize this function. 

39. Let YRC(s) be the admittance of a passive RC network. Prove that the 
residues of YRC are negative at all poles except the pole at infinity. 

40. Let P(s) be a polynomial whose zeros are all real and negative. Prove 
that each of the following two functions is the admittance of a passive 
RC network: 

41. Let P(s) be a polynomial whose zeros are all real and negative. If K is 
a real, positive constant, prove that all the zeros of F(s) are real and 
negative, where 

42. (a) Let F(s) = P(s)/Q(s) be an RC impedance function. Prove that F(s) 
is also an RC impedance function, where 

(b) Repeat, replacing the word admittance for impedance. 
43. It is desired to prove Theorem 16 on Hurwitz polynomials. In the first 

place, to prove that if P(s) = m(s) + n(s) is Hurwitz, then m/n is a 
reactance function, note that the factors of a Hurwitz polynomial are of 
the form (s 2 + as + b) or (s + c), where α, b, and c are real and positive. 
Write: 

Then, the ratio of the even and odd parts is: 

Show that m/n will be a reactance function provided m1/n1 is also. 
Repeat this procedure, with P1 = m1 + n1 until all the factors of P(s), 
both quadratic and linear, are exhausted. 
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In the second place, it must be proved that, if P(s) = m(s) + n(s) and 
m/n is a reactance function then P(s) is a Hurwitz polynomial (except 
for a possible even factor). The zeros of P(s) occur when 

Prove that, since m/n is a reactance function, m /n= —1 cannot occur in 
the right half s-plane. 

44. Verify whether the following polynomials are Hurwitz: 

(a) 
(b) 
(c) 
(d) 

45. Suppose that a network having a driving-point impedance Z1 = F(s) is 
given. It is desired to find a second network whose driving-point 
admittance Y2 is equal to F(s). Such networks are called inverse. Discuss 
the conditions under which the inverse of a given network may be found 
by the method of duality discussed in Chapter 2. 

46. For each of the one-ports shown in Fig. P46 find the inverse network. 

Fig. P46 

(a; 
(b) 

Verify that the driving-point admittance of the inverse is the same as the 
driving-point impedance of the given network. 

47. Show that the residue condition is satisfied with the " equals " sign 
(compact poles) at all the finite, nonzero poles of the y parameters of a 
lossless two-port terminated in a unit resistance, as given in Table 1. 

48. Show that the symmetric matrix of rational functions 
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is a positive real matrix if and only if the matrix of real parts 

is positive definite or semidefinite in σ ≥ 0. 
4 9 . Let yn = y22 and y21 = y12 be two real rational functions. Suppose the 

lattice shown in Fig. P49 is to have these functions as its short-circuit 

Fig. P49 

parameters. Show that the branch impedances Za and Z b will be 
positive real if 

(-) yn is positive real; 
(b) the real part condition ( R e y π ) 2 — ( R e y 2 1 ) 2 ≥ 0 is satisfied for 
Re s > 0. 

If in (b) it is only known that the real part condition is satisfied on the 
jω-axis, what additional conditions must be placed on the given functions 
yn and y12 before the theorem will again be true? 

50. Show that at a zero of zlx on the jω-axis, z21 is imaginary. Hence show 
that any jω-axis poles of the open-circuit voltage gain 

are simple and with imaginary residues. Repeat for the short-circuit 
current gain h21(s). 

51. Figure P51α shows a lossless two-port terminated in a unit resistance at 
one port. In Fig. P51b the two ports have been interchanged. In the 
first case, the impedance is 
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(a) Find expressions for Z 2(s) appropriate to the Darlington case A and 
case B. 
(b) Observe the relationship between Z1 and Z 2 when (1) m1 = m 2 , and 
(2) n1 = n2. 

Fig. P51 

(a) (b) 

52. Find the z or y parameters of the lossless two-port which, when 
terminated in a resistance, realizes the following impedance functions. 
Specify whether the Darlington case A or case B applies. 

(a) (b) 

(c) (d) 

(e) (f) 

53. Let Z(s) be the impedance of a lossless two-port terminated in a 1 unit 
resistance. Show that: 

(o) if Z(s) has a pole at s = 0, the z parameters of the lossless two-port 
have a noncompact pole there; 
(b) if Z(s) has a zero at s = 0, the y parameters have a noncompact pole 
there; 
(c) if Z(s) has neither a pole nor a zero at s = 0, then both the z's and 
the y's will have a compact pole there; 
(d) the conclusions of the previous parts are true if the point s = 0 is 
replaced by the point s= ∞. 

54. Darlington's theorem shows that Z(s) can be realized as a reactive two-
port terminated in a resistance at one-port. However, the two-port will 
generally require transformers in the realization. An alternative which 
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does not is given in the following. Let a positive real function be written 
as: 

where m 1, m2 are even polynomials and n1, n2

 a re odd. The zeros of the 
polynomial m1m2 — n1n2 have quadrantal symmetry. 
Let H(s) be a Hurwitz polynomial formed from the left-half-plane zeros 
of m1m2 — n1n2; that is 

and 

(a) Prove that 

is the open circuit impedance matrix of a reactive three-port which, when 
terminated in resistances at two of its ports, as shown in Fig. P54 
realizes Z(s) as the impedance at the remaining port. (The major element 
of the proof is in proving the residue condition.) 
(b) Prove that 
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Fig. P54 

N 
Reactive 

three-port 

is the short-circuit admittance matrix of the above reactive three-port, 
(c) Realize the following impedances in the above form. (The Darlington 
realization requires transformers.) 

(i) (2) 

55. Prove that the inverse of a positive real matrix is positive real. 
56. Let Q(s) be a Hurwitz polynomial whose zeros are all complex. Let P(p) 

be a Hurwitz polynomial associated with Q(s) in the following way, after 
the transformation s =p2: 

That is, P(p) is the polynomial containing all the left-half-plane zeros 
o f Q ( P 2 ) . 

Write 

where A and B are even polynomials, as emphasized by the manner of 
writing their arguments. 

(a) Prove that Q(s) can always be written as the difference of two 
polynomials in the form 

where A(s) and B(s) have real negative zeros only and where A/sB and 
BjA are both RC impedance functions. This form of Q(s) is called the 
Horowitz decomposition of Q (not to be confused with Hurwitz). 
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(b) Apply the result of (a) to the following polynomials: 

(1) Q(s) = (s2 + 2s + 2)(s2 + S + 10), 
(2) Q(s) = (s2 + s + l)(s2 + 2s + 4), 
(3) Fourth order Chebyshev, with ripple δ = 0.1, 
(4) Fourth order Butterworth, 
(5) Q(s) = (S2 + s + 2)(s2 + 2s + 5)(s2 + s + 8), 
(6) Q(s) = (S2 + s + l)(s2 + 2s + 3)(s2 + 3s + 5), 
(7) Sixth order Chebyshev, with ripple δ=0 .1 , 
(8) Sixth order Butterworth. 

57. Let Qi and Q2 be polynomials of the same degree, with associated 
Hurwitz polynomials P1 and P 2 , and let their Horowitz decompositions 
be 

(a) Prove that, if P\j P 2 is positive real, then 

are also Horowitz decompositions; that is, 

are all RC impedance functions. 
(b) Apply this result to pairs of applicable polynomials from Problem 56. 

58. Let Qi(s) = A±2(s) — sBi2(5) be the Horowitz decomposition of a 
polynomial Qi(s). Let Q2(s) be another polynomial of degree no greater 
than that of Qi and with no real zeros, 
(α) Prove that Q 2 can always be written as 

where 

are all RC impedance functions. 
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[With the transformation s = p2, Q2(p2)/Q1(p2) is the even part of a pr 
function. From this form the pr function itself, say F(p) , and write 
numerator and denominator in terms of even and odd polynomials. 
Finally, from F(p) form the even part; its numerator should be Q2(p2)-] 
(b) Apply this result to the appropriate polynomials in Problem 56. 

59. If in Problem 58 the polynomial Q2 is allowed to have real negative zeros 
as well, show that Q2 can be decomposed into 

where 

are all RC impedance functions. 
[This time pQ2(p2)/Q1(p2) is the odd part of a pr function. Construct the 
pr function from its odd part, adding enough of a constant so that the 
result has no zeros on the jω axis. Reconstruct the odd part from the pr 
function; its numerator should be pQ2(p2).] 

60. Let F(s) = be any real rational function. 

(a) Prove that it can be decomposed into 

where 

are all RC impedance functions. 
(b) Apply this result to the following functions: 

(i) 

(2) 

(3) 
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61. Let the rational function F(s) in Problem 60 be further restricted as 
follows: (a) F(s) has no pole at ∞ and F(∞) ≥ 0. (b) Any real negative 
poles of F(s) are simple with positive residues, 
(a) Prove that F(s) can be decomposed as 

where 

are all RC impedances. 
(b) Apply this result to the appropriate functions in Problem 60. 

62. The following transfer impedance functions are to be realized by the 
cascade RC-negative converter network shown in Fig. 30. Find the 
Horowitz decomposition of the denominators (as in Problem 56) and 
from this the z parameters of the RC two-ports. 

(a) (b) 

(c) (d) 

63. Let the functions in Problem 62 be transfer voltage ratios which are 
to be realized in the parallel RC-negative converter network shown in 
Fig. 31. Use an appropriate auxiliary polynomial and obtain a network. 

64. The functions in Problem 62 are to be realized in the amplifier network 
in Fig. 33. Use an appropriate auxiliary polynomial and obtain a 
realization. 

65. Suppose a given rational function is augmented by an auxiliary 
polynomial with real negative zeros, and a partial fraction expansion is 
carried out as in (131) in the text. The function can be expressed as in 
(130). The result is to be realized by the cascade connection shown in 
Fig. P65a, were Na is RC. Two-port Nb is shown in dashed lines. Its 
input impedance z l l b is — z . This two-port, in turn, is made up of the 
components shown in Fig. P65b. Show that the parameters of Nc are 
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given in terms of those of Nb by 

Note that —z is the negative of an RC impedance. From a sketch of 
—z(s) specify conditions on the parameters g and G for which Nc will 
be an RC two-port. 

Fig. P65 

(a) (b) 

66. (a) Develop a procedure for the realization of a voltage transfer ratio 
in the form of Fig. P22 in Chapter 3, where the two-port and the 
admittance Y are RC. (b) Realize each of the functions in Problem 62 
in this configuration. 

67. A transfer impedance function is to be realized by a cascade of the units 
shown in Fig. P26 (Chapter 3) in which each of the two-ports Nb and 
Na are to be RC. (a) Develop a procedure which will permit the 
identification of RC-realizable functions z21b and y21a, and similar 
functions for the other units in the cascade, (b) Illustrate the procedure 
with the functions a and d in Problem 62. 

68. Let Z(s) be a rational positive real function. 
(a) Prove that 

is also positive real, where k is a real, positive constant. 
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(b) Show that the numerator and denominator have a common factor 
(s + k) if and only if Z ( - k ) = —Z(k) . 
(c) When Z(s) is expressed in terms of F(s), the result is 

Show that if Z(—k) ≠ —Z(k) , then the numerator and denominator of 
the expression for Z(s) will have a common factor (s + k). 
(d) Illustrate the above with the following pr functions: 

(1) (2) 

69. Two positive real functions Fi(s) and F2(s) are said to be complementary 
if their sum is equal to a positive constant K. Suppose that Fχ(s) and 
K are given. Determine the restrictions on Fi(s) and K such that F±(s) 
will have a complementary function. If Fi(s) and F2(s) are 
complementary and represent driving-point impedance functions, this 
means that the series connection of the two corresponding networks has 
a constant input impedance. In case Fi(s) and F2(s) are admittance 
functions, then the parallel connection of the corresponding networks 
will have a constant input admittance. We refer to such pairs of 
networks as being complementary. 

70. Refer to Problem 69. Let Zi(s) be the driving-point impedance function 
of an RC network and assume that it is regular at the origin. Show that 
its complementary function Z 2(s) will be an RL impedance function 
regular at infinity. 

Fig. P71 

(a) (b) (c) 

71. Find complementary networks for each of the networks shown in 
Fig. P71. 



. 8 . 

THE SCATTERING 
PARAMETERS 

The properties and behavior of multiport networks can be described in 
terms of impedance, admittance, or hybrid matrices, as discussed in Chap
ter 3. These matrices are defined in terms of either open-circuit port 
voltages or short-circuit port currents. In actual operation the multiport 
may not have open- or short-circuit conditions at any of its ports. Never
theless, such open- and short-circuit parameters can adequately describe 
the operation of the multiport under any terminating condition. Of course, 
some networks may not have a z-matrix representation, some may not 
have a y-matrix representation, and some (such as ideal transformers) 
may have neither. 

It would be of value to have another representation of a multiport 
network, one that describes network operation with port-loading con
ditions other than open- or short-circuit. If a set of parameters are defined 
with some finite loading at each port, this set should be more convenient 
to use when describing transmission (of power) from a physical generator 
(with internal impedance) at one port to some loads at the other ports. 
The scattering parameters are such a set. 

Scattering parameters originated in the theory of transmission lines. 
They are of particular value in microwave network theory where the 
concept of power is much more important than the concepts of voltage 
and current; in fact, the latter become somewhat artificial. Scattering 

571 
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parameters should be defined in such a way, then, that the quantities of 
interest in power transmission take on very simple expressions. 

In the development here we shall freely use concepts such as incidence 
and reflection from transmission-line theory, purely for motivational pur
poses. The resulting mathematical expressions, however, do not depend 
for their validity on such interpretation. We shall start by treating the 
simpler one-port network before graduating to two-ports and multiports. 

8.1 THE SCATTERING RELATIONS OF A ONE-PORT 

We begin by considering the situation shown in Fig. 1 . A one-port net-

Fig. 1. A one-port network terminating a second one represented by its Thévenin 
equivalent. 

(a) (b) (c) 

work is shown terminating a voltage source in series with an impedance 
z(s), which can be considered as the Thévenin equivalent of another net
work, a source network, to which Z is connected. The lower case letter z 
stands for the source impedance. If it is real, the situation will be as shown 
in Fig. lb . The one-port will absorb power from the source network. 
Optimal matching will occur when Z(s) = z(—s), in which case maximum 
power is transferred. (When s=jω, z(—s) becomes z(— jω) = z(jω) = 
z(jω). Thus Z(s) = z(—s) reduces to Z(jω) = z(jω), which is the usual 
form for maximum power transfer.) 

When z is real (equal to r), matching will occur when Z = r. Using the 
terminology of wave propagation, we say that if the one-port is matched 
to the source (network), there will be no reflection at the terminals. 

Under unmatched conditions the voltage transform V at the terminals 
is pictured as having contributions from the "incident w a v e " arriving 
from the left and the "reflected w a v e " coming back from the one-port. 
A similar case obtains for the current transform I. Thus we can write 

( la) 

and 

(lb) 
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where the subscripts i and r refer to " inc ident" and "reflected," respec
tively. The negative sign in the second equation is a result of the reference 
chosen for the reflected current. Suppose we think of a real quantity r as 
the "characteristic impedance" of the transmission system to the left of 
the one-port terminals. Then the incident and reflected quantities are 
related by 

(2) 

which are well-known relations for a transmission line. By using this 
result, (1) can be inverted to give 

(3a) 

(3b) 

where g = 1/r. It is now possible to define a voltage reflection coefficient p 
as the ratio between reflected and incident voltage transforms, and a 
current reflection coefficient as the ratio between reflected and incident 
current transforms. Thus, using (3) for the incident and reflected variables, 
we get 

(4) 

Some of the steps in this sequence used V= ZI. Just as the impedance Z 
can characterize the behavior of the one-port network, so also the reflec
tion coefficient can characterize it completely. There is a one-to-one cor
respondence between Z and p given by the bilinear transformation 
p = ( Z — r)(Z + r)—1. We observe that the current and voltage reflection 
coefficients are the same. It must be emphasized, however, that this is 
true only for the case under consideration; namely, a real source im
pedance. When we consider the general case later, we will find that the 
two reflection coefficients are different. 

The wave-propagation concepts that were used in the preceding dis
cussion are artificial in the case of lumped networks. Nevertheless, it is 
possible to regard (3) as formal definitions of the variables Vi, Vr and 
Ii, Ir without attaching any interpretive significance to these quan
tities that reflect their intuitive origin. In the development we used r as 
the characteristic impedance. However, this idea is not necessary in the 
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definitions expressed by (3) or (4); r is simply an arbitrary real positive 
number that has the dimensions of impedance. 

It is, in fact, possible to introduce the incident and reflected voltages 
in an alternative way. Consider again the one-port in Fig. 1; it is charac
terized by the two variables V and L Instead of these, a linear combina
tion of these variables can be used as an equally adequate set. Thus the 
transformation 

(5) 

defines two new variables Vi and Vr in terms of the old ones, V and I. 
The coefficients of the transformation should be chosen in such a way that 
the new variables become convenient to use. The choice a11 = a21 = \ and 
a12 = — a22 = r/2 will make (5) reduce to (3). Other choices could lead to 
additional formulations, which may or may not be useful for different 
applications. 

It is possible to interpret the incident and reflected variables by refer
ence to the situation shown in Fig. lc, in which the one-port is matched 
to the real source impedance. In this case V= rI. Hence, from (3a) we 
find that 

( 6 ) 

when matched. This tells us that when the one-port is matched to its 
terminations, the voltage at the port is Vi and the current is Ii. Further
more, under matched conditions, (3b) tells us that Vr = 0 and Ir = 0; 
and from Fig. 1c we observe that 

(7) 

From (4) we see that, under matched conditions, the reflection coefficient 
is zero. 

When the one-port is not matched, Vr and p are not zero. In fact, (1) 
can be rewritten as 

( 8 a ) 

( 8 6 ) 

that is, the reflected voltage Vr is a measure of the deviation of the one-
port voltage, when under actual operation, from its value when matched. 



Sec. 8.1] THE SCATTERING RELATIONS OF A ONE-PORT 575 

Similarly, Ir is a measure of the deviation of the current, when under 
actual operation, from its value when matched. Note the slight asymmetry, 
in that one deviation is positive and the other negative. 

NORMALIZED V A R I A B L E S — R E A L NORMALIZATION 

The preceding discussion has been carried out by using two pairs of 
variables: the incident and reflected voltages, and the incident and re
flected currents. Since these quantities are proportional in pairs, from (2), 
it should be sufficient to talk about one incident variable and one reflected 
variable. However, rather than select either the voltage or current, we 
use normalized variables related to both. 

The normalized incident and reflected variables are defined as follows: 

(9a) 

(9b) 

We shall refer to a and b as the scattering variables. 
B y using (3) these new variables can be expressed in terms of the 

voltage and current as 

(10) 

The square root of r appearing on the right of these expressions is dis
concerting. It could be eliminated by defining a normalized voltage and 
current, 

(11a) 

(11b) 

Then the scattering variables become 

(12a) 

(12b) 
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A glance at (4) will show that the reflection coefficient is invariant to 
the normalization. Thus 

(13) 

where Z n = Zjr is the normalized impedance. 
Conversely, the normalized voltage, current, and impedance can be ex

pressed in terms of the scattering variables and the reflection coefficient 
by inverting (12) and (13). Thus 

(14a) 

(14b) 

(14c) 

AUGMENTED NETWORK 

The normalization just carried out can be interpreted by reference to 
the network shown in Fig. 2. The normalized value of the source resistance 

Fig. 2. (a) Normalized network; (6) augmented normalized network. 

is 1. The ideal transformer of turns ratio 1 : √r gives the appropriate 
equations relating the actual voltage and current on its secondary side to 
the normalized voltage and current on the primary side. The original one-
port in cascade with the ideal transformer can be called the normalized 
one-port network. When the original one-port is matched to r, this is 
equivalent to the normalized one-port being matched to unity. Because 
of its normalizing function, r is called the normalizing number, or the 
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reference resistance. In the event that the normalizing number is unity, 
the resulting 1 : 1 ideal transformer in Fig. 2 need not be included. 

From the normalized network it is clear that when the one-port is 
matched, the input impedance at the transformer primary is a unity re
sistance. Hence Vn = In; from (12), this means a = Vn and b = 0. Thus, 
under matched conditions, the incident scattering variable equals the 
normalized voltage, and the reflected scattering variable is zero. Further
more, with the normalized source voltage defined as Vgn = r—1/2 Vg, we 
see that the relationship of Vg to Vi given in (7) is invariant to normali
zation. Thus 

(15) 

We can go one more step and include the series unity resistance in with 
the normalized network, as illustrated in Fig. 2b. The result is then called 
the (series) augmented normalized network. Of course, it is possible to think 
of the original network as being augmented by the series resistance r, 
without reference to normalization. The reflection coefficient of the 
original network can be expressed in terms of the input admittance 
Ya of the augmented network or Yαn of the augmented normalized 
network. It is clear from Fig. 2 that we can write 

Then 

or 

(16) 

(In the derivation, r was added and subtracted in the numerator.) This is 
a useful expression. It can often be the simplest form for computing the 
reflection coefficient. 

As an example, consider the situation shown in Fig. 3. Two one-ports 
having impedances given by Za=fa(s) and Z b =fb(s) have reflection co
efficients p i and p 2 , respectively. It is desired to find the reflection co
efficient of the one-port shown in Fig. 3b in terms of p i and p 2 . Since p is 
invariant to normalization, let the normalizing number be unity and con-
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Fig. 3. Illustrative example. 

(a) (b) 

sider the augmented network. The augmented input admittance can be 
readily written as follows: 

Hence, by using (16), we obtain 

For this example it is clear that the reflection coefficient of the overall 
network is more simply expressed in terms of the reflection coefficients of 
the components than is the overall admittance in terms of the component 
admittances. 

REFLECTION COEFFICIENT FOR TIME-INVARIANT, PASSIVE, 
RECIPROCAL NETWORK 

The analytic properties of p(s) for a time-invariant, passive, reciprocal 
network can be obtained by reference to (13). For such a network Zn(s) 
is a positive real function of s. A positive real Zn maps the jω-axis of the 
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s-plane into the closed right half Z n -plane. Equation 13 is a bilinear 
transformation. (See Appendix 2.) The bilinear transformation maps the 
closed right half of the Z n -plane into the interior or boundary of the 

ρ-plane unit circle. Hence, when s = jω, the corresponding point lies inside 
or on the boundary of the p-plane unit circle. Thus 

(17) 

As for the poles of ρ(s), they are given by the zeros of Zn(s) + 1. They 
cannot lie in the closed right half-plane since this would require Re Zn = — 1 
for a point in the closed right half-plane, which is impossible for a positive 
real function. Hence ρ(s) is regular in the closed right half-plane. We see 
that the positive real condition on the impedance of a one-port can be 
translated into equivalent conditions on the reflection coefficient. 

A bounded real function ρ(s) was defined in Chapter 7 as a function that 
is (1) real when s is real, (2) regular in the closed right half-plane, and 
(3) |ρ( jω)| ≤ 1 for all ω. 

The above discussion has shown that for a time-invariant, passive, re
ciprocal network the reflection coefficient is a bounded real function. 

POWER RELATIONS 

We have seen that the scattering variables have special significance in 
describing power transfer from a source to a load. We shall here discuss 
the power relation in the network of Fig. 1 in terms of the scattering 
variables. Let us assume sinusoidal steady-state conditions. The complex 
power delivered to the one-port is W= V(jω) I (jω). What happens to 
this expression if the voltage and current are normalized as in (11)? With 
the stipulation that r is a positive real number, the answer is: nothing. 
When the normalization is inserted, we still have 

(18) 

We can now use (14) to express this result in terms of the scattering 
variables. The real power will be 

(19) 

The last step follows from p = b/a. 
A number of observations can be made from here. The magnitude 

square of both a and b has the dimensions of power. Thus the dimensions 
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of the scattering variables are the square root of power, (voltage × current) 1/ 2. 
We can think of the net power delivered to the one-port as being made up 
of the power in the incident wave, P i , less the power returned to the 
source by the reflected wave, Pr. Of course, under matched conditions 
there is no reflection. The power delivered under these conditions is the 
maximum available power, say Pm, from the source in series with resis
tance r. This power is easily found from Fig. lc to be 

(20) 

The last step follows from (15). With these ideas, (19) can be rewritten as 

and 

(21) 

where Pi = |a|2 and Pr = |b|2. This is an extremely important result. The 
right side specifies the fraction of the maximum available power that is 
actually delivered to the one-port. If there is no reflection (p = 0), this 
ratio is unity. 

For a passive one-port, the power delivered cannot exceed the maximum 
available; that is, P\Pm ≤ 1. Hence 

(for passive one-port). (22) 

8 . 2 MULTIPORT SCATTERING RELATIONS 

As discussed in the last section, the scattering parameters are par
ticularly useful in the description of power transfer. The simplest of such 
situations is the transfer of power from a source with an internal impe
dance to a load, which we have already discussed. More typical is the 
transfer from a source to a load through a coupling network N, as shown 
in Fig. 4. The two-port network N may be a filter or an equalizer matching 
network. The load may be passive, either real or complex, or it may be 
active (e.g., a tunnel diode). More generally, the coupling network is a 
multiport with transmission of power from one or more ports to one or 
more other ports. 
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Fig. 4. Two-port filter or matching network. 

We shall deal in detail with the situation shown in Fig. 5. A multiport 
is terminated at each port with a real positive resistance and a source. 
A special case is the two-port shown in Fig. 8.5b. The development is 
simply a generalization of the one-port case except that scalar relation
ships will now be replaced by matrices. We shall treat the general n-port 
case but will illustrate the details with the two-port for ease of visuali
zation. 

Fig. 5. Multiports with real normalizing numbers. 

To begin, we define the vector variables as follows: 

(23) 
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and the diagonal matrix 

(24) 

The matrix r is nonsingular and positive definite, since all rj's are assumed 
positive. From Fig. 5 we can write 

(25) 

where Z o c is the open-circuit impedance matrix of multiport N. Suppose 
now that at each of the ports the multiport is matched to the source re
sistance. This means the ratio Vj/Ij is to equal the resistance rj at the j t h 
port. In matrix form this becomes V = rl, or Z o c = r when the multiport 
is matched. B y analogy with the one-port case, we introduce the incident-
voltage vector V i and the incident-current vector I i as equal to the 
port-voltage vector and the port-current vector, respectively, when the 
ports are all matched; that is, 

(26a) 

(26b) 

and 
(26c) 

when matched. 
Similarly, we introduce the reflected-voltage vector V r and the reflected-
current vector I r , as the deviation of the port-voltage vector and the port-
current vector, respectively, from their matched values. In analogy with 
(8) for the one-port case, they are written as 

(27a) 

(27b) 

When the last two pairs of equations are used with (25), the incident 
and reflected variables can be written as 

(28) 

and 

(29a) 
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(29b) 

(29c) 

These expressions should be compared with (7) and (3) for the one-port. 

THE SCATTERING MATRIX 

For the one-port a reflection coefficient was defined relating reflected 
to incident voltage and another one relating reflected to incident current. 
These two turned out to be the same reflection coefficient whose value 
was invariant to normalization. In the multiport case the relationship of 
reflected to incident variables is a matrix relationship. We define two 
such relationships—one for the voltages and one for the currents—as 
follows: 

(30a) 

(30b) 

where SI is the current-scattering matrix and SV is the voltage-scattering 
matrix. These matrices can be expressed in terms of Z o c and the terminat
ing impedances by using (29) for the incident and reflected variables, and 
by using V = Z 0 C I . The details will be left to you; the result is as follows: 

(31a) 

(31b) 

Study these expressions carefully, note how S I is relatively simple when 
( Z o c + r ) — 1 premultiplies ( Z o c — r), and S V is relatively simple when it 
postmultiplies ( Z 0 c — r). 

What is ( Z o c + r)? It is, in fact, the open-circuit impedance matrix of 
the augmented network; that is, the multiport in Fig. 5, which includes 
the series resistance at each port as part of the multiport. The inverse, 
( Z o c + r ) — 1 , is the short-circuit admittance matrix of the augmented 
multiport, which we shall label Y α . In terms of Y a , the two reflection 
coefficients are found from (31), after some manipulation, to be 

(32a) 

(32b) 
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The only difference seems to be that in one case r postmultiplies Y a and 
in the other case it premultiplies Y a . Each of these equations can be 
solved for Y a . When these two expressions for Ya are equated, a relation
ship between S I and S V is found to be 

(33a) 

(33b) 

We seem to be at an impasse; the matrix r or r - 1 seems to crop up and 
spoil things. Perhaps normalization will help. Look back at (9) to see how 
the incident and reflected voltages and currents were normalized. Suppose 
we carry out a similar normalization, but in matrix form. To normalize 
currents, we multiply by the matrix r 1 / 2; and to normalize voltages, we 
multiply by r - 1 / 2 , where 

(34) 

is a real diagonal matrix, each diagonal entry of which is the square root 
of the corresponding entry of matrix r. To see what will happen, let us 
multiply both sides of (30a) by r 1 / 2 and both sides of (30b) by r - 1 / 2 . Then 

(35a) 

(35b) 

But observe from (33)—through premultiplying and postmultiplying both 
sides by r 1 / 2—that 

(36) 

where the matrix S is introduced for convenience. 
Since V i = r l i , it follows that the two normalized variables on the right 

side of (35) are equal; that is, r - 1 / 2 V i = r 1 / 2 I i . In view of (36), it follows that 
the two normalized variables on the left side of (35) are also equal. 
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With the preceding discussion as justification, we now define the 
normalized vector scattering variables as 

(37a) 

(37b) 

These scattering variables are related by a scattering matrix S, which is 
related to the current- and voltage-scattering matrices through (36). Thus 

(38) 

RELATIONSHIP TO IMPEDANCE A N D ADMITTANCE MATRICES 

The relationship between this scattering matrix and the matrices Z o c 

and Ya can be found by appropriately pre- and post-multiplying (32) and 
(31) by r 1 / 2 and r— 1 / 2 consistent with (36). If we define 

(39a) 

(39b) 

(39c) 

where Y s c , the short-circuited admittance matrix of the multiport, is 
Z o c

- 1 , then 

(40) 

(41) 

We leave the details for you to work out. Compare (40) with (16), which is 
the corresponding scalar result for a one-port. 

The relationship between S and Y a n points up an important property 
that is not evident from the manner in which it was obtained. Because of 
the series resistances in the augmented network, this network may have 
an admittance matrix even though the original multiport has neither an 
impedance nor an admittance matrix. This will be true for any passive 
network. Thus an advantage of scattering parameters (as we call the ele
ments of the scattering matrix) is that they exist for all passive networks, 
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even those for which impedance or admittance parameters do not exist. 
An illustration is provided by the ideal transformer shown in Fig. 6. 

Fig. 6. Ideal transformer. 

The augmented network for unity reference resistances at both ports is 
shown. The ideal transformer has neither an impedance nor an admittance 
matrix. Nevertheless, the augmented network has an admittance repre
sentation. The short-circuit admittance matrix can be calculated directly, 
and then (40) will give the scattering matrix. The details will be left to 
you; the result will be 

This reduces to an especially simple matrix for a turns ratio of n = 1. 
Note that S22 is the negative of S11. Two-ports that satisfy the con

ditions S22 = —S11 are said to be antimetric, in contrast to symmetric 
two-ports, for which S22 = S11. (See Problems 10 and 11.) 

NORMALIZATION A N D THE AUGMENTED MULTIPORT 

The normalized scattering variables a and b can be expressed in terms 
of voltages and currents by applying the normalization to (29). Defining 
the normalized voltage and current as V n = r - 1 / 2 V and I n = r 1 / 2I, these 
equations and their inverses take the relatively simple forms 

(42) 

Comparing these with (12) and (14) shows that the expressions for the 
multiport scattering variables are identical with those for the one-port, 
except that they are matrix expressions in the present case. 
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Finally, note that the two expressions in (28) relating incident voltage 
and current to V g , reduce to a single equation under normalization: 

(43) 

The normalization can again be interpreted by appending ideal trans
formers to the ports. This is illustrated for the two-port in Fig. 7. The 

Fig. 7. Normalized and augmented two-port. 

(a) 

(b) 

turns ratios of the transformers are 1 : √r1 and 1 : √ r 2 . They provide 
the appropriate equations relating the actual voltages and currents to the 
normalized values. The total network, including the ideal transformers, is 
called the normalized network. Even though the reference resistances at 
the ports may be different, the matched condition corresponds to an input 
resistance of unity at each port. If we include a series unit resistance at 
each port, the resulting overall network is the augmented (normalized) 
network, as shown in Fig. 7b. 

How are the port normalizing numbers r j chosen? In the ideal-trans
former example, for instance, what caused us to choose unity normalizing 
numbers for both ports? The answer to these questions is simply con
venience. If a network will actually operate with certain terminating re
sistances, it would clearly be convenient, and would simplify the resulting 
expressions, if these resistances were chosen as the normalizing numbers. 
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In other cases choice of some parameter in the network as the normalizing 
number leads to simplification. Consider, for example, the gyrator shown 
in Fig. 8. It has an impedance representation containing the gyration 

Fig. 8. Gyrator. 

resistance r. If the port normalizing numbers r1 and r 2 for both ports are 
chosen equal to r, the matrix Z n can be written very simply. Equation 40 
then leads to the scattering matrix. Thus 

8 .3 THE SCATTERING MATRIX AND POWER TRANSFER 

The preceding discussion provides means for finding the scattering 
parameters of a multiport from either its impedance or admittance 
matrix—or the admittance matrix of the augmented network. But the 
scattering parameters appear in the relationships between incident and 
reflected scattering variables. We shall now consider in greater detail 
what these relationships are. For simplicity we shall treat the two-port, 
for which the equations are 

(44a) 

(44b) 
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We shall assume arbitrary loading of the two-port, with possible signals 
applied to each port, as shown in Fig. 9 . 

Fig. 9. Two-port with arbitrary loading. 

INTERPRETATION OF SCATTERING PARAMETERS 

From ( 4 4 ) the scattering parameters can be interpreted as follows: 

( 4 5 ) 

We see that each parameter is the ratio of a reflected to an incident 
variable, under the condition of zero incident variable at the other port. 
What does it mean for an incident variable, say a2, to be zero? This is 
easily answered by reference to ( 4 2 ) or, equivalently, ( 2 9 ) , which relate 
scattering variables to voltages and currents. Thus a2 = 0 means 
Vn2 = —I n 2 , or V2 = — r 2 I 2 . NOW look at Fig. 9 . The condition 
V2 = — r 2 I2 means that port 2 is terminated in r 2 (rather than in im
pedance z2) and that there is no voltage source; that is, port 2 is matched. 
Furthermore, if there is no incident variable and V2 = — r 2 I 2 , (29b) , 
shows that the reflected voltage is the total voltage at the port (V r 2 = V2) 
and (29d) shows that the reflected current is the total current (Ir2 = I2). 
Similar meanings attach to the condition a1 = 0 . 

Thus the scattering parameters of a two-port are defined as the ratio 
of a reflected to an incident variable when the other incident variable is 
zero—meaning, when the other port is match-terminated. More specific
ally, consider S11. This is the ratio of reflected to incident variables at 
port 1 (b1/a1) when port 2 is matched. Let us now substitute into b1/a1 the 
scalar equation for port 1 resulting from ( 4 2 ) . Then 

( 4 6 ) 
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where Zn1 is the normalized input impedance at port 1. Comparing this 
with (13), which gives the reflection coefficient for a one-port, we see that 
S11 is the reflection coefficient at port 1 when the other port is matched. A 
similar conclusion is reached about S22. 

NOW look at the off-diagonal terms, specifically S21. When a2 = 0, as 
we have already mentioned, b2 = Vn2, or Vr2 = V2. Furthermore, 
a1= Vgnl/2, from (43). Hence 

(47) 

Thus S21 is seen to be proportional to a voltage gain, a forward voltage 
gain. A further clarification is given in terms of Fig. 10. Here the two-port 

Fig. 10. Transducer voltage ratio. 

Resistance looking into 
transformer primary= r1 

has been replaced by an ideal transformer of such turns ratio that the 
resistance r 2 becomes matched to r\. The output voltage under this con
dition is called V'2. Now if we take the ratio of the actual output voltage 
V2 to V'2, the result is called the transducer voltage ratio. The calculation 
given in the figure shows this quantity to be the same as the right-hand 
side of (47). Hence S21 is the forward transducer voltage ratio. When the 
source is matched as in Fig. 10, it will deliver to the network at its ter
minals (namely, the primary side of the transformer) the maximum 
available power. This is seen to be Pm1 = | Vg1|2/4r1. 

Now return to the original setup. The power transferred to the load 
with network N in place, when it is matched and when the port 2 voltage 
is V2, will be P 2 = | V2|2/r2. Hence the magnitude square of S21 in (47) 
will be 

(48) 
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Thus the magnitude square of S21, which is often called the transducer 
power gain, G(ω2), is simply the ratio of actual load power to the maximum 
power available from the generator when both ports are matched. A com
pletely similar discussion can be carried out for S12, the reverse transducer 
voltage ratio. (The argument is written ω2 because G is an even function 
of frequency.) 

A slight manipulation of (48) leads to |S21|2 = | Vn2|2/| Vgn1/2|2. This 
is, in fact, the transducer power gain for the normalized network. The 
conclusion is that the transducer power gain is unchanged by normali
zation. When a two-port is to be inserted between two resistive termina
tions, this result gives added reason for using the terminations as the 
reference resistances; the transmission coefficient then directly describes 
the power gain property of the network. 

Without detailed exposition, it should be clear that the scattering para
meters for a multiport can be interpreted in a similar fashion. The para
meters on the main diagonal of S will be reflection coefficients. Thus 

(49) 

is the reflection coefficient at port j when all other ports are matched; that 
is, terminated in their reference resistances. 

The parameters off the main diagonal are called transmission coefficients, 
in contrast with the reflection coefficients. They are given by 

( 5 0 ) 

Following an analysis like that leading to (48), we find the magnitude 
square of a transmission coefficient to be the ratio of load power at one 
port to maximum available power from a source at another port when all 
ports are matched. Thus 

( 5 1 ) 

As an illustration, consider the network of Fig. 1 1 . A three-port is 
formed with a gyrator by making an extra port, as shown. (The gyrator 
symbol shown was mentioned in Problem 3 in Chapter 3.) The objective 
is to find the scattering matrix of the three-port and to interpret its ele
ments. Let the gyration resistance be taken as unity. This amounts to 
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Fig. 11 . Gyrator as three-port circulator. 

(a) (6) (c) 

choosing the normalizing numbers of the ports as the gyration resistance. 
Then the gyrator relationship is 

But Ia = I1 + I2, Ib = I3 — I2, and V2 = V1— V3, as observed from 
Fig. 11. With these, we get 

The coefficient matrix here is Z n . The scattering matrix can now be com
puted from (41). The result is 

(52) 

This is a very interesting result. Note first that the diagonal elements 
are all zero. Hence the reflection coefficients at all ports are zero, which 
means all the ports are matched. As for the transmission coefficients, con
sider Fig. 11b, in which only port 1 is excited and all 3 ports are matched. 
Thus, V2=—I2 and V3 = — I3. Hence, from (28) and (37), we find 
a1 = Vil = Vg1/2 and a2 = a3 = 0; from (52), b1 = b2 = 0 and b3 = Vg1/2. 
But b3 = Vr3 = V3; hence the power in the matched load at port 3 is 
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The conclusion is that when a signal is incident at port 1, with all ports 
match-terminated, none is reflected (b1 = 0), none is transmitted to port 2 
(b2 = 0), but all of it is transmitted, without loss, to port 3, the power 
there being the maximum available from the source at port 1. 

Similar conclusions follow from (52) for the other transmissions; 
namely, that a signal incident at port 2 is all transmitted to port 1, and a 
signal incident at port 3 is all transmitted to port 2. In this latter case, 
because of the minus sign in b2 = —a3, there is a reversal in voltage phase, 
but the power transmitted is not affected. 

The three-port in Fig. 11 seems to have a cyclic power-transmission 
property. Power entering one port is transmitted to an adjacent port in a 
cyclic order, as shown by the circular arrow. A multiport device having 
this property is called a circulator, the symbol for which is shown in Fig. 
11c for a three-port. For our circulator in Fig. 11, the cyclic order is 132. 
Clearly, a circulator of the opposite cyclic order (123) is also possible. 
Its scattering matrix must clearly be of the form 

where |S13| = |S21| = |S32| = 1. At a single frequency the angles of the 
nonzero parameters can have any values without influencing the power 
transmitted—and we have so indicated on the right. For the simplest 
case all the angles are zero and the nonzero scattering parameters are all 
unity. More generally, each of the nonzero transmission coefficients can 
be an all-pass function. 

The particularly happy way in which the scattering parameters are re
lated to power transmission and reflection gives a further, though belated, 
justification for the normalization that we carried out in (37). It was done 
there for the purpose of arriving at a single scattering matrix rather than 
the two based on current and voltage. These simple interpretations of the 
scattering parameters in terms of power transmission and reflection would 
not have been possible had we continued to deal with either the current 
or the voltage scattering matrix. 
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8 . 4 PROPERTIES OF THE SCATTERING MATRIX 

Since the scattering parameters have meanings intimately connected 
with power, the processes of power transmission are quite conveniently 
expressed in terms of scattering parameters. Assume a multiport with 
arbitrary terminating impedances in series with voltage sources, as in 
Fig 5, except that the terminations are arbitrary. The complex power 
input to the multiport in the sinusoidal steady state will be W = V*I, 
where V* is the conj u gate transpose of V. If you go through the details o 
substituting the normalized variables for the actual ones, you will find 
that the expression for power is invariant to normalization. Thus 

(53) 

Here (42) was used to replace the normalized voltage and current vectors 
by the scattering variables. The last term in parentheses on the far right 
is the difference of two conjugate quantities, since 

The last step here follows because these matrix products are scalars and 
the transpose of a scalar is itself. But the difference of two conjugates is 
imaginary. Hence the real power will be 

(54) 

This was obtained by substituting Sa for b. This equation should be 
compared with (19) for the one-port case. 

The properties of the scattering matrix for different classes of networks 
can be established from (54). First observe that the right side is a quadratic 
form. For convenience, define 

(55) 

so 

(56) 
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Without placing any restrictions on the type of network, let us take the 
conjugate transpose of Q: 

(57) 

As discussed in Chapter 1, a matrix that is equal to its own conjugate 
transpose is said to be Hermitian. Thus Q is a Hermitian matrix. Its 
elements are related by qij = qji which requires the diagonal elements to 
be real. 

We are interested in particular classes of networks: active and passive, 
reciprocal and nonreciprocal, lossless and lossy. There is not much of a 
specific nature that can be said about active networks. Hence we shall 
concentrate mainly on passive networks, which may be reciprocal or 
nonreciprocal. We shall also focus on the lossless subclass of passive 
networks; these also may be reciprocal or nonreciprocal. 

First, for passive networks in general, the real power delivered to the 
multiport from sinusoidal sources at the ports must never be negative. 
Hence 

U — S*S is positive semidefinite (58) 

This is the fundamental limitation on the scattering matrix of a passive 
multiport. It should be compared with (22) for the one-port case. 

A necessary and sufficient condition for a matrix to be positive semi-
definite is that the principal cofactors be no less than zero, as discussed 
in Chapter 7. The diagonal elements of Q are also principal cofactors and 
must be non-negative. In terms of the elements of S, this means 

(59) 

Each term in this summation is positive. The expression tells us that a 
sum of positive terms cannot exceed unity. This requires, a fortiori, that 
each term not exceed unity, or 

(60) 

This is a fundamental limitation imposed on the scattering parameters as 
a consequence of passivity. It tells us that for a passive network, the 
magnitude of a reflection coefficient cannot exceed unity, nor can the magni
tude of a transmission coefficient. 

Next, consider a lossless multiport, whether reciprocal or nonreciprocal. 
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In this case no power is dissipated within the multiport. Hence the real-
power input shown in (56) must be identically zero for any possible vec
tor a. This is possible only if the matrix of the quadratic form vanishes; 
that is, 

or (61) 

By definition of the inverse, we see that S - 1 = S*. A matrix whose inverse 
equals its conjugate transpose is called a unitary matrix. Thus the scatter
ing matrix of a lossless multiport is unitary. (The last step in the equation 
follows because a matrix commutes with its inverse.) 

The unitary property imposes some constraints on the elements of the 
scattering matrix that can be established by expanding the products in 
(61). The result will be 

from which 

(62) 

or 

from which 

(63) 

where δ j k is the Kronecker delta. 

TWO-PORT NETWORK PROPERTIES 

The immediately preceding equations specify properties of the scatter
ing parameters of multiports. We shall examine these in detail for the 



Sec. 8.4] PROPERTIES OF THE SCATTERING MATRIX 597 

two-port network, specifically limiting ourselves to lossless networks, both 
reciprocal and nonreciprocal 

First, with n = 2, set j = k =1 in (62); then j = k = 2 in (63). The 
results will be 

(64a) 

(64b) 

Subtracting one from the other gives 

(65) 

Thus, for a lossless two-port, whether reciprocal or nonreciprocal, the 
magnitude of the reflection coefficients at the two ports is equal. This result 
can be extended to complex frequencies by analytic continuation. Using 
the symbol ρ for reflection coefficient, the result can be written as follows: 

(66) 

In terms of poles and zeros, we conclude the following. The poles and 
zeros of ρ1(s) ρ1(—s) and ρ2(s) ρ2(—s) are identical, and they occur in 
quadrantal symmetry. In making the assignment of poles and zeros of 
ρ1(s) from those of p1(s) ρ 1 (—s), the only consideration is stability. No poles 
of p1(s) can lie in the right half-plane. Hence the left-half-plane poles of 
ρ1(s) ρ1(—s) must be poles of ρ1(s). As for the zeros, no limitation is 
imposed by stability; zeros of ρ1(s) ρ1(—s) can be assigned to ρ1(s) from 
either the left or the right half-plane, subject to the limitation that these 
zeros, plus their images in the jω-axis, must account for all the zeros of 
ρ1(s) ρ 1 ( — s ) . Similar statements can be made about the poles and zeros 
of ρ 2(s). 

Let us return again to (62) and this time set j = k = 2. The result will be 

(67) 

When this is compared with (64b), we see that 

(68) 

that is, the magnitude of the forward-transmission coefficient equals that 
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of the reverse-transmission coefficient. This is not surprising for reciprocal 
networks, since then S12(s) = S21(s), but it is true for nonreciprocal net
works also. In fact, even more detailed relationships can be found by 
setting j = 2, k = 1 in (62). The result will be 

( 6 9 a ) 

or 

( 6 9 b ) 

This applies to both reciprocal and nonreciprocal lossless two-ports. For 
the reciprocal case S12 = S21; hence the ratio of S21(s) to S12(—s) will 
then be an all-pass function. Since ρ1(s) can have no poles in the right half-
plane, the zeros of this all-pass function must cancel the right-half-plane 
poles of ρ2(—s). 

AN APPLICATION FILTERING OR EQUALIZING 

A number of different applications can be handled by the configura
tion shown in Fig. 12a. A lossless coupling network N is to be designed for 

Fig. 12. Filter, equalizer or matching network. 

(a) (b) 

(c) 
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insertion between a source with a real internal impedance and a real load. 
The network may be required to perform the function of filtering or 
equalizing; that is, shaping the frequency response in a prescribed way. 

Alternatively, the load may be an impedance Z L as shown in Fig. 12b, 
and the coupling network is to be designed to provide a match to the 
resistive source over a band of frequencies. This case can be related to the 
former one by using Darlington's theorem. That is to say, Z L can be 
realized as a lossless two-port N2 terminated in a resistance r2, as shown 
in Fig. 12c. The cascade combination of N1 and N2 plays the role of the 
lossless network N in Fig. 12a. A limited discussion of this matching prob
lem will be given in the next section. 

Let us concentrate on the filter or equalizer problem. What is specified is 
the transducer power gain as a function of frequency. We shall label this 
function G(ω2). According to (48), G(ω2) is simply the magnitude square 
of S21. But |S21|2 is related to the magnitude of the input reflection 
coefficient by (64a). If this expression is analytically continued, it can 
be written as 

(70) 

where we have again replaced S11 by ρ1. If G(ω2) is specified, the right-
hand side is a known even function. It is now only necessary to assign the 
poles and zeros of the right side appropriately to p1(s). 

Furthermore, the reflection coefficient ρ1 and the impedance Z1 looking 
into the input terminals of N with the output terminated in r2 are related 
by (46), which can be solved for Z1 as follows: 

(71) 

Hence, once ρ1(s) has been determined from (70), the input impedance Z1 

becomes known as a function of s. The task is then reduced to an appli
cation of Darlington's theorem; namely, realizing Z1(s) as a lossless two-
port terminated in a resistance. 

To illustrate this discussion let the transducer power gain be given as 

This is a third-order Butterworth filter function. The continuation is 
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obtained through replacing ( — ω 2 ) by s 2 . When this is inserted into (70), 
the result is 

In the last step the denominator has been factored, putting into evidence 
the left- and right-half-plane poles. The left-half-plane poles must 
belong to ρ 1 (s) , as opposed to ρ 1 ( — s ) . In the example the zeros also are 
uniquely assignable: three zeros at the origin to ρ1(s) and three to ρ 1 ( — s ) . 
The only ambiguity arises in the appropriate sign. There is no a priori 
reason why ρ1(s) must have a positive sign. The conclusion is that ρ1(s) 
must be the following: 

When this is inserted into (71), the impedance is found to be 

depending on the sign chosen for ρ 1 (s) . But these are inverse impedances, 
and their realizations will be duals. In the present case the realization is 
rather simply obtained by expanding in a continued fraction. Thus, by 
using the second function, we obtain 

The network realizing this function, and its dual, are shown in Fig. 13. 
These are the normalized realizations. Recall that the normalized open-
circuit impedance matrix is obtained by dividing all elements of Z o c by 
√r1r2. To undo this normalization, all branch impedances must, there
fore, be multiplied by √ r 1 r 2 . One denormalized network, with the actual 
source and load resistances, is shown in Fig. 13c. 
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Fig. 13. Illustrative example. 

(a) (b) 

Γc) 

LIMITATIONS INTRODUCED B Y PARASITIC CAPACITANCE 

The general matching problem illustrated in Fig. 12b and c takes on 
some additional significance for the special case shown in Fig. 14a, where 

Fig. 14. Two-port constrained by parasitic capacitance. 

(a) 
(b) 

(c) 

the load impedance is the parallel combination of a capacitor and a resis
tor. This configuration is identical with that of a network working between 
two resistive terminations R1 and R2, but constrained by a parasitic 
shunt capacitance across the output terminals, which can be treated as 
part of the two-port, as suggested in Fig. 14b. This is equivalent to the 
situation illustrated in Fig. 14c, where a parasitic shunt capacitance occurs 
across the input port. 
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We have already seen in Chapter 6 that such a parasitic capacitance 
leads to some integral constraints on the real part of the driving-point 
impedance. We shall here derive a similar integral constraint on the 
reflection coefficient and use it to find a limitation on the transducer power 
gain. 

The two situations in Fig. 14b and c are similar and can be treated 
simultaneously by considering Fig. 15, where R is either R \ or R 2 . In the 

Passive 
lossless 

Fig. 15. Shunt capacitance constraint. 

first case, Z is the impedance Z\ looking into the left-hand port of the 
dashed two-port in Fig. 14c, with R 2 in place; and ρ is the corresponding 
reflection coefficient ρ1. For R = R 2 , Z is the impedance Z 2 looking into 
the right-hand port of the dashed two-port in Fig. 14b, with the other 
port terminated in R1; and p is the corresponding reflection coefficient ρ2. 
In either case, 

Ideally, under matched conditions, ρ = 0. This requires Z = R inde
pendent of frequency, at least over the frequency band of interest. But 
this cannot be achieved exactly; it might only be approximated. If p 
cannot be identically zero, at least we would like to make its magnitude as 
close to zero as possible. 

It is customary to define another quantity related to p as follows: 

( 7 2 ) 

When ρ = 0, the return loss is infinite; under totally mismatched condi
tions, (when ρ = 1), the return loss is zero. Thus maximizing the return loss 
over a band of frequencies is a measure of the optimization of matching 
over this band. 
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An integral constraint on the return loss can be obtained by taking the 
contour integral of ln(1/ρ) around the standard contour—the jω-axis and 
an infinite semicircle to the right, as described in Chapter 6 and shown 
again in Fig. 16. To apply Cauchy's theorem, the integrand must be 
regular in the right half-plane. However, although p is regular in the right 

Fig. 16 

half-plane, 1/ρ need not be. Hence we first multiply 1/p by an all-pass 
function, as follows: 

( 7 3 ) 

where each sk is a pole of 1 / ρ in the right half-plane. The resulting function 
is regular in the right half-plane, and the contour integration can be car
ried out. There will be contributions to the contour integral from the 
jω-axis and from the infinite semicircle. The evaluate the latter, observe 
that as s-> ∞ , Z - > 1/sC because of the shunt capacitor. Hence 

( 7 4 ) 

Also, the all-pass function approaches 

( 7 5 ) 

As a consequence 

( 7 6 ) 
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The negative sign before the right-hand side suggests that we take the 
logarithm of — A ( s ) / ρ instead of +A(s)/ρ. Thus, since ln(1 +x)->x for 

(77) 

where C is the infinite semicircular part of the standard contour and 

jc
 d s / s = -jπ. 

Along the jω -ax i s , 

(78) 

The first step follows from the fact that the magnitude of an all-pass 
function is unity on the jω -ax i s , so l n | A ( j ω ) / ρ ( j ω ) | = ln|1/ρ |. The last step 
follows because ln |1/ρ| is an even function of ω, whereas the angle is an 
odd function. 

From Cauchy's theorem, the sum of the integrals on the left sides of the 
last two equations should equal zero. Hence 

(79) 

Recall that sk is a pole of 1/ρ in the right half-plane, so that its real part is 
positive. The sum of all such poles will, therefore, be real and positive. 
If 1 / ρ has no poles in the right half-plane, this sum will vanish. The final 
result will therefore be 

(80) 

This is a fundamental limitation on the return loss (or the reflection 
coefficient) when a two-port matching network is constrained by a shunt 
capacitor across one port. 

This constraint places a limitation on the achievable transducer power 
gain also. To illustrate this, suppose the band of interest is the low-fre
quency region 0 ≤ ω ≤ ωc, which is the passband, the remainder of the 
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frequency range being the stopband. There will be contributions to the 
integral in (80) from both bands. The most favorable condition will occur 
when 1 / ρ has no poles in the right half-plane and the magnitude of ρ is 
constant, say |ρ0|, in the passband. Then 

(81) 

Outside the passband, there should be a total mismatch and |p| should 
ideally equal 1. More practically, although its value will be less than 1, it 
should be close to 1. Hence ln l/ |ρ | will be a small positive number, ideally 
zero. Therefore the integral from ωc to ∞ will be positive, and (81) 
will yield 

(82) 

When this expression is combined with (64), the magnitude squared of 
S21 becomes 

(83) 

This puts an upper limit on the achievable transducer power gain, |S 2 1 ( jω)|, 
over a wide frequency band, even if we assume a constant value is possible 
over the passband. The wider the frequency band of interest, the more 
stringent will this limitation become for a fixed shunt capacitan.ce. Note 
that the immediately preceding result is valid for Fig. 14c; it also applies 
to Fig. 14b through (65) and (68). 

8 . 5 COMPLEX NORMALIZATION 

The scattering parameters treated up to this point were defined for a 
multiport operating with resistive terminations. Normalization was car
ried out with these real numbers. Suppose the terminations of a multiport 
are not resistances but impedances; how do we normalize them? We shall 

http://capacitan.ce
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now turn our attention to this general problem. For simplicity, we shall 
illustrate with a two-port, but the results will apply in matrix form to the 
general multiport. 

The situation to be treated is illustrated with a two-port in Fig. 17. 

Fig. 17. Two-port with general terminations: (a) general case; (6) matched case. 
(a) (b) 

The terminating impedances are strictly passive with positive real parts: 

(84) 

These real parts play the same normalizing role as the resistive termina
tions before, and they are represented by the positive definite diagonal 
matrix in (24). From Fig. 17a, we can write 

which can be generalized for the multiport as 

(85) 

The right-hand side results from the substitution of V = Z o c I. This 
should be compared with (25) for resistive terminations. 

Now suppose that the multiport is simultaneously matched to the 
terminating impedances at all the ports; that is, the impedance looking 
into port j of the multiport is zj. This is shown in Fig. 17b for the two-port. 
From Fig. 17, 

when matched. (86) 

As before, the incident voltages and currents are defined as the port 
voltages and currents under matched conditions; that is, V i = V and I i = I, 
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when matched. Hence, generalizing the last equation and inserting into (85), 
we obtain 

(87a) 

(87b) 

since z + z = 2r. These should be compared with (28) for real terminations. 
Note that the expression for V i in terms of V g is not as simple as it is in the 
case of real terminations. 

The condition of simultaneous match at all ports, requiring as it does 
that Z o c be the conjugate of the terminating impedance z, is not possible 
of attainment at all frequencies, but only at a single frequency. Hence the 
procedure being described here is strictly applicable only at a single 
frequency, which may be at any point on the jω-axis. It may also be used 
in narrow-band applications without excessive error. 

Again we define the reflected variables as deviations from their matched 
values, according to (27). When (85) and (87) are inserted there, and 
after some manipulation whose details you should supply, the incident 
and reflected variables become 

(88a) 

(88b) 

(88c) 

(88d) 

Again we note that the expressions for the voltages are somewhat com
plicated compared with those for the currents. 

Let us now introduce voltage, current, and impedance normalizations. 
To normalize currents we multiply by r 1 / 2, and to normalize voltages we 
multiply by r— 1 / 2 . Impedances are normalized according to (39b). The 
normalized incident and reflected variables become 

(89a) 

(89b) 

and 

(90a) 

(90b) 
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where z n = r - 1 / 2 z r - 1 / 2 = [zj/rj]. Examine these expressions carefully. For 
the case of real terminations, both quantities in (89) are the same; they 
were together labeled a in (37). Likewise, both quantities in (90) are the 
same for real terminations; they were collectively labeled b before. Clearly, 
this is no longer true for impedance terminations. Observe that if z is 
made real, the two expressions in (89) reduce to a and the two in (90) 
reduce to b in (42). 

Two different scattering matrices can be defined, one for the currents 
and one for the voltages, even for the normalized variables. We shall 
arbitrarily define a and b as the normalized incident and reflected currents. 
Thus from (89) and (90) we get 

(91a) 

(91b) 

We now define the scattering matrix S, as before, by the relationship 
b = Sa. When (91) are inserted for a and b, we can solve for the scattering 
matrix: 

(92) 

This should be compared with (41) for the case of real terminations. Note 
that ( Z n + z n ) — 1 is the normalized admittance matrix of the augmented 
network, Y a n . Hence, by adding and subtracting z n within the first 
parentheses in (92), this expression can be rewritten as 

(93) 

since z n + z n = 2U. This is the same expression as (40) for real termina
tions. 

Another matrix, say S, can be defined for the normalized voltage 
variables by writing r — 1 / 2 V r = S r - 1 / 2 V i . Inserting from (89) and (90) leads to 

(94) 

Comparing this with (92) gives the relationship between the two matrices 
as 

(95) 
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The relative complexity of the voltage scattering matrix S is adequate 
reason for our having chosen the definitions of a and b, and the scattering 
matrix S as we did. But even more pertinent is their relation to power. 
To see this, first solve for V n and I n in terms of a and b from (91). Thus 

(96a) 

(96b) 

since z n + z n = 2U. These are not quite the same as (42) for the case of 
real terminations. However, if the expression for V*nIn is formed similar 
to (53), the expression for the real part will turn out to be exactly the same 
in terms of the scattering matrix defined here as it was before in (54). 

Hence the properties of the scattering matrix as discussed in Section 
84 apply also to the scattering matrix S given in (92). This is, then, 
the appropriate extension of the scattering variables and the scattering 
matrix to complex normalization. 

F R E Q U E N C Y - I N D E P E N D E N T NORMALIZATION 

The preceding discussion concerning complex normalization, being 
based on optimal matching in the sinusoidal steady state, is limited to a 
single frequency. We shall now extend the discussion to arbitrary signals 
and to all values of s. In Fig. 18 is shown a two-port that is representative 

Fig. 18. General matching with arbitrary signals and passive impedance terminations. 

of any multiport, excited by arbitrary voltage signals through passive 
impedance terminations. For the general case, 

(97a) 

(97b) 

These are identical with (85) except that they apply for all s. Now let 

(98) 
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that is, r1(s) and r2(s) are the even parts of z1(s) and z2(s). Since r(s) is even, 
r(—s) = r(s); so we shall not write the argument of r except for emphasis. 
Without making any claims about real power matching, let us define a 
condition of the two-port in which 

(99) 

We take this as a reference condition and call it the matched condition*. 
When s = j ω , r is simply the real part of z(s). 

A S before, the incident voltage and current are defined as the port 
voltages and currents under matched conditions; that is, V i(s) = V(s) and 
I i(s) = I(s) when Z o c = z(—s). From Fig. 18 and from (97) there follows 
that 

(100a) 

(100b) 

The reflected variables are again defined as deviations from the re
ference (matched) condition, just as before. By inserting (100) and (97) 
into Ir = I i — I and V r = V — V i , we obtain 

(101a) 

(101b) 

Compare these with (88); note that z has been replaced by z(—s). When 
s = j ω , z(-s) = z(-jω) = z[(jω)] = z(jω). 

Another useful form is obtained by inserting V = Z o c I. Then 

(102a) 

(102b) 

The next step, as before, is normalization. However, this process is now 
more complicated. Previously the matrix r was a matrix of real numbers, 

* A more complete treatment in the time domain is given in E. S. Kuh and R. A. 
Rohrer, Theory of Linear Active Networks, Holden-Day, San Francisco, 1967, pp. 287-
300. 
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and normalization amounted to dividing or multiplying the components 
of vectors to be normalized by the square roots of the scalar elements of r. 
Now r(s) is an even rational function of s. The process of taking the square 
root is not that simple. Let us digress here a moment in order to examine 
the properties of r(s). 

Let US start with the impedance z, whose elements are rational positive 
real functions, hence regular in the right half-plane. We write the numera
tor and denominator of the j t h element of z as nj(s) and dj(s). Thus 

( 1 0 3 ) 

Then 

( 1 0 4 ) 

Both the numerator and denominator of the right side are even poly
nomials of s. Hence their zeros occur in quadrantal symmetry. We now 
define a rational function f(s) whose zeros and poles are all the zeros and 
poles of rj(s) that lie in the left half-plane. The function containing all the 
right-half-plane poles and zeros of rj(s) will then be f(—s). Thus 

( 1 0 5 ) 

Each of the function f(s) and f(—s) is something like a "square root" of 
rj(s), since their product gives rj(s). 

Before we proceed, here is a simple example. Suppose Zj is the positive 
real function 

Then 

Clearly, 
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Observe that the real parts of these two functions for s = jω are equal; 
thus for complex normalization at a single frequency s = j ω , either one 
will do. 

We dealt here with a single element of the r(s) matrix. In matrix form 
what was just described becomes 

( 1 0 6 ) 

where f(s) is a diagonal matrix each of whose nonzero elements is a 
rational function whose numerator and denominator are both Hurwitz 
polynomials. 

Let us now return to the main discussion. Our impulse is to normalize 
by multiplying currents by the "square root" of r(s), but which "square 
root," f(s) or f(—s)? Our guide must be the desire that the scattering 
variables to be defined must lead to a scattering matrix that satisfies the 
fundamental relationship relative to power given in ( 5 4 ) . In the present 
case the conjugate of a vector is generalized by making the argument of 
the vector (—s). Thus V becomes V(—s), which reduces to V when s = jω 
What should be done is to form an expression for the power, and from it 
to determine the required normalization. 

The first step is to solve (100a) and (101a) for the voltage and current in 
terms of the incident and reflected currents. The result will be 

( 1 0 7 ) 

Next we form V'(—s) I(s) and take the even part. Calling this P , we get 

P = even part of 

= even part of 

= even part of 

where 

Note that r is diagonal and hence r' = r. By direct evaluation it is found 
that 
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since X and Y are diagonal matrices. Thus X(s) is even, and Y(s) is odd. 
Therefore 

(108) 

Now let us define the current scattering matrix as 

(109) 

and insert it into (108), with the result 

Recalling that r = f(s) f(—s), this expression can be put in the form of 
(54) uniquely as follows: 

(110) 

Now it is clear! We must define the scattering variables a and b as the 
normalized incident and reflected current variables; and we must define 
the scattering matrix S as the normalized current scattering matrix in the 
following way: 

(111a) 

(111b) 

(112) 

[Equation 111b is justified if (109) is multiplied by f(s) and the expressions 
for a(s) and S are used.] Then (110) becomes 

(113) 

This expression reduces, for s = j ω , to the power input as given in (54) for 
the case of real normalization. Hence the scattering matrix defined by 
(112) and (109) has the same properties as discussed in Section 8.4 for 
real normalization. 

The only thing left to do is to find expressions for S in terms of Z o c and 
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the terminating impedances. For this purpose return to (102) and use (109) 
to find the current scattering matrix 

(114) 

where Y A is the admittance matrix (not normalized) of the augmented 
network: 

(115) 

When (114) is inserted into (112), the scattering matrix becomes 

(116) 

Compare this with (92) and (93) for the single-frequency complex nor
malization. 

We see that in the case of frequency-independent normalization the 
expression for S is somewhat more complicated than the expression for the 
single-frequency scattering matrix. 

For a one-port having an impedance Z(s), the current reflection coeffi
cient ρi is obtained from (114) by noting that the matrices in that expres
sion are scalars in the one-port case. Thus 

(117) 

The reflection coefficient itself is seen from (116) to differ from this expres
sion by the function f(s)/f(—s), which is an all-pass function. Thus 

(118) 

where A(s) =f(s)/f(—s) is an all-pass function. 

Examples 

Consider, for example, the one-port in Fig. 19 terminated in a parallel 
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Fig. 19. Reflection coefficient of a one-port. 

R and C. Then 

The current reflection coefficient from (117) is 

Finally, from (118) the reflection coefficient is 

As another example of frequency-independent complex normalization, 
consider the network in Fig. 20. A gyrator is terminated at one port by a 

Fig. 20. Illustrative example. 
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resistor and at the other port by an impedance 

The gyrator has an open-circuit impedance matrix; thus the following 
can be written: 

and 

The terminating impedance z2 is the same as the one treated earlier just 
below (105). Thus the functions f(s) and f-1(—s) are 

When all the above is inserted into (116), the scattering matrix becomes 
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Observe that S22 equals S11 multiplied by an all-pass function; their 
magnitudes on the jω-axis are, thus, the same. Equation 65 and, more 
generally, (66), are satisfied. You can verify that (64), (67), (68), and (69) 
are also satisfied. 

NEGATIVE-RESISTANCE AMPLIFIER 

As a further illustration of the application of scattering parameters, we 
shall discuss a network whose analysis and design are greatly simplified 
when scattering parameters are used. An impetus to the development of 
the negative-resistance amplifier came from the advent of the tunnel 
diode, a simple linear model for which is shown in Fig. 21a. A more com
plete model is that shown in Fig. 21b, but for many purposes the simpler 
model is adequate. 

Fig. 21. Models of tunnel diode. 
(a) (b) 

The impedance of the simple tunnel-diode model is 

This is clearly not a positive real function. Let us now form the function 
— Z d (—s) , as follows: 

which is a positive real function, the impedance of a parallel G and C. 
This is, in fact, an example of a more general result that can be stated as 
follows. Let Z d(s) be the impedance of an active network consisting of 
positive inductances and capacitances, and negative resistances. Let Z(s) 
be the impedance of the passive network obtained when the sign of each 
resistance is changed. Then Z(s) = — Z d ( — s ) . The proof of this result is 
left to you. (See Problems 30 and 31.) 
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Now suppose a tunnel diode represented by the model in Fig. 21a is the 
termination at one port of a lossless three-port network, as shown in Fig. 
22a. Let the normalizing impedances at the three ports be z1 = R1, 
z2 = R2, and z3 = 1/(G + sC). Thus ports 1 and 2 are terminated in their 

Fig. 22. Negative resistance amplifier. 

(a) (b) 

normalizing impedances, whereas port 3 is terminated in an impedance 
za(s) related to its normalizing impedance by za(s) = —z3(—s). The scat
tering relations of the three-port can be written as follows: 

(119a) 

(119b) 

(119c) 

Alternatively, if the termination at port 3 is included in the network, 
the structure can be regarded as a two-port N', as shown in Fig. 22b, 
with the real terminations R1 and R2. Let the scattering parameters of 
this two-port be labeled with a prime. By definition, 

(120) 

The first step follows from (119a) with a2 = 0. Since port 3 in Fig. 22a is 
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terminated in an impedance that is the j-axis negative conjugate of the 
normalizing impedance, then b3 = 0, according to Problem 27. Hence the 
second step in the last equation follows from (119c). 

By a similar approach the remaining scattering parameters of Fig. 22b 
can be formed. The results are given here with the details left for you to 
work out. 

(121) 

Now since the three-port in Fig. 22 is lossless, its scattering matrix is 
unitary. This property imposes certain conditions among the scattering 
parameters. (See problem 35.) Under these conditions the above equations 
become 

(122) 

These equations provide relationships for the reflection and transmis
sion coefficients of the two-port negative-resistance amplifier in terms of 
the scattering parameters of the lossless three-port. The transducer power 
gain of the amplifier is G(ω2) = |S'21(jω)|2, which, from the above, 

(123) 

since |S12(—jω)| = |S12(jω)|. Because N is a lossless three-port, |S12(jω)|2 

≤ l . Then 

(124) 

But S33 is the reflection coefficient at port 3, across which there appears a 
capacitor. Hence, as discussed in the last section, there is a fundamental 
limitation on this function as given in (80), with S33 = ρ. 
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The optimum design over a given frequency band 0 — ωc is to give 
|S12(jω)| its largest constant value over the band and to make |S33(jω)| a 
constant. The maximum of |S12(jω)| is 1. With the limitation given in 
(82), we find the transducer power gain to be limited by 

(125) 

where R= 1/G in Fig. 22. This is a basic "gain-bandwidth" limitation 
dependent only on the parameters of the tunnel diode. 

We turn now to a consideration of the design of the three-port net
work. Suppose the three-port in Fig. 22a is to be a reciprocal network. If 
|S12(jω)| = 1 over a band of frequencies, all the other scattering para
meters of the three-port (S11, S23, etc.) will vanish over that frequency 
band. (See Problem 36.) Thus a nontrivial reciprocal three-port with the 
above optimum design is not possible. 

Consider the three-port circulator shown in Fig. 23a. Its scattering 

Fig. 23. Nonreciprocal negative resistance amplifier. 
(a) (b) 

matrix, normalized with respect to resistances r 1, r2, and r3, where r3 is 
an arbitrary real number, is 

(126) 

Thus S12 identically equals 1; but the remaining parameters of the circu
lator are not adequate to make just the circulator the desired three-port. 
If something else is attached to port 2, the resulting S12 will no longer 
equal 1. This leaves port 3. 
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Consider the structure shown in Fig. 23b. It consists of the circulator 
with a reciprocal two-port N in cascade at one of its ports. Let the 
scattering matrix § of the two-port N be 

(127) 

normalized with respect to r3 and z3 = 1/(G + sC), at its input and output, 
respectively; r3 is the same as the port 3 normalizing resistance of the 
circulator. It remains to express the scattering matrix of the overall three-
port in terms of the parameters of S c and S in (126) and (127). This can be 
done by using the results of Problem 24. The details are left for you; the 
result is 

(128) 

Finally, the scattering matrix of the overall negative-resistance ampli
fier (the one denoted by S') is obtained by using (122). Thus 

(129) 

The reflection coefficients are both zero, indicating that the amplifier is 
matched at both input and output. If (65) is used, it is observed that the 
reverse transmission S'12 has a unit magnitude. The forward transmission 
of the amplifier is related only to the output reflection coefficient of the 
two-port N. Thus 

(130) 

The design problem now becomes the following. A gain function G(ω2) 
is to be selected, subject to the gain-bandwidth limitation of (125), so as 
to maximize l / |S 2 2 ( jω) | 2 . Now, from |S22(jω)|2, it is a problem of deter
mining the two-port N, shown in Fig. 24 terminated in r3 at one port and 
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Fig. 24. Two port Ñ to be designed. 

in the tunnel diode at the other. The problem is not unlike that of the 
filter problem illustrated in Section 8.4. From |S22(jω)|2 it is necessary to 
determine S22(s). This is related to the impedance Z looking into port 2 of 
Ñ by (118), in which p plays the role of S22. The two-port Ñ can then be 
designed from Z. 

This quick description has ignored a number of problems having to do 
with the proper selection of S22(s) from its magnitude squared, since this 
is not a unique process. The details of this process would take us far afield 
and will not be pursued any further here. 

PROBLEMS 

1. Two one-ports having impedances Za=fa(s) and Z b = f b ( s ) have 
reflection coefficients ρ1 and ρ2. Find the reflection coefficient ρ of the 
one-port shown in Fig. PI in terms of ρ1 and ρ2. 

Fig. PI 

2. The sense of incident and reflected waves is related to what is taken to be 
the direction of power flow. Figure P2 shows a one-port in part (a) with 
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the usual references of voltage and current. The reflection coefficient for 
this one-port is ρ1. In Fig. P2b the current in the one-port is reversed. 

Fig. P2 

(a) (b) 

The one-port is thus considered as supplying power to the network to 
the left of the terminals. Find the new reflection coefficient p2 in terms 
of Z and in terms of ρ1. 

3. It was shown in the text that S = U — 2 Y a n , where Y a n is the y-matrix 
of the normalized augmented network, by assuming that a multiport 
has a short-circuit admittance matrix. Prove this result from the 
augmented network without making this assumption. 

4. Show that S = 2(U + Y n ) - 1 - U. 
5. Consider a matched, nonreciprocal, lossless three-port. Starting with the 

general form of the scattering matrix, and using the appropriate 
properties of matched and lossless multiports, determine the elements 
of the scattering matrix. Can you identify the class of multiport from 
this scattering matrix? 

6 . (a) Write out a scattering matrix to represent a four-port circulator, 
(b) Take the transpose of this matrix and identify the kind of four-port 
it represents. 

7. In Fig. P7 are shown the two controlled sources that have no impedance 
or admittance representations. Find the scattering matrices for these 
two-ports. 

Fig. P7 
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8 . In Fig. P8 are shown two controlled sources. One has no impedance 
representation, the other no admittance representation; but they both 
have a scattering matrix. Find them. 

Fig. P8 

(a) (b) 

9 . Use (41) in the text to find expressions for S11, S12, S21, and S22 for a 
two-port in terms of the z-parameters. 

10. Symmetrical passive two-ports are defined as two-ports for which 
z11 = z 2 2 . Using the results of Problem 9, show that symmetrical 
two-ports have S11 = S22. 

11. Antimetrical passive two-ports are defined as two-ports for which 
z11 =y22 , z22 =yn and z21 = —y21. Show that antimetrical two-ports 
are characterized by S22 = —S11. 

12. (a) Let the circulator of Fig. 11 in the text be terminated in a 
resistance —r at port 1 and r at port 3. Find the relationship between 
voltage and current at port 2. A one-port device having this v-i 
relationship has been called a norator, 
(b) Repeat (a) but with —r and r interchanged. A one-port device having 
this v-i relationship has been called a nullator. 

13. Show that 

where Z n is the impedance matrix of a multiport normalized to real 
numbers. 

14. Each of the multiports in Fig. P14 is an ideal junction consisting of 
direct connections between the ports. Find the scattering matrix of each 
for 1-ohm normalizing resistances at each port. In each case suppose that 
power is supplied by a voltage source in series with the terminating 
resistance at one port. Find the fraction of the power reflected at that 
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Fig. P14 

(a) (b) (c) 

port and transmitted to each of the other ports. Is this what you 
would have expected without finding S? 

15. The structure in Fig. P15 is a hybrid coil. It consists of a three-winding 
ideal transformer from which a four-port is formed. The two transformer 

Fig. P15 

secondary windings have turns ratios n2 and n3 relative to the primary. 
The equations characterizing the transformer are given in the figure. 
Assume each port is terminated in its real normalizing resistances 
r1, r2, r3, and r4. The turns ratios and the normalizing resistances are 
to be chosen so that— 

(a) When port 1 is excited (by a voltage source in series with its 
terminating resistance), there is no transmission to port 2, and vice 
versa; 
(b) When port 3 is excited, there is to be no transmission to port 4, and 
vice versa; 
(c) All ports are matched (no reflections). 

Find the scattering matrix of this four-port in terms of n2 and n3 only. 
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16. It is desired to investigate the possible existence of a lossless, reciprocal 
three-port that is match terminated with real impedances. Use the 
properties of the scattering matrix to determine the realizability of such 
a device. If realizable, find S12 and S13. 

17. Figure P17 shows a lossless, reciprocal three-port network that is 
assumed to be symmetrical. The three-port is not match terminated. 

Fig. P17 

When one of the ports is excited (by a voltage source in series with its 
termination), it is assumed that equal power is delivered to the other 
two-ports. Find the maximum fraction of available power that is 
delivered to each port under these conditions and find the fraction of 
power that is reflected. 

18. The network in Fig. P18 is a lattice operating between two resistive 
terminations. Compute the transducer power gain. Determine conditions 

Fig. P18 

on the lattice elements that will make the gain identically unity, 
independent of frequency. Under these conditions find the reflection and 
transmission coefficients. 

19. Figure P19 shows a two-port terminated at the output by an impedance 
that is not the normalizing impedance. Let ρ2 be the reflection coefficient 
of Z 2 normalized to r2, which is the output normalizing resistance of the 
two-port. The input is match terminated; that is, r1 is the normalizing 
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Fig. P19 

resistance. Find the input reflection coefficient ρ and the voltage gain 
V2n/ Vgn in terms of ρ2 and the scattering parameters of the two-port. 

20. This is a generalization of the last problem. An n-port network is match 
terminated at m of its ports and terminated in arbitrary loads at the 
remaining n — m ports, as illustrated in Fig. P20. the scattering equation 
of the multiport are partitioned, as shown. The reflection coefficient at 
the port terminated by Z k is ρk. Let ρ be the diagonal matrix 

Fig. P20 
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It is desired to find the scattering matrix S' for the m-port within the 
dashed lines in the figure, given by the relation b1 =S'a1 . Using the 
relation between ak, bk, and ρk, write an expression relating a 2 , b 2 , 
and ρ. Insert this into the partitioned form of the scattering relations 
and show that 

21. One of the ports of the circulator in Fig. P21 is not match terminated. 
Use the result of the previous problem to find the scattering matrix S' 
of the two port within the dashed line. 

Fig. P21 

For the circulator 



PROBLEMS 629 

22. The four-port network in Fig. P22 is a hybrid that is match terminated at 
two of the ports but not at the other two. Find the scattering matrix 
of the two-port within the dashed line in terms of ρ3 and ρ4. Under 
what condition will the two-port have no reflections at either port? 

Fig. P22 

For the hybrid, with n2 = n3 

in problem 8-15, 

23. In order to find the relationships among the port voltages and currents 
of a two-port that consists of the cascade connection of two sub-two-
ports, it is convenient to express the port relationships of the sub-two-
ports in terms of the chain matrix. It is desired to find a matrix T that 
can play a similar role for two cascaded two-ports; but this time the 
variables are scattering variables, rather than actual currents and 
voltages. For the network shown in Fig. P23, let the desired overall 
relationship be written x = Ty. 

Fig. P23 

(a) Determine the elements of the vectors x and y (from among the 
scattering variables) such that the overall T matrix equals T i T 2 , where 
xi = Tiyi and x 2 = T 2 y 2 . Specify any condition on the normalizing 
impedances that may be required for complex normalization and also for 
real normalization. (This can be referred to as a compatibility condition.) 
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(b) Express the elements of the matrix T for a two-port in terms of the 
scattering parameters of that two-port. 
(c) Determine a condition that the elements of T satisfy if the two-port 
is reciprocal. 

24. Instead of terminating some ports in Problem 20 in individual loads, 
suppose these ports are connected to other ports of a multiport, as shown 
in Fig. P24. The multiport N has m + k ports, and multiport N has 

Fig. P24 
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n + k ports. A total of k ports of one are connected to k ports of the 
other, leaving an (m + n) port network. Let S and S be the scattering 
matrices of the two multiports. The scattering equations can be 
partitioned as follows: 

where b1 and a1 are m-vectors, b 2 , a 2 , b1, and â1 are k-vectors, and b 2 

and a2 and n-vectors. The normalizing impedance matrix (frequency 
independent) of each multiport is also partitioned conformally, as 
follows: 
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Let S' be the scattering matrix of the overall (m + n) port and write 
the scattering equations as 

(a) Find the compatibility condition that will permit the result b1 = a 2 , 
â1 = b 2 . (See Problem 23.) 
(b) Show that the overall scattering parameters are given by 

(c) Compare with the more special result of Problem 20 and verify that 
this result reduces to that one. 

25. The four-port network within the dashed lines in Fig. P25 represents a 
telephone repeater. The two-ports labeled L are low-pass filters, and 
those labeled H are high-pass filters. They are reciprocal and symmetric 
two-ports and hence are characterized by only two parameters each. 

Fig. P25 
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The two-port labeled A is an amplifier that has transmission in one 
direction only (down). There are also two ideal three-port junctions in 
the repeater. The scattering matrices of each component are the 
following with all normalizing resistances being 1 ohm: 

Find the scattering matrix of the four-port repeater. By examining the 
elements of this matrix, describe the reflection and transmission of 
low- and high-frequency signals at each of the ports. 

26. For single-frequency complex normalization, current and voltage 
scattering matrices were not defined in the text. Define S I and S V as 

Starting from (88) in the text, show that 

and 

The first of these agrees with (114) derived for frequency-independent 
normalization. Similarly, for frequency-independent normalization, 
show that 

27. Let zk(s) be the complex normalizing impedance of the kth port of a 
multiport. 
(a) If this port is terminated in an impedance zk(—s), show that the 
incident variable at that port is zero: ak = 0. 
(b) If the port is terminated in an impedance —z k (—5), show that the 
corresponding condition is bk = 0. 

28. Find the scattering matrix of the ideal transformer shown in Fig. P28 
normalized to the terminating impedances. (Frequency-independent 
normalization.) 
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Fig. P28 

29. Find the scattering matrix of the gyrator in Fig. P29 normalized 
(frequency independent) to is terminating impedances. Verify the 
properties of reflection and transmission coefficients of a two-port. 

Fig. P29 

30. In Fig. P30a a passive, lossless two-port is terminated in a —1-ohm 
resistance. In Fig. P30b the same two-port is terminated in a + 1-ohm 

Fig. P30 

(a) 

(b) 
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resistance. Show, by writing expressions for Z and Z1 in terms of the 
z- or y-parameters of the two-port, that Z1(s) = —Z(—5). 

31. In Fig. P31a the network contains positive inductances and capacitances, 
and n — 1 negative resistances, all taken to be —1 ohm for convenience. 
It can be represented by the n-port network shown in Fig. P31b with all 
but one port terminated in —1 ohm. Let the same n-port be terminated 
in + 1-ohm resistors, as shown in Fig. P31c and let the corresponding 
impedance be Z. By writing the open-circuit impedance equations and 
solving for Z, show that Z(s) = —Za(—5). 

Fig. P31 

(a) (b) (c) 

32. Let za(s) be the impedance of an active network containing inductances, 
capacitances, and negative resistances. Let z(s) be the corresponding 
impedance when the signs of all resistors are reversed. Each of these 
networks is to be the terminating impedance of a one-port Z(s). Let the 
two frequency-independent, complex normalized reflection coefficients 
be pa and p, respectively. Show that ρa(s) = l/ρ(s)« 

33. Derive the results given in (121). 
34. Prove that the determinant of a unitary matrix is unity. 
35. Let S be the scattering matrix of a passive, lossless three-port. From 

the unitary property of S, prove the following. [Where the argument of 
a parameter is not given, it is jω; thus S12 means S12(jω).] 
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36. In a lossless reciprocal three-port, suppose the j-axis magnitude of one 
of the transmission coefficients is identically 1. Show from the unitary 
and symmetric properties of S that all the other scattering parameters 
must be identically zero. 

37. A negative-resistance amplifier is to have the structure shown in Fig. 
P37. This is obtained from the one discussed in Fig. 23 by appending 
another two-port at port 2 of the circulator. Following the procedure in 
the text, obtain expressions for the overall amplifier scattering matrix 
S' in terms of the scattering parameters of each of the subnetworks in 
the figure. 

Fig. P37 



. 9 . 

SIGNAL-FLOW GRAPHS 
AND FEEDBACK 

The linear network model that has been developed up to this point 
includes a number of components: resistors, capacitors, gyrators, trans
formers, etc. Each component of the network model has been characterized 
by a parameter, such as R, and by a graphical symbol, such as this -ΛΛ/V 
for the resistor. Networks are made up of interconnections of these 
components. In each voltage-current relationship, our interest often has 
been directed at the scalar parameter; for example, in writing v = L di/dt, 
attention has been focused on the L. 

But each voltage-current relationship defines a mathematical operation. 
Instead of focussing on the parameter, one could emphasize the mathe
matical operations and the signals on which the operations are performed. 
An operational symbol could be used to represent the mathematical 
operation, and these operational symbols could be interconnected into 
an operational diagram. The analysis of this operational diagram would 
provide an alternative means for determining transfer functions of net
works. The signal-flow graph is just such an operational diagram. 

Most methods of analysis discussed in preceding chapters apply to 
linear networks in general, whether passive or active, reciprocal or non
reciprocal. No special attention was directed at active, nonreciprocal 
networks. Signal-flow graph analysis is particularly appropriate for such 
networks. Furthermore, for active nonreciprocal networks, a number of 

636 
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topics, such as feedback and stability, become quite important. This 
chapter will be concerned with the ideas of signal-flow graphs, feedback, 
and stability. 

9.1 AN OPERATIONAL DIAGRAM 

Each element, or interconnected group of elements in a network, 
operates on an excitation signal in some way to produce a response. The 
element or system of elements can be considered to be an operator. The 

Fig. 1. Operational symbols. 

(a) 

Excitation 
Operator 

Response 

(b) (c) 

process can be represented as in Fig. 1a. The excitation and response 
signals are each represented by a node between which lies a block labeled 
"operator." The arrows leading to and from the block indicate a "signal 
flow." 

The special case of an inductor is shown in Fig. 1b and c. In the first of 
these the signals are in the time domain. The second figure, which gives 
the signals in the transform domain, shows that the variable taken as 
excitation, or as response, is arbitrary, in the initially relaxed case. This 
flexibility is not universal, however, since it is not available for controlled 
sources. Henceforth we shall deal with Laplace transforms, and so all 
operators will be functions of s. 

The operational symbol in Fig. 1 is quite simple, but it can be simplified 
even further. There is really no need for the rectangle; it can be replaced 
by a line segment and the operator can be shown alongside the line. Only 
one arrow will then be necessary to show the signal flow. This is illustrated 
in Fig. 2a for the symbol of Fig. 1c. Dimensionally, the operator may be 
one of the number of things: impedance, admittance, current gain, etc. 
the word "transmittance" is used to stand for the function by which the 
excitation is to be multiplied in order to give the response. The trans
mittance in Fig. 2a is 1/Ls. 

Fig. 2. Branch of diagram. 
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There are two types of relationships among variables in a network or 
system. In one of these relationships one variable is expressed in terms of 
another one by means of an operator. The second type of relationship 
expresses an equilibrium; Kirchhoff's laws are of this nature. In all such 
equilibrium relationships, one variable can be expressed as a linear 
combination of a number of other variables. Thus the expression 

can be drawn as an operational diagram by representing each variable by 
a node and directing a branch from all other nodes to the one correspond
ing to V1, with appropriate transmittances. This is illustrated in Fig. 3. 

Fig. 3. Diagram of equation. 

Given a network, then, an operational diagram can be drawn by expres
sing the equations that describe the network performance in operational 
form. Before formalizing this process, some simple illustrations will be 
given. Consider the series-parallel connection of two two-ports shown in 
Fig. 4. A complete description of the terminal behavior can be given in 

Fig. 4. Simple feedback network. 



Sec. 9.1] AN OPERATIONAL DIAGRAM 639 

terms of the g-parameters if we know the g-parameters of the individual 
two-ports. However, we may not be interested in such a complete 
description; we may want to know only the ratio of the output to input 
voltage transforms, assuming we know the corresponding ratios for the 
individual two-ports. The appropriate functions are defined in the dia
gram. We assume that there is no " loading" of one two-port on another 
when the series-parallel connection is made; that is, we assume that the 
port relationships of each two-port remain the same after they are inter
connected. 

The equations describing this network can be written as follows: 

(1) 

The first and last equations can be represented by the operational branches 
shown in Fig. 5a. The second equation expresses an equilibrium of voltages 

Fig. 5. Development of operational diagram of example. 

(a) (b) (c) 

and can be represented by the branches in Fig. 5b. All three of these can 
now be combined to give the final result shown in Fig. 5c. This operational 
diagram represents the network in Fig. 4 to the same extent that the 
equations (1) do. 

As a second example, consider the network in Fig. 6. The total output 
resistance is R3. The following equations can be written: 

(2) 
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Fig. 6. Feedback amplifier. 

An operational diagram can now be drawn for each equation, as shown 
successively in Fig. la to d. When these are all superimposed the final 
result is shown in Fig. 7e. 

By comparing the operational diagram with the original amplifier 

Fig. 7. Operational diagram of amplifier. 

(a) 

(b) 

(e) 

(d) 

(e) 
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diagram, it is clear that the two bear no structural resemblance to each 
other. The operational diagram shows the manner in which parts of the 
network operate on signals within the network to yield other signals. 
However, for passive components, which signal is excitation and which 
one response is not uniquely fixed. This means that the operational 
diagram will take on a different structure depending on the manner in 
which the equations are written. 

Suppose, for example, that the first three equations in (2) are rearranged 
as follows 

The resulting operational diagram will take the form shown in Fig. 8, 

Fig. 8. Alternate operational diagram of amplifier. 

as you should verify. A comparison with the previous diagram shows the 
two to be quite different. This example illustrates the interesting fact that 
there is not a unique operational diagram representing a given network. 

The preceding discussion has skirted a number of fundamental ques
tions. Drawing an operational diagram for a network requires, first, the 
writing of equations describing the behavior of the network. This poses 
the questions of what variables to select for describing the network 
performance, how many of them are required, and how many equations are 
required. For a systematic development, such questions must be answered. 
The answers will be postponed, however, for a later section, in order to 
turn to a more detailed discussion of operational diagrams. 



642 SIGNAL-FLOW GRAPHS AND FEEDBACK [Ch. 9 

9.2 SIGNAL-FLOW GRAPHS 

Look back at the operational diagram in Fig. 8 to observe its abstract 
features. It consists of a number of branches joined together at nodes. It 
is therefore a topological graph. The branches are directed, or oriented, and 
carry weights, or are weighted. 

These observations will be made the basis of a definition. We shall 
define a signal-flow graph as a representation of a system of equations by 
a weighted, directed graph. It is clear, then, that a signal-flow graph is 
related to a network only through the network equations. It is the equa
tions that are represented by the graph. To emphasize the fact that signal-
flow-graph analysis is general and not limited only to electric networks, a 
general notation will be used. 

Consider a set of linear algebraic equations of the form 

(3) 

In typical applications the entries of Y are transforms of excitations and 
entries of X are transforms of response functions. This is the standard 
form for writing a set of linear equations, but it is not an appropriate form 
for drawing a signal-flow graph. A look back at the preceding examples 
shows that the desired form has each variable expressed explicitly in 
terms of other variables. This can be achieved by adding vector X to 
both sides in (3) and rearranging terms to get 

(4) 

In many applications there is a single driving function. This function 
may, of course, appear in more than one of the scalar equations in (4). 
If a single driving function, y0, is assumed, then Y can be written as 

(5) 

where K is a column vector. With this expression (4) can be rewritten as 

(6) 

If there are additional driving functions, the scalar y0 will become the 
vector Y 0 and K will have several columns instead of only one. 

If X is a vector of order n, then the coefficient matrix on the right side 
of (6) is of order (n, n + 1). For future convenience, let us augment this 
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matrix, by adding a row of zeros, so as to create a square matrix and define 
a matrix C as 

(7) 

This matrix can be associated with a directed, weighted graph as follows. 
For each column of C a node is labeled with the symbol for the associated 
variable. For each nonzero entry cij of matrix C a directed branch is drawn 
from node j to node i and labeled with the value of cij as its weight. This 
weight is called the transmittance of the branch. If cij = 0, there will be 
no branch from node j to node i. The resulting directed, weighted graph 
is the signal-flow graph of the set of equations (6). Matrix C is called the 
connection matrix of the graph. 

As an illustration, consider the following set of equations: 

Then 

and 

The resulting connection matrix is 
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The signal-flow graph of this set of equations will have four nodes, 
labeled y0, x1, x2, and x3. These are first placed in a convenient arrange
ment, as in Fig. 9a. The branches are then inserted in accordance with the 
connection matrix. Thus in the third row (corresponding to x2, since the 
first row containing zeros was added to create the square matrix C) and 
in the fourth column (corresponding to x3) there is a nonzero entry of 
value 1. Hence there will be a branch from x3 to x2 with a weight of 1. 
All other branches are similarly inserted; the final result is shown in 
Fig. 9b. 

Fig. 9. Setting up signal-flow graph. 

(a) (b) 

GRAPH PROPERTIES 

From a consideration of the previous examples and from additional 
illustrations, a number of properties of signal-flow graphs can be observed. 
Observe the node labeled y0 in Fig. 9. There are two branches leaving this 
node but none entering it. The signal y0 is thus not caused by other signals, 
it is a source. A node at which only outgoing branches are incident is 
called a source node. Similarly, a node at which only incoming branches are 
incident is called a sink node. None of the nodes in Fig. 9 satisfies this 
condition. However, a sink node can always be trivially introduced in a 
signal-flow graph. In Fig. 9, for example, an added equation x3 = x3 will 
add a new node x3 with a branch having unity transmittance entering it 
from the old node x3. Any node but a source node can, therefore, be con
sidered a sink node. 

Another observation from Fig. 9 is that there are sequences of branches 
that can be traced from a node back to itself. Such a sequence is called a 
feedback loop, and each branch in a feedback loop is a feedback branch. 
Thus one can leave node x1 along branch —3 to x2 ; then from x2 to x3 
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along branch — 1 ; then from x3 back to x\ along the outgoing branch 2. 
There is, however, no feedback loop with the opposite orientation starting 
at x1. One can go from x1 to x3 and then to x2 but cannot return to x1 

since the orientation of branch —3 is wrong for this. Some feedback loops 
consist of a single branch, such as the one having unity transmittance at 
node x2. Such a loop is called a self-loop. Any node that lies on a feedback 
loop is called a feedback node. In Fig. 9 all nodes but y0 are feedback 
nodes. 

Not all branches of a graph are in feedback loops. Any branch that is not 
a feedback branch is called a cascade branch. In Fig. 9b the two branches 
leaving node y0 are cascade branches. All other branches in that graph 
are feedback branches. 

Those nodes that are neither source nor sink nodes will have both 
incoming and outgoing branches incident on them. The variable corre
sponding to the node plays two roles: it is the signal caused by all incoming 
branches and also the signal which is carried by all outgoing branches. 
These two roles can be separated by splitting the node. As an illustration, 
consider the graph in Fig. 10a. Node x1 has both incoming and outgoing 

Fig. 10. Splitting node xi. 

(a) (b) 

branches. In Fig. 10b node x1 has been split into two nodes, labeled x1 and 
x'1. One of these is a source, from which all outgoing branches leave, the 
other is a sink to which all incoming branches come. Splitting a node 
clearly interrupts all feedback loops that pass through that node. By 
splitting a sufficient number of nodes all feedback loops of a graph can be 
interrupted. The index of a signal-flow graph is the smallest number of 
nodes that must be split to interrupt all feedback loops in the graph. 
In the original graph of Fig. 10a there are three feedback loops; in the 
modified graph, after node x1 is split, there are no feedback loops. Hence 
the index of the graph of Fig. 10a is one. A set of nodes, equal in number to 
the index of a graph, that must be split in order to interrupt all feedback 
loops is called a set of essential nodes. In Fig. 10 this set (only one node in 
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this case) is unique: only x1 is an essential node. In other cases there may 
be more than one set of essential nodes. 

INVERTING A GRAPH 

The fact that a particular node in a signal-flow graph is a source node is 
a result of the manner in which the equations represented by the graph are 
written. By rearranging the equations, what was a source node may become 
a nonsource node and what was a nonsource node may become a source 
node. Specifically, consider an equation for x2 which is then rearranged to 
give x1 explicitly as follows: 

The graph corresponding to the original is shown in Fig. 1 1 a . Similarly, 
the graph corresponding to the modified equation is shown in Fig. 11b. 

Fig. 11. Inverting a branch: (a) original; (b) inverted. 

(a; (b) 

Focus attention on the original branch with transmittance a from x1 to x2. 
In the modified graph the direction has been reversed and the trans
mittance has been inverted. At the same time observe what has happened 
to the other branches. The branch originally incoming to x2 from x3 

has been redirected to x1, and its transmittance has been divided by the 
negative of the transmittance of the branch that was inverted. The same 
thing has happed to the branch originally incoming to x2 from x4. From 
the equation it is clear that any other branch incoming to x2 would have 
undergone the same change. 

The result of this process is called inverting a branch. The inversion of 
a branch can be carried out for any branch that leaves a source node with 
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the result that the node is converted to a sink node. The same process can 
be carried out for a path consisting of any number of branches from a 
source node to another node. The inversion is carried out one branch at a 
time starting at a source node. This is illustrated in Fig. 12. (The graph 

Fig. 12. Inverting a path: (a) original; (6) after inversion of branch a; (c) after inversion 
of branch b (d) final. 

(a) (b) 

(c) (d) 

is the same as that in Fig. 7 with general symbols for the transmittances.) 
It is desired to invert the path from V1 to I. Branch a is inverted first, 
leading to Fig. 12b. Now node Va is a source node; so branch b can be 
inverted, leading to Fig. 12c. Similarly, branches c and e can be inverted, 
in order. The final graph with the inverted path is shown in Fig. 12d. 

Note that the original graph in Fig. 12a has three feedback loops and is 
of index 1; that is, one node (V2) must be split before all loops are in
terrupted. However, the graph with the path inverted is a cascade graph, 
having no feedback loops. This is inherently a simpler graph. 

Besides inverting an open path, it is also possible to invert a loop. In 
this case, the process is started by splitting a node on the loop, thus creating 
a source and a sink node. The open path between these two is then in
verted, following which the split node is recombined. Details will be left 
for you to work out. 

REDUCTION OF A GRAPH 

A signal-flow graph is a representation of a set of equations. Just as 
the set of equations can be solved for any of the variables in terms of the 
excitations, the graph can also be "solved." One method of solving the 
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equations is by a process of successive elimination of variables. The 
analogous procedure for the graph is to successively eliminate the nodes 
of the graph until only source nodes and sink nodes remain. This process 
will now be discussed. 

Consider the signal flow graph in Fig. 10a and suppose that node x3 

is to be eliminated. The proper relationships among the remaining vari
ables will be maintained if branches are added to the graph between pairs 
of nodes. The transmittances of these branches must be such as to main
tain the path transmittances of the original graph from one of the nodes 
of the pair to the other one, through the node to be eliminated. To illus
trate, in the original graph of Fig. 10, which is reproduced in Fig. 13a, 

Fig. 13. Elimination of node x3. 

(a) (e) 

(d) 

there is a path from y0 to x1 through x3, with a path transmittance gd. 
In the reduced graph in which node x3 is eliminated there must be added 
a branch from y0 to x1 with a transmittance gd. In Fig. 13b node x3, as 
well as all incoming and outgoing branches incident at x3 have been re
moved, leaving transmittances that go directly from one node to another 
without passing through the intermediate node x3. Figure 13c shows the 
same nodes with branches that must be added to account for the trans
mittances between them for paths that originally went through node x3. 
Finally, the reduced graph shown in Fig. 13d combines the last two parts. 
This graph is said to be equivalent to the original graph since the signals 
at any node are the same as the signals at the corresponding nodes in the 
original graph. (You should verify this.) Note that the node removed in 
this illustration did not have a self-loop. Clearly, the same process cannot 
be used if a self-loop is present. 
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What was illustrated by means of an example will now be discussed in 
more general terms. Consider the equations defining a signal-flow graph 
that are the scalar components of (6). Let xn be a node without a self-
loop. The nth node is chosen, rather than an arbitrary node, strictly for 
convenience. Removing node xn from the graph is equivalent to eliminat
ing variable xn from the equations. The equation for xn is 

(8) 

To eliminate xn this expression is substituted into all other equations; 
then (8) is disregarded; for instance, if the original equation for xp is 

(9) 

the modified equation, after substituting (8) for xn, becomes 

(10) 

To interpret this expression in terms of the graph, observe that cpn cn0 

is the transmittance from the source node y0 to the node xp through the 
intermediate node xn. In the first term on the right this transmittance is 
added to the direct transmittance cp0 from y0 to xp. Similarly, cpn cnk is 
the transmittance from node xk to node xp through node xn. The equation 
shows that this term is added to the direct transmittance from xk to xp. 
If every transmittance is modified in this way, xn can be eliminated from 
the graph, and transmittances between all other nodes will remain 
invariant. 

Now consider the case when there is a self-loop at node xn , which means 
that cnn ≠ 0. In this ease the equation for xn is 

(11) 

The last term can be transposed to the left side and the result solved 
for xn. 

(12) 
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This is the equation for a node without a self-loop. In terms of the graph 
the equation shows that if the transmittance of each incoming branch to 
xn is divided by 1 — cnn, the self-loop can be eliminated. Following this, 
node xn can be eliminated as before. 

Division by 1 — cnn is possible only if cnn ≠ 1. We are clearly in trouble 
of Cnn = 1. A glance back at Fig. 9 shows that there is in that graph a 
self-loop with a transmittance of 1. Nevertheless, the set of equations 
represented by that graph are linearly independent and so can be solved. 
In such cases, it is always possible to rearrange the equations in such a 
way that a unity entry on the main diagonal of the connection matrix 
can be avoided. Thus an unavoidable such entry can occur only if the 
equations are not independent—in which case we should not expect a 
solution anyway. 

The preceding operations can also be interpreted in terms of the con
nection matrix. This matrix has the following form, assuming node xn 

has no self-loop. 

(13) 

The partition indicates that the last row and column are to be eliminated. 
Note that cnn = 0 since xn has no self-loop. 

Now consider the typical equation (10) of the set, after the modification 
introduced by eliminating node xn. The corresponding connection matrix 
will have the form 

(14) 
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where the external row and column have been added for comparison with 
the preceding equations. 

Now observe the manner in which the modified connection matrix is 
obtained from the original one in (13). An entry in the last column of C, 
say c1n, is multiplied by each entry in the last row. These products are 
then added to the corresponding entry in the connection matrix. Thus 
c1n multiplied by cn3 is added to c13, which is in the (2, 4) position of the 
connection matrix. (Note that subscripts of rows and columns start 
from zero.) This is repeated for each entry in the last column. This 
process of successive reduction of a connection matrix is called the 
node-pulling algorithm. 

If node xn has a self-loop, the entry cnn in the connection matrix is not 
zero. The process of dividing all incoming transmittances to node xn in the 
graph by 1 — cnn corresponds to dividing all entries of the last row in the 
connection matrix by 1 — cnn and then replacing the diagonal entry by 
zero. The node-pulling algorithm can then be applied. 

B y repeated applications of these operations, a signal-flow graph can be 
reduced so that only source and sink nodes remain. If there is only one 
source and one sink node, the graph reduces to a single branch from the 
source to the sink. The transmittance of this branch is called the graph 
gain. 

As an illustration of the process, consider the set of equations 

The system can be modified as in (6) to get 

(15) 

The corresponding signal-flow graph is shown in Fig. 14. 
Suppose that a solution for x1 is desired. Then we go through the follow

ing operations, starting with the connection matrix derived from (15). 
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The corresponding reductions of the flow graph are illustrated in Fig. 15, 
the corresponding steps being labeled with the same letter. 

Fig. 14. Signal-flow graph of example. 

1. Remove self-loop at x3 by dividing all incoming transmittances by 
(1 — c44) = 1 — 2 = — 1. The resulting connection matrix is 

2. Remove node x3 by using the node-pulling algorithm. The resulting 
connection matrix is 

Notice that in the process a self-loop is created at x2 with a transmittance 
equal to 3 and notice how the other transmittances are altered. 
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Fig. 15. Reduction of signal-flow graph. 

(a) 

(b) 

(c) 

(d) 

(e) 

3. Remove self-loop at x2 by dividing incoming transmittances by 
1 — 3 = — 2 . Then 

4. Remove node x2 to obtain 

5. Remove self-loop at x1 by dividing incoming transmittances by 
1 — 5/2 = — 3/2. The connection matrix at this step is 
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Thus we find that x1 = y0. It is clear that the solution can be obtained by 
working on the matrix only, or the flow graph only. 

The process of path inversion can also be useful in the reduction of a 
signal-flow graph to determine the graph gain. This is illustrated in the 
graph shown in Fig. 16a. If the path from y0 to x3 is inverted, the result 

Fig. 16. Inversion and reduction of a graph. 

(a) (b) 

(c) 

is as shown in Fig. 16b. The graph can now he rapidly reduced. First, 
branches 1/a and 1/b are in cascade. The combination is in parallel with 
branch —c/a. Finally, the combination of these three is in cascade with 
branch 1/d. The reduced graph is shown in Fig. 16c. The graph gain of the 
original graph is thus found to be 

REDUCTION TO AN ESSENTIAL GRAPH 

The graph-reduction process described above proceeds by the elimina
tion of one node at a time; however, this is not an absolute requirement. 
Several nodes can be eliminated simultaneously. The only requirement is 
that branches be included between pairs of nodes in the reduced graph to 
account for all the path transmittances between the same pairs of nodes 
in the original graph. 

Thus an alternative viewpoint is to focus on the nodes that are retained 
in the reduced graph, as opposed to those which are eliminated. A partic
ularly useful reduced graph is obtained by retaining only a set of essential 
nodes, together with source and sink nodes; such a graph is called an 
essential graph. No matter what structure the original graph may have, 
the essential graph for a given index will have a fixed structure. Thus for 
index 2 and a single source node, an essential diagram will have the struc
ture shown in Fig. 17. There will be, in the general case, transmittances 
from the source node to each of the essential nodes, and from each of the 
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Fig. 17. Essential graph of index 2. 

Source 
node 

essential nodes to all other essential nodes. There will also be self-loops at 
each essential node. It is only necessary to determine what the values of 
the transmittances will be. In specific cases, of course, one or more of the 
branches in the essential graph might be missing. 

To illustrate, consider the graph of Fig. 20 in the next subsection. This is 
of index 2, although it has six feedback loops; V1 and I3 constitute a set 
of essential nodes. In Fig. 17, then, the two essential nodes will be V1 

and I3, and the source node will be Vg. It remains to compute the trans
mittances; for example, in the original graph there are three paths from 
V1 to I3, with the following path transmittances: — G 3 , — α Y 1 R 4 G 3 , 
and Y2 μ Z 2 G 3 = μ G 3 . Hence in the essential graph the branch from Vi 
to I3 will have a transmittance C3(μ—1 — α Y 1 R 4 ) . The remaining 
transmittances are evaluated similarly, with the final result shown in 
Fig. 18. 

Fig. 18. Essential graph of example. 

GRAPH-GAIN FORMULA 

Although simple and straightforward, the graph-reduction process that 
has been described is somewhat tedious. It would be valuable to have a 
single formula for the graph gain that could be written directly from the 
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graph without any further manipulations. Such a formula has, in fact, 
been established.* The derivation of the formula does not require advanced 
concepts or mathematics, but it is quite long. We shall, therefore, state 
the result here but omit the proof. 

Consider a signal-flow graph with a single source node and a single sink 
node. Let G be the graph gain and let C k be the path transmittance of the 
kth direct path (without loops) from source to sink. In the graph some of 
the feedback loops may have nodes or branches in common with other 
loops, and some may not. We say a set of loops is nontouching if there is 
neither a node nor a branch in common between any two loops of the set. 
The graph gain is given by the following expression: 

(16) all 
direct 
paths 

where the graph determinant Δ is given by 

(17) 

in which 

Pj1 is the loop gain (the product of all branch transmittances around 
a loop) of the j th feedback loop; 

Pj2 is the product of loop gains of the j th pair of nontouching loops; 
P j 3 is the product of loop gains of the j th triplet of nontouching 

loops; etc. 

The second subscript in P j i refers to the number of loops in the nontouch
ing set. The determinant Δ k is the graph determinant of the subgraph 
which does not touch the kth direct path from source to sink. 

Let us now illustrate the use of this expression. As a first illustration, 
consider the original signal-flow graph of Fig. 12. A sink node can be 
trivially created by adding a new node labeled I, with a unity transmit
tance branch from the old node I. There are three loops in this graph with 
loop gains bcd, gce, and ef. Since they all have at least one node in common, 
they are all touching. Hence 

* S. J. Mason, "Feedback Theory—Further Properties of Signal-Flow Graphs," 
Proc. IRE, Vol. 44, July 1956, pp. 920-926. 
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There is only one direct path from V\ to I, and the path gain (or trans
mittance) is G1 = abce. All three loops touch this path; hence Δ 1 = l . 
The graph gain therefore equals 

Now consider the inverted graph in Fig. 12d. This is a strictly cascade 
graph, without feedback loops. Hence Δ = 1, and all Δ k ' s = 1. The graph 
gain from I to V1 is therefore simply the sum of direct path transmittances. 
There are a total of four paths from I to V1. Hence 

This agrees with the preceding value of graph gain. 
As a second illustration, let us take the signal-flow graph in Fig. 20 in 

the next subsection. Let V4 be the desired response. The graph has a 
total of six loops. Of these there are two pairs of loops that are nontouch
ing; namely, loop V4 I3 V4 with loop V1 I2 V1 and with loop V1 I5 V1. 
There are no triplets of nontouching loops. The following calculations can 
now be made: 

Loop Loop gains 

Pj1 Pj2 

Then 
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Notice that in the computation of Δ the term αG 3 R4 from Pj1 cancelled 
with a similar term from P j 2 . This is an illustration of the fact that the 
gain formula is not a minimum-effort formula, as are the topological 
formulas in Chapter 3. 

Next we determine the numerator of the graph gain. The following 
calculations are self-explanatory: 

Direct paths Path gains Gk Δ k 

Then 

Again we find a cancellation taking place. Finally, the graph gain is 

It is observed that the formula for determining the graph gain is quite 
simple to apply. A source of error is the possible overlooking of one or more 
feedback loops and one or more direct paths from input to output. A 
systematic search procedure, however, should eliminate this possible 
source of error. 

The graph gain expression in (16) is a network function expressing the 
ratio of a response transform to an excitation transform. Clearly, the same 
network function should be obtained whether it is calculated with the use 
of a signal-flow graph or from a solution of the network equations expressed 
in the form of AX = Y, as in (3). However, in the latter case the net
work function will be obtained in terms of det A. Thus the graph deter
minant must be the same as det A. 
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DRAWING THE SIGNAL-FLOW GRAPH OF A NETWORK 

In the preceding discussion it has been assumed that a set of linear 
equations is given in the standard form of (3). The more usual problem 
is that a network is presented for analysis, with the ultimate goal of 
finding an expression for a network function. Given the network, it is 
desired to draw the signal-flow graph directly, merely by inspection of the 
network diagram. An alternative would be to write down the connection 
matrix directly. 

In either case, the first order of business is to choose a set of variables. 
Different choices of the variables will lead to different flow graphs re
presenting the same network. The choice of variables is guided by many 
considerations, but in any case must include the independent source 
variables and the response variables. No matter what variables and equa
tions relating them are chosen, two things must be ensured. 

1 . The system of equations obtained must be an adequate description 
of the network; 

2. The equations obtained must be linearly independent. 

Some choices of the variables and equations will not be very useful if we 
are to make full use of the signal-flow graph technique; for example, we 
might simply choose loop currents or node voltages as variables and re
present the loop or node equations as a signal-flow graph. This procedure is 
certainly valid and needs no comment. 

A more useful approach is to choose a mixed set of variables, as in 
Section 2.7. Tree branch voltages and link currents are known to be 
topologically independent. Hence twig voltages and link currents are 
selected as variables. There is one slight difference here from the discussion 
in Chapter 2. There independent sources were not counted as separate 
branches but were always taken together with their accompanying 
branches. As we did in Chapter 4, however, we shall now count such 
sources as separate branches. Independent voltage sources must then be 
made twigs; and independent current sources, links. 

By Kirchhoff's laws and appropriate partitioning, the following 
equations result: 

(18a) 

(18b) 

where the subscript a stands for "all ." The links will include all indepen
dent current sources, and the twigs will include all independent voltage 



660 SIGNAL-FLOW GRAPHS AND FEEDBACK [Ch. 9 

sources. Let us partition the current and voltage vectors to put the sources 
in evidence. When Q l and B t are conformally partitioned, the above 
expressions become 

(19) 

(20) 

In these expressions I t g represents the currents of voltage sources (which 
are twigs) and V l g represents the voltages of current sources (which are 
links). 

There remain the voltage-current relationships. Since link currents and 
twig voltages are to be the variables in the signal-flow graph, the V-I 
relationships should express Il and V t explicitly in terms of V l and I t . 
This means the following hybrid form: 

(21a) 

(21b) 

Note that voltages and currents pertaining to independent sources are 
not included in these equations. 

The first row of (19) and of (20) are now inserted into (21) to yield 

(22a) 

(22b) 

These equations are in the form of (4), from which a signal-flow graph can 
be drawn. 

The variables for which equations are written are the currents of all 
links except independent current sources, and the voltages of all twigs 
except independent voltage sources. Note that these variables do not 
depend on the currents in voltage sources ( I t g ) and voltages across current 
sources ( V l g ) . However, it may be that these latter variables are response 
variables for which solutions are required. In the signal flow graph each 
such variable will constitute a sink node; the corresponding equations, 
are the second rows of (19) and (20), which are repeated here. 

(23a) 

(23b) 
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From (22) and (23) a signal-flow graph can be drawn. We are sure that 
the equations constitute an independent set and therefore a solution can 
be obtained. We also know that the equations constitute an adequate set 
since any other variable can be determined once these variables are known. 
However, if we were really required first to write the Q l and B t matrices; 
then to partition them; then to write the V-I relationships and determine 
all the matrices in (21); and then finally to set up (22) and (23), the value 
of using a signal-flow graph would be obscured. The preceding develop
ment, in fact, constitutes an "existence proof." For a given network 
we would not go through the same steps in drawing the signal-flow graph 
as are needed to establish the existence. A much simpler process would be 
used, illustrated by the examples to follow. 

One further point must be clarified. When discussing the mixed-variable 
equations in Section 2.7, the V-I relationship used was the inverse of that 
given in (21), as shown in (110) in Chapter 2. For that choice the selection 
of the branches of a controlled source as twig or link was given in Table 2. 
With the present V-I relations these selections must be reversed. Thus, 
for example, the controlled branch of a controlled current source must 
now be a link, and the controlled branch of a controlled voltage source a 
twig. 

Example 1. 

Consider the network in Fig. 19a. There are two controlled sources. 
The graph of the network is shown in Fig. 19b, with the tree in heavy lines. 

Fig. 19. Example. 

(a) (b) 

Equations for the link currents and twig voltages must now be written. 
The current of any link which is not a controlled source can be expressed 
in terms of its own voltage which, in turn, can be written in terms of 
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twig voltages. Thus for links 2 and 3 the equations are 

The only other link is a controlled current source, I5 = α I 1 . The term I1 

is the current in twig 1 and can be expressed simply in terms of its own 
voltage. Thus 

As for the voltage of any twig branch that is not a controlled source, it 
can be expressed in terms of its own current, which, in turn, can be 
expressed in terms of link currents. Thus for twigs 1 and 4 the equations 
are 

For twig 6, which is a controlled source, the equation is 

The signal-flow graph can now be drawn and is shown in Fig. 20. It has a 

Fig. 20. Signal-flow graph of example. 

large number (six) of feedback loops but its index is only 2, since opening 
nodes V1 and I3 will interrupt all loops. The graph-reduction procedure 
can now be used to solve for any of the variables. 

If it is desired to find the input impedance of the network from the 
terminals of the independent voltage source, it will be necessary to solve 
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for the current in the voltage source. This variable does not now appear 
in the graph, but a sink node for Ig can be easily added since Ig = — I2 

—I 3 — I5. The graph gain relating Ig to Vg is the negative of the input 
impedance. 

Example 2 . 

As a second example, consider the network in Fig. 2 1 . For the link 

Fig. 21. Network example. 

(a) (b) 

currents the equations are 

Similarly, the equations for the twig voltages are 

The resulting signal-flow graph is shown in Fig. 2 2 . This is a simpler 
graph than that of the previous example. There are three feedback loops, 
all of which would be interrupted if node I4 were split. Hence the index 
i s 1 . 
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Fig. 22. Signal-flow graph of example. 

9 . 3 FEEDBACK 

An intuitive meaning for the concept of feedback in physical processes 
has existed for a long time, but it was only in the 1930's that Bode gave 
the concept a more accurate and mathematical significance. In a qualita
tive way, we say that a network is a feedback network if some variable, 
either an output variable or an internal one, is used as the input to some 
part of the network in such a way that it is able to affect its own value. 
It is said, again qualitatively, that the output, or part of it, is fed back to 
the input. 

As an illustration, look back at the amplifier diagram in Fig. 6. Here 
part of the input voltage Va to the dashed box is a function of the output 
voltage V2. Thus whatever the output voltage becomes is influenced by 
its own value. This feedback effect has a great influence on the behavior 
of a network. We shall now discuss the concept of feedback in a quantit
ative way. 

RETURN RATIO A N D RETURN DIFFERENCE 

Consider first the signal-flow graph shown in Fig. 23a. Focus attention 
on the branch with a transmittance k. This quantity is assumed to be a 
specific parameter in a network, such as the μ or α of a controlled source.* 
This assumption implies that the signal-flow graph of a network can be 
drawn in such a way that the desired parameter appears by itself in only 

* The assumption that k is a specific network parameter is not essential to the defini
tion of return ratio. However, the assumption is made in order to provide a simple 
relationship between return ratio and sensitivity of the gain to variation of a network 
parameter, to be defined later. 
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Fig. 23. Determining the return ratio. 

(a) 

(b) 

one branch transmittance. It is always possible to modify network equa
tions in such a way (by introducing auxiliary variables or by suitable 
linear combinations) that this result can be achieved, except in those 
cases when the same parameter appears twice in the network diagram 
itself. This is the case, for example, with the turns ratio of a transformer 
and with the gyration ratio of a gyrator. 

We now insert an auxiliary node x0 in the branch k with a unity trans
mittance from x1 to x0, as in Fig. 23b. This simply introduces an auxil
iary equation x0 = x1 without modifying the remaining equations. The 
next step is to split the new node, as shown in Fig. 23c, thus creating a 
source node and a sink node. At the same time, all other source nodes in 
the graph are removed. (This amounts to shorting independent voltage 
sources and opening independent current sources in the network.) A 
measure of the feedback with reference to parameter k is obtained by 
determining the signal returned to the sink half of the split node per 
unit of signal sent out from the source half. We define the return ratio 
of k, Tk, to be the ratio of —x 0 to x0 when a node x0 is inserted into branch 
k and then split, as described. In Fig. 23, the return ratio of k is found to be 
Tk = —kb. (The reason for the negative sign in the definition is to conform 
with standard usage in feedback control theory.) 

Another measure of the feedback is obtained by taking the difference 
between the signal sent from the source half of the split node and the 
signal received at the sink half, per unit signal sent. This quantity is 
called the return difference and is labeled Fk. The two measures of feed
back are related by 

(24) 
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Let us illustrate the calculation of the return ratio and return difference 
for a more substantial graph. Look back at the signal-flow graph in Fig. 7 
representing the amplifier in Fig. 6. Let the transconductance g be the 
parameter of interest. This parameter appears only once in the graph, but 
it is not alone. The graph can be modified as shown in Fig. 24a to put it in 

Fig. 24. Calculation of return difference. 

(a) (b) 

the desired form. Next the source node Vg is removed, an auxiliary node is 
introduced in branch g and then split. The result is shown in Fig. 24b. 
The negative graph gain from x0 to x'0 is the return ratio. This is found 
from the gain formula in (16) to be 

The return difference is now found from (24) to be 

(25) 

An interesting observation can be made by calculating the graph deter
minant of the original graph in Fig. 24a. Thus 

(26) 

By comparing with the previous expression for Fg, we see that the numer
ator of Fg and the numerator of Δ are the same. This result is not 
accidental, but quite general, as we shall now discuss. 

Consider the diagram in Fig. 25, which shows a portion of a signal-
flow graph containing the branch k between nodes xa and xb. A node has 
been inserted and then split. Before the operation is performed, the equa-
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Fig. 25. Formula for the return difference. 

tions for the entire graph are as given previously in (6) and repeated here 
for convenience. 

(27) 

For node xb the equation is 

(28) 

where it is assumed that the parameter k does not appear in any of the 
other abj coefficients and that there is no other direct path between xa 

and xb. 
Now suppose that the equation for xb and for all the other nodes is 

rewritten in the form 

(29) 

Equation 28 for xb becomes 

(30) 

The coefficient matrix of the set of equation is A. To find an expression 
for the determinant of A, suppose it is expanded along the bth row and 
then all terms except the one containing k are collected. The sum of these 
terms will simply he the value of det A when k = 0. Let this be designated 
Δ 0 . Then 

(31) 

where Δ b a is a cofactor of A. 
Now we turn to a determination of the return difference. We first 

remove all source nodes. This means equating to zero the right side of 
(29). Then the insertion and splitting of the node is performed as in Fig. 
25. This introduces a new source node x0, which enters into the equation 
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of node xb only. This amounts to adding kx0 to the right side of (29) in the 
bth row. Furthermore, as Fig. 25 shows, the term kxa that appeared in 
the equation for xb no longer appears. Hence kxa is removed from the bth 
row on the left side of (29). All feedback loops in the original graph except 
the ones containing branch k are included in the modified graph. Hence the 
graph determinant is obtained from the old graph determinant simply 
by setting k = 0. But this was called Δ0 above. Hence the graph gain of 
the new graph, which is just the negative return ratio, is given by 

(32) 

The return difference can now be formed as follows: 

or, by using (31), 

(33) 

This is a highly significant result. A measure of feedback with reference 
to a specific parameter k is obtained by taking the ratio of the graph 
determinant with the parameter in place to its value when the parameter 
is set equal to zero. 

You should demonstrate the validity of this expression for the graph of 
Fig. 24, for which the return difference was already found in (25), by using 
the expression for the graph determinant given in (26). 

SENSITIVITY 

Generally speaking, each parameter in a network has an influence on the 
response. As that parameter is changed (due to aging, temperature 
changes, replacement, etc.), the response will change. It is of interest to 
know by what fraction the response will change when a given parameter 
changes by a certain fraction. This information is given by what is called 
the sensitivity. We define the sensitivity of a quantity, say the graph gain 
G, to a parameter k by 

(34) 
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In this definition the changes are considered to be differentially small. 
It is possible to relate the sensitivity to the return difference. Suppose 

that the parameter k is in a branch lying in a direct path between source 
and sink. Hence the graph gain in (16) can be written as follows: 

(35) 

where R is the remainder of the numerator after the term containing k is 
removed. By direct evaluation, by using the definition in (34), and by using 
(33) for the return difference (and after some manipulation), the following 
relationship is obtained: 

(36) 

where G0 = R / Δ 0 is the graph gain when k is set equal to zero; that is, 
this is the graph gain due to " leakage" paths not traversing branch k. 

In the event that there are no leakage paths, meaning that all direct 
paths from source to sink pass through branch k, the sensitivity becomes 
simply the reciprocal of the return difference. This is the case, for example, 
in the signal-flow graph of Fig. 24. Hence in this example the sensitivity 
of the gain to the transconductance g is the reciprocal of the return 
difference already determined in (25). 

9 .4 STABILITY 

In the preceding sections we have discussed a method of analysis that 
constitutes an alternative approach to the determination of network 
functions and thus network responses to specified excitations. The signal-
flow graph approach can be used for passive, reciprocal networks as well 
as active, nonreciprocal networks. It is of greatest value for the latter 
type network, however. 

A very important concern in the study of active networks is whether the 
response remains bounded or increases indefinitely following an excitation. 
This concern is absent in lossy, passive networks since the poles of network 
functions for such networks necessarily lie in the left half-plane. In this 
section we shall investigate this concern. We shall deal with signals in 
both the time and the frequency domain and we shall assume that all 
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networks are initially relaxed. Only single-input, single-output networks 
will be considered. This is not restrictive, since multi-input, multi-output 
networks can be handled by the principle of superposition. 

Let w(t) denote the network response corresponding to an excitation 
e(t). We shall say the network is stable if, given a constant 0 ≤ E < ∞, 
there exists another constant 0 ≤ W < ∞ such that |w(t)| ≤ W whenever 
|e(t)| ≤ E for 0 ≤t < ∞ . In less precise terms, we designate a network 
as stable if to every bounded excitation there corresponds a bounded response. 
To distinguish this from other definitions to be introduced later, we refer 
to this as bounded-input bounded output (BIBO) stability. 

To find functional criteria for a network to be BIBO stable, the response 
w(t) must be expressed in terms of the excitation e(t). Start with the con
volution integral 

(37) 

where h(t) is the impulse response. Then the following can be shown: 

Theorem I . A network is BIBO stable if and only if 

(38) 

That is to say, if the impulse response is absolutely integrable, then the 
response to any bounded excitation will remain bounded. For the if 
portion of the proof, start by taking the absolute value of both sides of 
(37). After applying the usual inequalities, the result becomes 

If |e(τ)| is replaced by its upper bound F, this inequality can only be 
strengthened. Thus 

The right side follows from the change of variable (t — T ) - > T . N O W , if the 
upper limit is increased to infinity, the integral will not be reduced; so 
the inequality will be further strengthened. Hence 
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Because of the condition of the theorem given in (38), W < ∞ and |w(t)| is 
bounded for 0 ≤ t < ∞. 

For the only if portion of the proof, we start with this observation. If 

(39) 

then, given any 0 ≤ H < ∞ , there exists a 0 ≤ t' < ∞ such that 

(40) 

This portion of the proof will be by contradiction; that is, we shall assume 
(38) to be invalid and show, given 0 ≤ E < ∞ and any 0 ≤ W < ∞ , that 
there exists a 0 ≤ t' < ∞ such that |w(t')| > W for some |e(t)| ≤ E. Now, 
choose an excitation 

where sgn[x] is simply the sign of its argument. Thus e(t) is a function that 
alternates between +E and —E as the sign of h(t' — t) changes. With this 
excitation, the convolution integral in (37) yields 

The final result is a consequence of the fact that x sgn x = |x|. Now let 
H = W/F in (40) and insert the result into the last equation. It follows 
that w(t') > W and, hence, |w(t')| > W. This completes the proof. 

This theorem specifies a condition for BIBO stability in the time 
domain. When H(s) = £{h(t)} is a proper rational fraction, it is possible 
to give an equivalent frequency domain condition. Thus 

Theorem 2. If H(s) is a proper rational fraction in s, then the network will 
be BIBO stable, which means that 

(41) 
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if and only if all the poles of H(s) have negative real part. 

The proof of the if statement is initiated with the partial-fraction 
expansion 

where —s i is a pole of H(s) of multiplicity vi. The inverse transform of this 
expression yields 

from which we easily obtain 

Since | e - s i t | = e - ( R e s i ) t , the expression yields 

(42) 

If all the poles of H(s) have negative real part, that is, if Re si > 0 for 
i = 1, 2, ..., l, then each of the terms t j - 1 e - ( R e s i ) t is integrable from 0 
to ∞ . A finite linear combination of integrable terms, as in (42), is also 
integrable. Hence (41) is satisfied. 

To prove the only if statement we turn to the Laplace-transform 
integral for H(s); that is, 

When the usual inequalities are used, this yields 

For Re s ≥ 0, | e - s t | ≤ 1; hence 
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Thus, if (41) is valid, then |II(s)| is bounded for all s such that Re s ≥ 0. 
This means that H(s) can have no poles with non-negative real part, and 
the proof is complete. 

If a proper rational fraction 

(43) 

is given, and it is desired to know if this is the transform of the impulse 
response of a BIBO-stable network, it will be necessary to locate the zeros 
of D(s) and to see if they have negative real part. Fortunately, to settle 
the question of stability, it is not essential to know exactly where the poles 
of the function are, but only that they lie in the left half-plane. We shall 
now turn our attention to criteria that provide just such an indication 
without factoring D(s). 

ROUTH CRITERION 

If the poles of H(s) are all to lie in the left half-plane, the polynomial 
D(s) must be strictly Hurwitz, as defined in Section 6.2. It was observed 
there that a necessary condition for a polynomial to be strictly Hurwitz 
is that all the coefficients must be present and must have the same sign. 
This is a useful bit of knowledge in that it provides a basis for easily 
eliminating polynomials that cannot possibly be strictly Hurwitz. 
However, we still need a basis—a sufficiency condition—for selecting a 
strictly Hurwitz polynomial from amongst the remaining candidate 
polynomials. The next theorem, which will present necessary and sufficient 
conditions for a polynomial to be strictly Hurwitz, is an extension of 
Theorem 16 in Chapter 7 on Hurwitz polynomials. 

Suppose D(s) is a polynomial of degree n. For convenience, and certainly 
without loss of generality, assume that the leading coefficient is positive. 
Thus 

(44) 

Now let α(s) and β(s) be polynomials derived by taking alternate terms 
from D(s), starting with a0sn and a1sn-1, respectively. Thus 

(45a) 

(45b) 
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Next form the ratio α(s)/β(s) and express it as a continued fraction as 
follows: 

( 4 6 ) 

The desired relationship is the following:* 

Theorem 3. The polynomial D(s) is strictly Hurwitz if and only if γi > 0 
fori=1, 2, ...,n. 

Note that all the γ i numbers must be positive; none can be zero, down to 
the nth one. If all γ i after the kth one are zero, this is an indication that 
an even polynomial is a factor of both α(s) and β(s), and thus of D(s). 
This even polynomial can have pairs of j-axis zeros or quadruplets of 
complex zeros, two of which are in the right half-plane. In either case D(s) 
cannot be strictly Hurwitz. 

HURWITZ CRITERION 

The Routh criterion is ideally suited to determining the stability of a 
network when each of the coefficients of D(s) is known numerically. If one 
or more of the coefficients depend on one or more unspecified parameters, 
the Routh criterion becomes difficult to work with. An alternative to the 
Routh criterion would be useful in this case. 

Let Δ n denote the determinant formed from the coefficients of D(s) as 
follows: The first row contains a\ in column 1, a3 in column 2, and so on 
until the ai+2i are exhausted. The remaining columns, up to a total of n, 
are filled with zeros. The second row contains a0 in column 1, a2 in column 2, 
and so on until the a2i are used up. The remaining columns are filled with 
zeros. The second pair of rows each begins with one zero, after which the 
first pair of rows is repeated until a total of n columns are filled. The third 
pair of rows each begins with two zeros, after which the first pair of rows 
is repeated until a total of n columns are filled. This process is continued 
until an array of n rows and n columns has been constructed. The array 

* A particularly lucid proof is given in R. J. Schwarz and B. Friedland, Linear 
Systems, McGraw-Hill, New York, 1965. 
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illustrated below will always have an in the lower right-hand corner, in 
the (n, n) position, and 0 in all the other rows of the last column. (Why?) 

(47) 

Let Δ n - 1 denote the determinant derived from Δ n by deleting the last 
row and column of Δ n . Continuing in this way, let Δ n — k denote the deter
minant obtained by deleting the last row and column of Δ n — k + 1 . By this 
procedure we construct a total of n determinants Δ i , known as the 
Hurwitz determinants, which are the basis for the next theorem. 

Theorem 4. The polynomial D(s) is strictly Hurwitz if and only if Δi > 0 
fori=l, 2, ...,n. 

This theorem, known as the Hurwitz criterion, is reasonably easy to apply 
to polynomials in which the coefficients are functions of some set of 
parameters. 

LIÉNARD-CHIPART CRITERION 

In the application of the Hurwitz criterion, there is clearly the need 
to evaluate a large number of determinants. Any help in reducing the 
number of determinants to be evaluated would be greatly appreciated. 
This is accomplished by the next theorem, known as the Liénard-
Chipart criterion: 

Theorem 5 . The polynomial D(s) is strictly Hurwitz if and only if all 
elements are positive in one of the following:* 

1. an, a n - 2 , a n - 4 , ... and Δ n , Δ n — 2 , Δ n — 4 , ... 
2. an, an—2 , a n - 4 , ... and Δ w - i , Δ n — 3 , Δ n — 5 , ... 
3. an, an—1, a n - 3 , ... and Δ n , Δ n — 2 , Δ n — 4 , ... 
4. an, an—1., an—3, ... and Δ n — i , Δ n — 3 , Δ n — 5 , ... 

* A proof of this theorem and the preceding theorem may be found in F. R. Gantmacher, 
The Theory of Matrices, Vol. 2, Chelsea Publishing Co., New York, 1959. 
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Observe that only every other Hurwitz determinant need be evaluated by 
this criterion. Since the effort needed to evaluate a determinant increases 
with the size of the determinant, it is to advantage to select either con
dition (2) of (4) of the theorem since neither includes Δ n , the largest 
Hurwitz determinant. 

We will now illustrate the Liénard-Chip art criterion. Consider 

and the problem of determining those values of a and k for which D(s) is 
strictly Hurwitz. We shall approach this task by using condition 2 of 
the Liénard-Chip art criterion. Note immediately that 

(48a) 

The desired Hurwitz determinants are now constructed and evaluated; 
thus 

(49a) 

(49b) 

If conditions 2 of the theorem are to be satisfied, then from (48) and (49) 
we get the following two inequality relations in a and k: 

(50a) 

(50b) 

The curves ak = 0 and 360 + 54k — k2 — 36ak = 0 are boundaries of the 
open regions in which (50a) and (50b), respectively, are satisfied. The region 
in which (50a) is valid is shown in Fig. 26a; similarly, (50b) is valid in the 
region shown in Fig. 26b. Both relations in (50) are valid simultaneously 
in the intersection of these regions, shown in Fig. 26c. Thus, for example, 
if k = 30 is chosen, then a can be no greater than 1. 
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Fig. 26. Example. 

(a) (b) 

(c) 

9 . 5 THE NYQUIST CRITERION 

The Routh and Liénard-Chipart criteria are relatively simple criteria. 
However, in order to use them, we require that the denominator D(s) of 
the impulse-response transform H(s) be known as a function of s. This is 
not always available. It would be useful to have another method for 
stability testing that would use experimental data or only approximate 
plots of the magnitude and angle of H(jω). Such a technique is the Nyquist 
criterion, which we shall discuss now. 

The objective is to determine whether or not H(s) has poles in the 
left half-plane only. The Nyquist criterion uses the principle of the argu
ment from complex-variable theory to decide this issue. We shall focus 
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on determining the number of poles of H(s) outside the left half-plane; 
therefore, we choose a contour that encloses the right half-plane and 
contains the imaginary axis. The oriented contour, known as the Nyquist 
contour, is illustrated in Fig. 27. 

Fig. 27. Nyquist contour. 

For the validity of the principle of the argument, H(s) can have no 
zeros or poles on the contour. Therefore we first assume that H(s) has no 
zeros or poles on the imaginary axis. Similarly, since we wish to let R go 
to infinity, we must make the additional assumption that H(s) is regular 
and nonzero at infinity. We shall return to this assumption later and show 
that the assumption relative to the zeros can be relaxed. 

Let us consider the mapping of the contour by the function H; that is, 
the locus of the point H(s) as s traverses the contour of Fig. 27. This may 
be a curve such as the one shown in Fig. 28a. Since H is a network func
tion, it is real on the real axis, and so the map is symmetric with respect 
to the real axis. Let N0 and Np be the number of zeros and number of 
poles of H(s), respectively, that lie inside the oriented Nyquist contour C. 
Now the argument principle states that 

(51) 

that is, the change in the argument of H(s) as s traverses the contour C, 
which is oriented in the negative direction, is 2π times the number of poles, 
minus the number of zeros of H(s) within C (taking into account the multi
plicity of each). 

Let US see what the nature of the locus of H(s) must be if this change 
of angle is to be nonzero. It is quite evident that the locus must go around 
the origin in the H-plane if there is to be any change in the argument. This 
is the case in Fig. 28b. But in Fig. 28a, there is no change in the argument 
as we traverse the locus once. In other words, the locus must enclose the 
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Fig. 28. Map of the contour of Fig. 27. 

(a) (b) 

origin in the H-plane if there is a net change in the angle of II(s) over the 
Nyquist contour C. Clearly, if the origin is enclosed by the locus, it is 
enclosed an integral number of times. Let Ncw denote the number of 
clockwise encirclements of the origin by the locus. Then 

(52) 

Substituting this expression into (51) yields 

(53) 

Thus, if the II(s) locus does not enclose the origin, we can conclude 
that H(s) has as many poles as zeros in the right half-plane. But we really 
want to know whether it has any poles in the right half-plane. Therefore 
for this test to be useful we must know, by some other means, how many 
zeros H(s) has in the right half-plane; for example, that H(s) has no zeros 
in the right half-plane, which means II(s) is a minimum-phase function. 
This is by no means an easy task. However, there is no need to abandon 
the procedure because difficulty is encountered. What we can do is to 
find another function involving D(s), the denominator polynomial of 
H(s), and some other factor, this other factor being such that its zero 
locations are known. 

We shall suppose that a flow-graph representation of the network has 
been reduced to an equivalent graph of the form depicted in Fig. 29. 
Then by the graph-gain formula in (16), it follows that the transfer 
function associated with this flow graph is 

(54) 
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Fig. 29. Signal-flow graph of feedback network. 

It must now be established where the poles of H(s) come from. Observe 
first that the return ratio T of parameter k, and the return difference F, 
are given by 

(55a) 

(55b) 

Both of these functions have the same poles. Now the poles of the transfer 
function H(s) are either (1) zeros of the return difference F(s) that are not 
common with zeros of A(s) or (2) poles of A(s) that are common with zeros 
of R(s). In the latter case T(s) and F(s) will not have a pole at such a pole 
of A(s). Hence H(s) = kA(s)/F(s) will have this pole. 

Suppose that, even though R(s) may have zeros in common with poles of 
A(s), none of these lie in the right half-plane or j-axis . Hence any right 
half-plane or j-axis poles of the transfer function H(s) must be zeros of 
the return difference F(s). Stated differently: If all the zeros of F(s) = 1 
+kA(s )B( s ) are in the left half-plane, then all the poles of the transfer 

function H(s) are in the left half-plane, provided that B(s) has no right 
half-plane and j-axis zeros in common with poles of A(s). (In this state
ment we cannot say "If and only if all the zeros of F(s) = 1 + kA(s)R(s) 
are in the left half-plane . . . " Why?) 

Under the stated condition, investigating the location of the poles of 
the transfer function H(s) can be changed to investigating the location of 
the zeros of the return difference F(s) = 1 + kA(s)T(s). 

In order to apply the argument principle to F(s), we must assume that 
F(s) has no poles or zeros on the imaginary axis and is regular and non
zero at infinity. Now consider the locus of points F(s) on the Nyquist 
contour C; a typical plot is shown in Fig. 30a, where the dashed curve 
corresponds to ω < 0. Let Ncw denote the number of clockwise encircle
ments of the origin by the locus F(s). Then, as before, 

(56) 

where No and Np are the numbers of zeros and poles, respectively, of 
F(s) in the right half-plane. 



Sec. 9.5] THE NYQUIST CRITERION 681 

Fig. 30. Nyquist plots. 

(a) (b) 

Observe that the origin in the F-plane corresponds to the point 
( — 1,0) in the T-plane; that is, F(s) = 0 implies T(s) = — 1. Thus the 
number of encirclements of the origin by the locus F(s) is equal to the 
number of encirclements of the point (—1, 0) by the locus T(s). This is 
illustrated in Fig. 30b. But, as observed in (54), the return difference and 
return ratio have the same poles. Hence a new interpretation can be given 
to (56); namely, Ncw is the number of clockwise encirclements of the 
point (—1, 0) by the locus T(s), and Np is the number of poles of T(s) in 
the right half-plane. 

DISCUSSION OF ASSUMPTIONS 

Now we return to some of the assumptions made earlier about F(s). 
One of these was that F(s) has no zeros on the imaginary axis and at 
infinity. This is not a serious restriction, since we can tell from the 
behavior of the locus whether or not the assumption holds in a given case. 
If the locus F(s) intersects the origin, or, equivalently, if the locus T(s) 
intersects the point (— 1, 0), then it will be known that F(s) has a zero 
somewhere on the Nyquist locus, either on the j-axis or at infinity, 
depending on the value of s at the intersection point. 

Specifically, if the intersection occurs for s infinite, F(s) will have a zero 
at infinity. But this is of no interest, since only finite zeros influence 
stability. Nevertheless, there will be a problem in such a case in counting 
the number of encirclements of the point (—1, 0). We shall shortly discuss 
a slight modification of the locus that settles this question. 

As for the second possibility, namely, that the locus T(s) intersects the 
(—1, 0) point at a finite value of s = jω, then F(s) will have a zero on the 



682 SIGNAL-FLOW GRAPHS AND FEEDBACK [Ch. 9 

jω-axis. But this fact gives the information we were seeking; it tells us that 
not all the zeros of F(s) are in the left half-plane, at least one being on 
the jω-axis. 

Another earlier assumption on F(s) was that F(s) has no poles on the 
imaginary axis or at infinity. This same assumption applies to T(s), 
since T(s) and F(s) have the same poles. Again the validity of the assump
tion is easily observed from the behavior of the locus. Thus if the locus 
T(s) becomes unbounded, then F(s) must have a pole at the corresponding 
value of s. 

The locations of such poles are, therefore, known. (Would this be true 
if T(jω) were known from experimental data?) We shall further assume 
that the multiplicity of such poles is known. The principle of the argument 
requires the function to which it is applied to have no poles or zeros on 
the contour. But what should be done if it is discovered that F(s) has 
such poles or zeros? For finite j-axis zeros, the question has been answered. 
Let us turn to the case of finite j-axis poles. If the Nyquist contour is to 
avoid such poles, the contour can be modified by indentations into the 
right half-plane with vanishingly small semicircular arcs centered at the 
pole, as shown in Fig. 31a. The corresponding change in the locus of 
T(s) is shown in Fig. 31b. The solid lines show the locus for values of 
s = jω, with ω less than and greater than ω 0 , where s = j ω 0 is the location 
of the pole. As ω approaches ω 0 from below, the locus moves out to infin
ity at some angle. In Fig. 31b, infinity is approached in the third quadrant. 
As s takes on values along the vanishingly small semicircular arc, the 
locus T(s) approaches an infinite-radius circular arc of mπ radians, where 
m is the multiplicity of the pole. The orientation on this circular part of the 
locus is clockwise, as shown by the dashed curve in Fig. 31b. (You should 
approximate T(s) in the vicinity of the pole by the dominant term in its 

Fig. 31. Modification of Nyquist contour and Nyquist diagram. 

(a) (b) 



Sec. 9.5] THE NYQUIST CRITERION 683 

Laurent series and verify the above statements.) The "infinite-radius" 
circular arc in the T-plane joins the ends of the segments of the locus 
T(s) that result as s approaches or leaves the vicinity of a pole on the 
imaginary axis. Now it is possible to count the encirclements of the 
point (—1, 0) even when T(s) has imaginary-axis poles. Note that these 
vanishingly small indentations into the right half-plane do not affect the 
number of zeros of F(s) computed by (56) to be in the left half-plane. 
Why? 

Finally, consider the case where F(s) has a pole or zero at infinity. 
In the case of a pole, T(s) also has that pole. In this case we must examine 
T(s) on the arbitrarily large semicircular arc in Fig. 27 used to close the 
Nyquist contour in the right half-plane. Just as in the case of finite poles, 
the locus T(s) will go to infinity as s approaches infinity along the imagin
ary axis. Again, corresponding to the circular arc on the Nyquist locus 
(this time the infinite arc); the locus T(s) will be an infinite clockwise-
oriented circular arc of nπ-radians, where n is the multiplicity of the pole 
at infinity. This is depicted in Fig. 32a. 

Fig. 32. Loci corresponding to a pole or zero of F(s) at infinity. 

(a) (b) 

In the case of a zero of F(s) at infinity, T(s) equals — 1 there, so that the 
locus T(s) intersects the (— 1, 0) point. In this case consider the limit of the 
large circular arc of the Nyquist contour as the radius approaches 
infinity. The locus T(s) will approach a vanishingly small counter
clockwise oriented arc of nπ radians centered at the point (—1, 0), where 
n is the multiplicity of the zero at infinity. This is illustrated in Fig. 32b. 

NYQUIST THEOREM 

The overall locus T(s) in the general case will be a combination of 
Figs. 30b, 31b, and 32. This modified locus, which accounts for poles of 
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T(s), or F(s), on the finite jω-axis and poles or zeros of F(s) = 1 + T(s) 
at infinity, is called a Nyquist diagram. In (56) the number of clockwise 
encirclements of the point (— 1, 0) refers to the number of encirclements by 
the Nyquist diagram. 

The preceding discussion will now be summarized in the form of a 
theorem, called the Nyquist criterion. 

Theorem 6. A network, having 

as its transfer function, is BIBO stable (a) if no right half-plane or imagin
ary-axis pole of A(s) is also a zero of B(s) and (b) if the Nyquist diagram 
of T(s) = kA(s)B(s) does not intersect the point (—1,0) and encircles it 
— N p times in the clockwise direction,* where N p is the number of poles of 
T(s) in the right half-plane. 

Note that this is a sufficiency theorem only. It is not necessary because 
right half-plane or imaginary-axis zeros of A(s) might cancel all right half-
plane or imaginary-axis zeros of 1 + T(s), if the latter had any. Of course, 
if A(s) is known to have left-half-plane zeros only, this cannot happen, 
and the conditions of the theorem become necessary as well as sufficient. 
In any case, from a practical point of view, we would view a network as 
unstable—not just possibly unstable—if the conditions of the theorem 
were not satisfied. Why? 

If this approach is to tell us anything about the zeros of F(s) through 
(56), then we must know that T(s) has no poles in the right half-plane; 
or, if it has any there, we must know how many. There is one case in which 
we can definitely say that T(s) has no right-half-plane poles; that is, when 
A(s)B(s) may be written as a product of passive network functions. 

Lastly, if the Nyquist diagram of T(s) is to be the key to predicting the 
stability of the network, then we must be certain that no right half-plane 
or imaginary-axis pole of A(s) is also a zero of R(s). In one case we can 
say with absolute certainty that this cannot occur; that is, when the 
numerator of B(s) is a constant. 

The preceding discussion of stability was based on the single-loop 
feedback representation of Fig. 29. Nyquist's criterion can also be extend
ed to multiple-loop flow-graph representations. This involves plotting 
several Nyquist diagrams. We shall not discuss this extension here. 

* By (56), the number of zeros, N0, of 1 + T(s) in the right half-plane is Ncw + Np. 
The condition of the theorem corresponds to N0 = 0, or NCw = — Np. An equivalent 
condition would be: "...encircles it N0 times in the counter-clockwise direction." 
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Example 

Let us now illustrate the Nyquist stability criterion by means of an 
example. We shall go through this example in some detail and show how 
approximations can be incorporated in the procedure. 

Consider the three-stage RC-coupled amplifier with frequency-sensitive 
feedback shown in Fig. 33. In this example we shall try to show the ad-

Fig. 33 Example for Nyquist locus. 

vantage of the Nyquist criterion by not computing the return ratio T(s). 
Instead we shall estimate T(s) by making use of a number of approxi
mations. This network is a simplified model of a vacuum-tube network 
in which many of the interelectrode capacitances have been neglected to 
simplify the example. 

This network can easily be modeled by a single loop flow graph of the 
type we considered. The value of k will be μ 1 μ 2 μ 3 and A(s)R(s) can be 
written as a product of passive network functions, though we shall not do 
so here. Thus we may properly set Np = 0 and proceed in the knowledge 
that No = Ncw. Furthermore, B(s) = 1 ; hence poles of A(s) cannot be 
common to zeros of B(s). You should convince yourself of these facts. 

Interest lies entirely on the jω -axis; hence we shall deal mostly with 
steady-state phasors instead of Laplace transforms. Remembering the 
flow-graph definition of the return ratio, we must open the loop and apply 
a unit signal at the right-hand node of the pair of nodes thus formed. The 
signal returned to the left-hand node of that pair of nodes will be T(jω). 
We shall now interpret this step in terms of the actual network rather than 
the signal-flow graph. Imagine that the loop is opened at the input to the 
first amplifier stage, and the voltage Vg1 is set equal to unity. Observe that 
this is equivalent to replacing the first controlled voltage source by an 
independent voltage source of value μ1. Thus the condition shown in Fig. 
34 is the appropriate one for computing the return ratio. Here the external 
source is removed and the first controlled source is assumed to be an 
independent source having a phasor voltage μ 1 . 
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Fig. 34. Return ratio computation. 

Notice that the reference for T is chosen to conform with the definition 
that it is the negative of the returned signal to the back half of the split 
node. It is easy to see how this interpretation can be used for experi
mental measurement of T(jω) on the network of which this example is a 
model. 

In order to construct the Nyquist diagram, let us split the frequency 
range 0 ≤ ω < ∞ into a number of bands and use suitable approximations 
in each band. At very low frequencies the returned signal will be very 
small due to the coupling capacitances C1, C2, and Cf. The influence of 
Cgk can be neglected in this range. There are three RC coupling networks 
in the loop. Let us use the notation 

(57) 

with suitable subscripts for each of the coupling networks. Then the 
voltage ratio of each stage will be 

(58) 

with appropriate subscripts. Hence in this range the return ratio will be 
given by 

(59) 
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(The negative signs disappear because of the reference for T.) The 
asymptotic phase of each of the factors in (59) as ω -> 0 will be π/2 radians. 
Thus the total asymptotic phase of T(jω) will be 3π/2 radians, the magni
tude approaching zero. Hence the low-frequency portion of the locus of 
T(jω) looks like the curve in Fig. 35. 

Fig. 35. Low frequency behavior of T(jω). 

Let us assume that the upper half-power frequency l / R 1 C g k is con
siderably higher than the half-power frequencies of the three RC coupling 
networks. Thus there will be a midband frequency range in which the 
behavior of the network in Fig. 34 can be approximated by that shown in 
Fig. 36. 

Fig. 36. Midband approximation. 

For this network T is computed quite easily. Alternatively, the desired 
expression can be obtained from (59) by neglecting the constant terms in 
the denominators compared with the frequency-dependent terms. In 
either case the result will be 

(60) 

This is obviously a real positive number. Thus the midband T-locus is on 
the positive real axis. The point Tm is marked on Fig. 37. 
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At high frequencies Fig. 36 can still be used, except that the effect of 
Cgk must now be included. Since Cgk is in parallel with Res, the third factor 
in (60) should be modified and replaced by the following: 

(61) 

Hence the angle of T will asymptotically approach —π/2. The high end 
of the T(jω) locus therefore takes the form shown in Fig. 37. 

Fig. 37. High-frequency behavior of T(jω). 

We can now estimate the T(jω) locus for 0 ≤ ω < ∞ to have roughly 
the shape shown in Fig. 38. To improve the approximation, we should 

Fig. 38. Approximate T-locus for example. 

estimate a few points on the curve. Suppose, for simplicity, that the three 
significant half-power frequencies of the interstage circuits are either 
identical or widely separated. In the first case we know that at the common 
half-power frequency each circuit contributes an angle of 45° and a 3-dB 
attenuation. This point, marked ω 3 in Fig. 38, must be 9 dB less than 20 



Sec. 9.5] THE NYQUIST CRITERION 689 

log Tm. Similarly, we can find the frequency at which each circuit contri
butes a 60° angle. This is the frequency at which each of the denominator 
factors in (59) contributes 30°, which is easily found to be approximately 
ω2 = 0 .58ω 3 . At this frequency each factor will be down about 4 dB. 
Therefore T(jω2) will be down 12 dB from 20 log Tm. The frequency ω2, 
marked in Fig. 38, is the point where the locus crosses the negative real 
axis. The other points ω 1 , ω4, ω5 , ω6 are similarly computed. The widely 
separated case is left as a problem. (See Problem 25.) 

Once the locus for the positive range of ω is known, the diagram can 
be completed by symmetry about the real axis. The complete locus for the 
example is shown in Fig. 39. 

Fig. 39. Complete T-locus. 

It is evident that the stability of the system is determined by the value 
of | T(jω2)|. If this magnitude is greater than or equal to 1, the system is 
unstable. In such a case the system can be made stable by modifying some 
of the element values. Even if the point (—1, 0) is not enclosed or inter
sected by the T-locus, the proximity of the curve to this point gives a 
measure of the "relative stability"; that is, it gives an indication of the 
closeness of a pole to the jω-axis. 

This idea can be expressed in a somewhat more quantitative way by 
defining stability margins, the gain margin, and the phase margin. As a 
matter of fact, consideration of the Nyquist locus leads to many other 
concepts that are useful in system design, such as conditional stability. 
However, we shall arbitrarily terminate the discussion at this point, 
leaving such extensions to books on control theory, which treat feedback 
systems in considerable detail. 
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PROBLEMS 

1. Determine the index of each of the signal-flow graphs in Fig. PI. The 
numbers on the branches are numerical values of branch transmittances. 

2. By reducing each of the signal-flow graphs of Fig. PI, determine the 
graph gain. 

3. Determine the graph gain of each of the signal-flow graphs of Fig. PI 
by applying the graph gain formula. 

(a) 

(b) 

(c) 
(d) 

(e) 

(f) 
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Fig. P I 

(g) (h) 

(i) (j) 

4. Each of the signal-flow graphs in Fig. PI has one source node and one 
sink node, (a) Invert the path from source to sink in each graph. 
(b) Determine the graph gain of the inverted graph and from this, that of 
the original graph. 

5. Reduce each of the signal-flow graphs in Fig. PI to an essential signal-
flow graph. Then evaluate the gain using the graph gain formula. 
Compare with the values from Problem 2 or 3. 

6. In the graph of Fig. 12a, invert the loop VaVbV2Va. Find the graph 
gain I/V1 and verify that it is the same as found in the text. 

7. Draw a signal-flow graph for the networks of Fig. P7. Reduce the 
signal-flow graph to find the transfer function V2/V1. 

8. Solve the following systems of equations for x\ using signal-flow graphs. 
Also find x1 by Cramer's rule (both as a check and to illustrate the 
amount of work involved). 

(a) 
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(b) 

(c) 

Fig. P7 

(a) 

(b) 

(c) 

(d) 

9. Find the transfer function V4/ Vg for the network of Fig. 19 whose 
signal-flow graph is given in Fig. 20 by (a) reducing the signal-flow graph 
alone, (b) operating on the connection matrix alone, (c) applying the 
graph gain formula alone, and (d) using mixed-variable equations. 

10. Find the transfer impedance V3/Ig for the network of Fig. 21 with 
signal-flow graph in Fig. 22 by (a) reducing the signal-flow graph alone, 



Fig. P11 

(a) (b) 

(c) 

(d) 

(e) 

693 
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(b) operating on the connection matrix alone, (c) applying the graph 
gain formula alone, and (d) using node equations. 

11. Determine a signal-flow graph for each of the networks of Fig. P 1 1 a to 
d. Use the triode model shown in Fig. P11e. Then evaluate the graph 
gain(s). 

12. Set up a signal-flow graph for the network of Fig. P12 to find the 
transfer function Y21(s) = I2/V1. Find this function by reducing the 
signal-flow graph. Also, apply the graph gain formula to the original 
graph, and compare the answers obtained. 

Fig. P12 

13. Find the voltage ratio V2/V1 for the general ladder network of Fig. P13 
by first setting up the signal-flow graph. From the signal-flow graph 
show that the transmission zeros occur at series impedance poles or shunt 
impedance zeros. 

Fig. P13 

14. Determine a signal-flow graph for each of the networks of Fig. P14a to c. 
Use the transistor model shown in Fig. P14d. Then evaluate the 
graph gain. 

15. Find the gain V2/ V\ for the "pseudo-tuned" amplifier of Fig. P15 
using signal-flow graphs. 
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Fig. P14 

(a) 

(b) 

(c) 

(d) 
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Fig. P15 

16. For each of the networks of Fig. P16a to d, use (40) to determine the 
sensitivity of the transfer function V0/Vi to (a) c, (b) r, and (c) g. 
Use the transistor model of Fig. P16β. The nominal values are c = 
100 μF, r = 103Ω, and g = 0.5Ü. 

17. The return ratio and return difference of a branch are defined in the 
text. The same quantities can be defined for a node. The return ratio 
of node j , represented by Tj, is the negative graph gain of the graph 
obtained by splitting the node and removing all other source and sink 
nodes. The return difference of node j is defined as Fj = 1 + Tj. The 
partial return ratio of node j , Tj, is defined as the return ratio of node j 
when all higher numbered nodes are removed from the graph. This is 
obviously dependent on the ordering of the nodes. The partial return 
difference of node j is also defined; it is Fj = 1 + Tj. 
(a) Suppose the nodes of a graph are numbered in a particular order. 
Now remove all nodes above the one numbered k. Next, draw a reduced 
graph in general form, retaining only nodes k and k — 1. Determine 
the partial return differences and find the product F'k Fjk_1. Finally, 
interchange the numbers of nodes k and k — 1 and again find the product 
Fk F k _ 1 . Show that this product is independent of the node 
numbering. 
(b) Show that the product of the partial return differences of all nodes 
of a graph is a unique property of the graph, independent of the node 
numbering. 

18. Which of the following impulse response functions are associated with 
BIBO stable networks: 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. P16 

(a) (b) 

(c) (d) 

(e) 

19. Use (i) the Routh criterion and (ii) the Liénard-Chipart criterion to deter
mine which of the following polynomials in s have zeros only in the 
left half-plane: 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 
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(k) (l) 
(m) 

20. Suppose H(s) is a rational fraction and is regular at infinity; thus, H(s) 
equals a constant (which may be zero) plus a proper rational fraction. 
Then prove that a network having H(s) as its transfer function is BIBO 
stable if and only if all the poles of H(s) have negative real part. 

21. Use the Liénard-Chipart criterion to determine the value of μ for 
which the networks in Fig. P21 are BIBO stable. 

Fig. P21 
(a) (b) 

22. Use the Liénard-Chipart criterion to determine the values of p and γ for 
which the networks in Fig. P22 are BIBO stable. In the p—y parameter 
plane, shade the stability regions. 

23. Use the Liénard-Chipart criterion to determine the values of r and g 
for which the oscillator networks shown in Fig. P23α to c are not BIBO 
stable. Assume a ficticious voltage source input to be in series with the 
transistor base lead. Use the transistor model shown in Fig. P23d. In 
the r-g parameter plane, shade the instability regions. 

24. Draw the Nyquist diagram for each of the following return ratio 
functions: 

(a) (b) 

(c) (d) 

(e ) (f) 

(g) (h) 
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Fig. P22 

(a) 

(b) 

Fig. P23 

(a) 

(b) 

(c) 

(d) 
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(i) (j) 

(k) (l) 

(m) (n) 

(o) (p) 

For what values of k is the associated feedback network known to be 
stable by the Nyquist criterion? Assume A(s) has only left half-plane 
zeros. 

25. In the network of Fig. 33 in the text, let the values of the components 
be such that the break-frequencies of the three interstage networks are: 

ωa = 100, ωb = 1000, ωc = 100,000 

Sketch the Nyquist diagram carefully for this case. Find the maximum 
value that Tm can be, if the network is to be stable. 

26. Sketch the Nyquist diagram for the network of Fig. P26. Find values 
of RfLf for which the network is stable. What is the maximum value 
of α under this condition, if the network is to remain stable for small 
variations of parameter values (Re, Ge, Rf, Lf in particular) from the 
design value? 

Fig. P26 
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27. Sketch the Nyquist diagram for the network of Fig. P27 and give the 
condition for stability. 

Fig. P27 

28. Draw a signal-flow graph for the network given in Fig. P28. By 
reducing the graph, calculate the transfer voltage ratio. 

Fig. P28 

29. Prove the following theorem, known as the inverse Nyquist criterion: 
A network, having 

as its transfer function, is BIBO stable, (a) if no RHP or imaginary 
axis pole of A(s) is also a zero of B(s) and (b) if the Nyquist diagram of 
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1/T(s) = 1/kA(s)B(s) does not intersect the point (— 1, 0) and encircles it 
—Np times in the clockwise direction, where Nv is the number of poles 
of 1/T(s) in the RHP. Note: The Nyquist diagram of 1/T(s) is known 
as the inverse Nyquist diagram of T(s). 

30. With reference to Problem 29, draw the inverse Nyquist diagram for 
each of the return ratio functions listed in Problem 24. Then, indicate 
the values of k for which the associated feedback network is known to 
be stable by the inverse Nyquist criterion. Assume A(s) has only left 
half-plane zeros. 

31. Consider all possible combinations of A(s) and B(s) derivable from the 
following list. Apply (i) the Nyquist criterion and (ii) the inverse 
Nyquist criterion (of Problem 29) to determine the values of k for which 
each network is known to be stable. 

32. Consider an active network that can be excited either by a voltage 
source or a current source, as illustrated in Fig. P32a and b. The 
respective transfer functions will be 

(a) (b) 

In the first case the determinant is that of the loop impedance matrix 
and is formed by short-circuiting the input terminals. In the second 
case the determinant is that of the node admittance matrix and is 
formed with the input terminals open-circuited. The zeros of these 
determinants—which are, the poles of the respective transfer functions— 
will be different. Hence, the stability properties under the two kinds 
of excitation need not be the same. 

If a network is stable when its terminals are short-circuited, it is 
said to be short-circuit stable. Similarly, if a network is stable when its 
terminals are open-circuited, it is said to be open-circuit stable. It is 
possible for a network to be both open-circuit and short-circuit stable. 
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It is also possible for it to be stable under one of the terminal conditions 
but not the other. 
(a) The network of Fig. P32c includes two transistors, represented by 
linear models, and a passive, reciprocal two-port. By examining the 
poles of the input impedance, show that this network is open-circuit 
stable. 
(b) A second network is shown in Fig. P32d. Show that it is short-
circuit stable. 

Now consider a two-port with terminations on both ends, as shown 
in Fig. P32e. Either port can be short-circuited or open-circuited by 
giving appropriate values to Rs and RL. The overall network may be 
short-circuit stable and/or open-circuit stable at either end. 
(c) As a specific example take the network shown in Fig. P32f. This is 

Fig. P32 

(a) (b) 

(c) 

Passive 
reciprocal 

(d) 

Passive 
reciprocal 

(e) 
(f) 

Negative 
converter 
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a negative converter with a capacitor representing inevitable capacitances 
in the active devices. Determine whether this is short-circuit stable 
and/or open-circuit stable at each end. 

33. In the example of Fig. 21, it is desired to find the input impedance. 
Place a node (and appropriate branches) in Fig. 22 representing the 
voltage across the independent current source. Find the input impedance 
by reducing the graph. Also find the transfer impedance V3/Ig. 

34. In Fig. 20, nodes V\ and V4 constitute a set of essential nodes. Reduce 
this graph to an essential graph with V\ and V4 as essential nodes and 
compare with Fig. 18. 

35. Signal-flow graphs for two feedback amplifiers are shown in Fig. P35; 

Fig. P35 

(a) (b) 

β 2 is to be adjusted so as to make the graph gains of the two graphs 
equal. Determine the sensitivity SG

a of the gain of each of the two graphs 
to the transmittance α. Compare and determine which type of amplifier 
is less sensitive to changes in α. 



. 1 0 . 

LINEAR TIME-VARYING 
AND NONLINEAR NETWORKS 

In the preceding parts of this book, consideration has been limited to 
linear, time-invariant networks. However, actual networks display 
characteristics that cannot be completely and adequately described by a 
linear, time-invariant model. A simple device such as a resistor, for example, 
will have a time-varying resistance induced by changes in the tempera
ture of its environment; this effect might not be negligible in all cases. 
Similarly, magnetic-field saturation in the ferromagnetic core of an 
inductor, large-signal operation of an active device such as a transistor, 
excessive energy dissipation in a resistor, etc., lead to nonlinearity. 
Actual networks, then, under many conditions of operation, will be non
linear. 

Quite aside from undesired departures from time-in variance and/or 
linearity, which we seek to minimize, there are other situations in which 
such departures are introduced by design in the quest for networks that 
perform in some prescribed manner; for example, the parametric amplifier 
is designed as a time-varying, linear network. Oscillators, modulators, 
and demodulators are only a few of the many networks designed with 
nonlinear elements. 

This chapter will be concerned with the formulation and analytic 
solution of (1) linear, time-varying networks and (2) nonlinear networks. 
Since the analytic solution of a nonlinear network cannot, in general, be 

705 
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determined, there is included a section on numerical solution techniques. 
Finally, there is a section on Liapunov stability theory, which is one of 
the basic tools available to the analyst studying nonlinear networks. 
Even though we can present only limited coverage of each of these 
topics—the existing knowledge is extensive enough to require books 
devoted to each—the treatment will be careful and not shallow. Refer
ences for further study will be provided. 

1 0 . 1 STATE EQUATION FORMULATION FOR TIME-VARYING 
NETWORKS 

In Section 4.5 we presented a method for formulating the state equa
tions of a time-invariant network. By reference to that treatment, you 
may verify that the notion of time dependence or independence was not 
introduced until after equations 129. Therefore, we shall begin our con
sideration of time-varying networks with these equations, which for 
convenience are repeated here: 

( la) 

(lb) 

or, after consolidation into a single equation, 

(2) 

REDUCTION TO NORMAL FORM 

This equation can be reduced to the normal form 

(3) 
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provided the matrix 

(4) 

is bounded and nonsingular. Since we are interested in a solution for all 
t ≥ t0, we shall assume that (4) is bounded and nonsingular for t ≥ t0; 
that is, that each of the elements of (4) is bounded and 

for t ≥ t0. 
Now we can proceed in two ways to put (2) into normal form. For the 

first way, set 

(5) 

then 

(6) 

Upon substituting this expression into (2) and rearranging terms, the 
desired form in (3) is obtained with 

(7) 

(8) 

and 

( 9 ) 

For the second way, set 

(10) 
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In this case 

(11) 

After this expression is substituted into (2) and the terms in the resulting 
equation are regrouped, we obtain the normal-form equation (3), with 

(12) 

and 

(13) 

The vector e is again given by (9). 
The second way of choosing the state vector leads to an A matrix, set 

forth in (12), which requires the derivative of the parameter matrix of 
(4). Since our interest is in a solution of the state equation for t≥t0, 
we must assume that this parameter matrix is differentiable for t ≥ t0. 
This is an assumption that does not have to be made when the state vector 
is chosen by the first method. 

In addition, the second way of choosing the state vector yields A and 
B matrices that, in general, are functionally more complicated than those 
obtained when the state vector is chosen by the first method. This is most 
evident when 

In this instance the first method yields matrices 

which, clearly, are functionally simpler than the matrices 
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and 

that are established by the second method. From these observations we 
conclude that the first way of selecting x is more desirable. 

THE COMPONENTS OF THE STATE VECTOR 

Let us therefore turn our attention to characterizing the elements of x, 
as given by (5). We have, after performing the multiplications indicated 
in (5), 

(14) 

By reference to (117) and (118) in Chapter 4, observe that 

As a consequence, we find that 

(15) 

The last step follows from (113e) in Chapter 4, which is repeated here: 

But the elements of C t v C t and C l v C l are simply charges on the capacitors 
in the network. Thus the elements of x established by CvCt— CvE are 
seen by (15) to be linear combinations of the capacitor charges. 

Next we turn to the second row on the right side of (14). By reference 
to (122) and (123) of Chapter 4, we determine that 
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Thus 

( 1 6 ) 

The last step follows from (113d), in Chapter 4, which is repeated here: 

But the elements of L l l i L l , L t l i L t , L l t i L t , and L t t i L t are flux linkages of 
the inductors. In particular, the elements of L t l i L l and L l t i L t are mutual 
flux linkages. Hence the elements of x established by LiLl — LiJ are 
linear combinations of the inductor flux linkages. 

A word is also in order on the network output equation. As in Chapter 4, 
it may be shown that any of the network voltage and current variables 
may be specified in terms of v C t , i L l , v E , i J , dvE/dt, and diJ/dt. If w denotes 
the output vector—the elements of w are the voltage and/or current 
variables that are the desired network outputs—then it can be shown 
that, for either way of defining the state vector x given previously, 
w is conveniently expressed as 

( 1 7 ) 

You should verify this statement. 

Example 

Let us illustrate the reduction of network equations from the form of 
(2) to the standard form of (3) by using the network shown in Fig. 1, 

Fig. 1. Periodically time-varying network. 
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which contains a periodically varying capacitance. Let v1 denote the voltage 
across the capacitor and i3 the current through the inductor. It is easy 
to verify that the vector [v1 i3]' satisfies the differential equation 

(You should do this.) This is, of course, the result that would be obtained 
by using the methods of Section 4.5 through (129a) and (129b). 

As indicated in Fig. 1, |σ| is less than 1. Therefore 

is bounded for all t and has an inverse, which is 

In accordance with (5), the state vector is taken as 

Observe that the elements of x are the capacitor charge and inductor 
flux linkage. Now, by (7) and (8), we find 
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The alternative choice of the network state vector, indicated in (10), is 

Associated with this state vector, we have, by (12) and (13), 

Observe that the A and B matrices in this case are functionally more 
complicated than before. Thus by example, as well as by the previous 
general discussion, we see that the better choice of x is as given in (5) — 
linear combinations of charges and flux linkages as elements of the state 
vector. This will again be found to be true when we turn our attention to 
nonlinear networks. 

1 0 . 2 STATE-EQUATION SOLUTION FOR TIME-VARYING 
NETWORKS 

As indicated in the last section, the input and output variables of a 
time-varying network are related by the state equations 

(18a) 

(18b) 
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As we seek to solve these equations, we must anticipate that any or all 
of the matrices A , B, C, D, and D may be functions of time. 

We shall solve the state equation 18a for the state vector x by using the 
variation-of-parameter method. You should compare the result at each 
step with the result at the corresponding step for the time-invariant case 
in Chapter 4. It is assumed that x is an n-vector and, consequently, that 
A is a square matrix of order n. Now let 

(19) 

where Y(t) is a square matrix of order n. Upon substituting this trans
formation in (18a) and rearranging terms, we get 

(20) 

It is evident that, if the expression in parentheses is zero, the solution will 
be simplified. We shall suppose that this is true. To be more precise, we 
shall suppose that the homogeneous differential equation 

(21) 

with Y(t) equal to Y(t0) at time t0, possesses a nonsingular solution for 
all finite t≥t0. By combining (20) and (21), we find that 

Then, since we have assumed that Y is nonsingular for t ≥ t0, Y — 1 exists, 
and 

(22) 

A solution for x is obtained by integrating. The result is 

(23) 

By (19) and the assumption that Y(t0) is nonsingular, the initial vector 
x(to) is given by the equation 

(24) 
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To obtain x(t) we now premultiply (23) by Y(t). If, at the same time, we 
introduce x(t0) as given by (24), we get 

(25) 

It is permissible to take Y(t) inside the integral, as the integration variable 
is T, not t. 

When the network is not subject to external excitation—e(t) = 0 for 
t ≥ t0—it is evident from (25) that the matrix Y(t) Y ( t 0 ) - 1 characterizes 
the transition of the state from x(t0) at time to to x(t) at time t. Thus the 
matrix Y(t) Y(τ) — 1 is known as the state-transition matrix and is denoted 
by Φ(t, T); that is, 

(26) 

In Chapter 4 it was seen that the state-transition matrix is a function of 
t — T for time-invariant networks; this is not true in the more general case 
of time-varying networks. The solution for x can be expressed in terms of the 
state-transition matrix by inserting (26) into (25) to get 

(27) 

A SPECIAL CASE OF THE HOMOGENEOUS EQUATION SOLUTION 

Before the state vector x(t) can be determined from (27), it is necessary 
to find the state-transition matrix Φ(t, T), or, equivalently, Y(t). This is the 
task to which we now turn our attention. We shall consider the solution 
of the homogeneous matrix equation 21 when, in particular, we set 
Y(t0) = U. This is no real restriction since (24) requires only that Y(to) 
have an inverse. 

First, consider the corresponding scalar equation 

with y(to) = 1. The solution of this equation is 
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It is tempting, therefore, to suppose that the solution to the homogeneous 
matrix equation 21 will be of the form 

(28) 

We shall now show that this is the solution only for the very special case 
when the product of A(t) with Γ A(τ) dτ is commutative. 

to 
We know from the definition of a matrix exponential that 

(29) 

B y differentiating both sides, we get 

(30) 

We are tacitly assuming that each of the indicated infinite series converges. 
Now let us examine a typical term from the right-hand side of this last 
equation. It can be shown that 

(31) 

This follows as a generalization of 

where A is any differentiable matrix. 

In general, A(t) does not commute with jA ( τ ) dτ; you may demon

strate this to yourself with the simple matrix 

Hence it is only when 
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that we get 

(32) 

The last step follows from the fact that the summands do not depend on 
the summation index i. By combining this result with (30), we find, in 
this special case, that 

(33) 

Hence (28) is the solution of the homogeneous equation. 
When the solution of the homogeneous equation is given by (28), we 

find that the state-transition matrix Φ(t, T) has a particularly simple form. 
We know that Φ(t, T) = Φ ( t , t0)|t0 — τ and that Φ(t, t0) = Y(t) Y(to)~ 1 = 
Y(t), since Y(to) = U. Thus, by replacing t0 with τ in the integral 
appearing in (28), the relation for Φ(t, t0) = Y(t), we get 

(34) 

Example 

Before turning our attention to the solution of (21) under less restric
tive conditions, let us consider as an example a network for which the 
preceding commutativity condition is satisfied. The network illustrated 
in Fig. 2 with two time-varying resistors is easily shown to satisfy the 

following differential equation for the state vector [q 2 λ 5 ] ' : 

You will find it easy to verify that the product of 
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Fig. 2. Time-varying network. 

with 

is commutative. Therefore, from (28), 

and, from (34), the state-transition matrix is 

By the theory of functions of a matrix that was established in Chapter 4, 
the matrix exponential for Φ(t, τ) can be replaced by a closed-form 
equivalent. The appropriate function of s is f(s) = e s ( t ~ τ ) . By the proce
dures in Chapter 4, the equivalent form for Φ(t, τ) is found to be 

You should verify this expression. 
Finally, upon substituting this relation for Φ(t, τ) into (27), we find for 

the state vector 

This completes the example. 
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EXISTENCE A N D UNIQUENESS OF SOLUTION OF THE HOMOGENEOUS 
EQUATION 

We have now discussed the solution of the homogeneous equation 2 1 

for the special case when the product of A(t) with Γ A(τ) dτ is commut-

ative. We now remove this restriction. In this case no general method of 
solution is available. In fact, we must usually be satisfied not with a solu
tion but with a knowledge that one or more solutions exist, that there is a 
unique solution, and/or that the solution has certain definable properties, 
such as periodicity. The solution itself is often approximated by truncat
ing a perturbation series or an iteration, or by numerical integration. The 
former is outside the scope of this text.* Numerical integration will be 
taken up in Section 1 0 . 5 , where numerical methods applicable to nonlinear, 
time-varying networks will be treated. 

Our objective now is to establish conditions under which ( 2 1 ) possesses 
a unique solution. So that there shall be no abiguity, we state that Y 
is a solution in the ordinary sense, if it satisfies the homogeneous equation 
( 2 1 ) for all finite t ≥ t0, with dY/dt at t = to being interpreted as a derivative 
from the right.† The following well-established theorem provides us with 
a sufficient condition ‡: 

Theorem I . Given any Y(to), the homogeneous differential equation 2 1 has 
a unique solution in the ordinary sense, equal to Y(to) at time to , if A is a 
continuous function of t for t0 ≤ t < ∞ . 

It is quite possible for A not to be continuous. Furthermore, it may be 
possible to find a Y that satisfies the differential equation for almost all 
values of t ≥ t0. To take care of this situation, integrate both sides of 
( 2 1 ) from to to t to obtain the associated integral equation 

( 3 5 ) 

* For a further discussion of this topic see Nicholas Minorsky, Nonlinear Oscillations, 
D. Van Nostrand Co., Princeton, N.J., 1962. 

† If the limit exists, then 

is the derivative of Y from the right at t = t0. 
‡ For further discussion on the topic of existence and uniqueness of solutions to 

ordinary differential equations, see Earl A. Coddington and Norman Levinson, Theory 
of Ordinary Differential Equations, McGraw-Hill, New York, 1955. 
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We now introduce a new notion; we say that Y is a solution of the differ
ential equation 21 in the extended sense, if it satisfies the integral equation 
35 for all finite t ≥ t0. The following theorem provides us with a satis
factory sufficient condition:* 

Theorem 2. Given any Y(t 0 ) , the homogeneous differential equation 21 
has a unique continuous solution, in the extended sense, equal to Y(t 0 ) at 
time t 0 , if A is a locally integrable function† for t ≥ t 0 . 

The sufficiency condition of this second theorem is considerably weaker 
than that of the first theorem; the price paid is that the solution may 
not satisfy (21) in the ordinary sense. 

As an illustration of these notions, consider the network with a dis
continuous time-varying conductance that is shown in Fig. 3. The state 

Fig. 3. Time-varying network with a discontinuous time-varying conductance. 

equation for this network is 

The homogeneous differential equation corresponding to (21) is 

and with t0 = 0 the integral equation corresponding to (35) is 

* See the footnote * on page 718. 
† A vector- or matrix-valued function is said to be locally integrable if each of its 

elements (a) is a continuous function except at a finite number of points on any finite 
interval and (b) possesses a proper or absolutely convergent improper Riemann integral 
on every finite interval over the interior of which the function is continuous. 
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Now you may easily verify that 

is a solution of the integral equation and hence of the homogeneous 
differential equation in the extended sense. Observe that it is not a solution 
of the homogeneous differential equation in the ordinary sense at t = 1. 
We anticipated that a solution in the ordinary sense might not exist, 
since 2u(t) — u(t—1) is not continuous; furthermore, we knew that a 

solution in the extended sense did exist, since j [2u (τ) — u(τ—1)]dr 
exists for all finite t. In addition, the theorem tells us the solution we have 
found is the unique continuous solution—we need search for no other. 

We must still consider one assumption relative to the solution of the 
homogeneous state equation. This is the assumption that Y ( t ) - 1 exists 
for all finite t ≥ t0. By reference to Chapter 1, you may verify that 

(36) 

where ylk denotes the (l, k)th element of Y and Δ l k denotes the (l, k)th 
cofactor of Y. From (21) we know that 

(37) 

where alm is the (l, m)th element of A; therefore 

(38) 

n 
Since ymkΔlk = δ m l | Y | , we get 

k=l 

(39) 

Recalling the definition of the trace of a matrix, we see that all = 

tr A. Thus 

(40) 
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This is a first-order scalar differential equation for the determinant of Y. 
The solution is, of course, 

But since Y(t0) = U implies |Y(t0)| = 1, then 

(41) 

It is now evident that Y ( t ) - 1 exists—|Y(t) | ≠ 0—provided j * [tr A(τ)] dτ 
is finite for all finite t ≥ t0. If either of the two preceding theorems 
are satisfied, A(τ) dT is finite for t ≥ to; hence [tr A(τ)] dτ = 

tr Γ A(T) dT is finite for t ≥ to, The conclusion is that Y(t) is nonsingular 
to 

under the conditions of either Theorem 1 or Theorem 2. 

SOLUTION OF STATE E Q U A T I O N — E X I S T E N C E A N D U N I Q U E N E S S 

We turn our attention again to the state equation (nonhomogeneous) 
itself. What is initially needed is a precise statement of what constitutes 
a solution. We say that x is a solution in the ordinary sense when the state 
equation 18a is satisfied for all finite t ≥ t0 with dx/dt at t = t0 being inter
preted as a derivative from the right. The following theorem* concerns 
the existence of a solution in the ordinary sense. 

Theorem 3. Given any x( t 0 ) , the state equation 18a has a unique solution, 
in the ordinary sense, equal to x(t0) at time t 0 , if A and Be are continuous 
functions of t for t 0 ≤ t < ∞ . 

When the above sufficiency condition is violated because A and/or Be 
are not continuous, it may still be possible to find an x that satisfies 
the state equation for almost all values of t ≥ t0. To accommodate this 
possibility we must introduce the associated integral equation, as we did 
in the case of the homogeneous equation. Upon integrating both sides of 
(18a) from t0 to t, we get 

(42) 

* See the footnote on page 718. 
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We say x is a solution of the state equation 18a in the extended sense, if it 
satisfies the integral equation 42 for all finite t ≥ t0. It turns out that x 
will satisfy the integral equation if A and Be are locally integrable 
functions. Thus we can state the following theorem:* 

Theorem 4. Given any x ( t 0 ) , the state equation 18a has a unique continuous 
solution, in the extended sense, equal to x(t 0 ) at time t 0 , if A and Be are 
locally integrable functions for t ≥ t 0 . 

Observe that the sufficiency conditions of these two theorems incor
porate those of the corresponding existence theorems for the homogene
ous equation. This is comforting to know. It tells us that if the state 
equation has a unique solution the homogeneous equation also possesses 
a unique solution. In other words, the variation-of-parameter method is a 
valid method by which to obtain the solution whenever the state equation 
has a solution. 

You must bear in mind that the conditions of the theorems are merely 
sufficient conditions, not necessary and sufficient conditions. Thus, even 
though the conditions of the theorem are not satisfied, a solution may 
exist, and, in fact, a unique solution may exist. 

It may appear that the preceding discussion is overly concerned with 
matters that are self-evident or trivial. After all, does not a network 
always have a solution? 

To illustrate that it is not wise blindly to assume the existence of a 
unique state response, consider the network illustrated in Fig. 4. The 

Fig. 4. Time-varying network that does not have a unique solution. 

Negative 
converter 

k = 1 

state equation for this network is easily found to be† 

* See the footnote on page 718. 
† Here, and throughout the chapter, if the right hand side of an indicated state equa

tion is not defined at a distinct set of points in t for fixed x, you should make the conveni
ent assumption that the right-hand side of the state equation is zero at these points. In 
this case, a solution only in the extended sense is being sought, hence the above action 
will not effect the result. 
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Suppose q1(0) = 0. Then you may verify that 

(43) 

is a solution for every finite value of α. Several different solutions are 
shown in Fig. 5. The primary observation to be made is that there is no 
unique solution. 

Fig. 5. Several solutions with the same initial value. 

Of course, we had no basis for anticipating a unique solution. The 
sufficiency conditions of our second theorem are not satisfied; that is, 

jl

o A(τ) dT =j'Q [4/τ 5] dτ does not exist for any t > 0. Furthermore, we had 
no basis for anticipating the existence of even any solution. In fact, no 
solution exists if the initial condition q1(0) is other than zero. 

PERIODIC NETWORKS 

The class of time-varying networks is very broad, since no stipulation 
is made as to the manner of time variation. It should be expected that, for 
certain special kinds of time variation, additional results can be obtained 
about the solution that are valid for that class but not for others. A partic
ularly important class of time functions is the class of periodic functions. 
We shall now consider the special case in which the A-matrix of a time-
varying network is periodic. In this case it is possible to establish some 
additional properties of the solution Y of the homogeneous equation 21. 
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Assume that A is periodic with period T; that is, A(t + T) = A(t) for all t. 
First of all, we find that, if Y(t) is a solution of (21), then so is Y(t + T); 

that is, if there is a shift of the time variable by an amount equal to the 
period of A, a solution of (21) will remain a solution. To see this, note that 
Y(τ) satisfies 

(44) 

Set r = t + T and observe that 

Therefore (44) becomes, 

(45) 

because A is periodic, and so A(t + T) = A(t). Comparison of this 
equation with (21) verifies that Y(t + T) is a solution of the homogeneous 
equation. 

We shall now seek to establish some properties of the solution of (21) 
when A(t) is periodic. In particular, we shall be concerned with the stab
ility of the solution. In what follows we shall assume that conditions 
sufficient to guarantee a unique solution of (21) are satisfied. Then 
Y(t + T) is the unique solution with the value Y(t0 + T) at time t0, and 
Y(t) is the unique solution with the value Y(to) at time t0. Since Y(t) is 
nonsingular for t ≥ t0, Y ( t0 ) - 1 exists. Thus we can define a constant matrix 
M as 

(46) 

and know that M exists. It is easy to verify that Y(t)M is a solution of 
(21) and hence the unique solution having the value Y(t 0)M at time t0. 
Now, after premultiplying (46) by Y( t 0 ) , we see that Y(t 0 + T) = Y(t0)M. 
Therefore, since the solution of (21) with the initial value Y(t0 + T) = 
Y(to)M is unique, the solutions Y(t) and Y(t + T) are linearly related as 

(47) 

This is an important result, and we shall return to it shortly. But we 
shall first show that the matrix M can itself be expressed as a matrix 
exponential in the form 

(48) 
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It is only necessary to show that ln M exists and hence 

(49) 

exists. Observe that M is nonsingular, since both Y ( to) - 1 and Y(t 0 + T) in 
(46) are nonsingular. From d(s) = det (sU — M) we see by setting s = 0 
that the determinant of a matrix is equal in magnitude to the constant 
term in the characteristic equation of the matrix. Then, since the constant 
term is equal in magnitude to the product of the eigenvalues of the matrix, 
we can infer that none of the eigenvalues of the nonsingular matrix M, 
denoted by si, is zero. Let k denote the number of distinct eigenvalues 
of M and let ri denote their multiplicities. Denote the constituent matrices 
of M by K i j , i = 1, ..., k and j = 1, ..., ri. Using the constituent matrix 
expansion of Section 4.4, 

(50) 

where, for j > 1, dj—1 ln s/dsj—1 is equal, of course, to ( — l ) j - 2 ( j — 2 ) ! / 
sj—1. Since none of the eigenvalues is zero, these quantities as well as 
ln si are finite. Thus P exists. 

Observe that the matrix P is not uniquely defined. This is a consequence 
of the multiple-valued nature of ln si. The various values of ln si differ 
by an additive factor of j 2πn . In defining P any one of the values of ln si 

is satisfactory. 
In order to obtain some additional information about the solution, 

let us assume that Y(t) can be written as the product of two functions. 
In particular, let 

(51) 

where P is given by (49) and Q(t) is a matrix to be determined. In fact, 
this expression can be inverted to solve for Q(t). Thus we have 

(52) 

Now we can use the relationship in (47) to find out something about 
Q(t). Substitution of (51) into (47) yields 
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The last step follows from (48). Hence 

(55) 

that is, Q(t) is periodic with the same period T as A. 
It is now an established fact that Y(t) may be expressed as the product 

of a periodic matrix Q(t) and a matrix exponential €

P ( t - t 0 ) . Since Y(t) is 
known to be continuous, Q(t) is continuous and hence bounded* on the 
closed interval t0 to t0 + T. Then, because Q(t) is also periodic, it is 
uniformly bounded for all t ≥ t0. Consequently the behavior of Y(t) as 
t tends to infinity is governed by the behavior of the exponential e P ( t _ t 0 ) . 
After making note of the fact that the eigenvalues of P are known as the 
characteristic exponents of A, we may make the following observations: 

1. If all of the characteristic exponents have negative real part, then 
e P ( t - t 0 ) and hence Y(t) tend to zero as t tends to infinity. 

2. If all the characteristic exponents have nonpositive real part, then 
€ P ( t - t 0 ) and hence Y(t) are bounded as t tends to infinity. 

3. If one or more of the characteristic exponents have positive real 
part, then e P ( t - t 0 ) and hence Y(t) are unbounded as t tends to infinity. 

You should seek to verify these statements. 
Thus the stability of the solution is tied up with the matrix P. This, in 

turn, is related to M by (48) or (49), and M is related to the solution Y by 
(46). However, this sequence of relationships is not helpful. We want to 
know P in order to say something about the behavior of the solution, 
without actually finding Y(t). Unfortunately, there is no general procedure 
by which P may be determined without knowing Y. The value of the theory 
of solutions for periodic A is therefore not as a computational tool but 
as a means of reaching other, more useful, theoretical results. We shall see 
this more clearly shortly. 

To conclude, it should be observed that both e P ( t - t 0 ) . and Q satisfy 
certain differential equations. Thus the exponential e P ( t - t 0 ) satisfies 

(56) 

with X(t 0) = U. As for Q, substituting for Y(t) from (51) into (21) leads to 

(57) 

with Q(t 0) = Y(t0). 

* A vector or matrix is said to be bounded if each of its elements is bounded. A vector 
or matrix is unbounded if one or more of its elements are unbounded. 
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10.3 PROPERTIES OF THE STATE-EQUATION SOLUTION 

We are now ready for a study of the properties of the solution of the 
state equation for a time-varying network. This will be done by compari
son with some "reference" network about whose solution we have some 
knowledge. 

THE GRONWALL LEMMA* 

In this study we shall make strong use of the following result from 
mathematical analysis and will therefore discuss it first: 

Lemma. If 

(58) 

where φ, ψ, and θ are non-negative continuous functions of t for t ≥ t 0 and 
where Y is a positive constant, then 

(59) 

This result is called Gronwall's Lemma; its proof follows. From (58) we see 
that 

(60) 

After multiplying both sides by the non-negative function ψ(t) and adding 

θ(t)/{y + [ψ(τ) ψ(τ) + θ(τ)]dτ} to both sides, it is seen that 

(61) 

Note that ψ(τ) φ(τ) + θ(τ) ≥ 0 and, therefore, that Γ[ψ(τ) φ(r) + θ(τ)]dτ 
≥ 0. Thus θ(t)/{γ +jf [ψ(τ) φ(τ) + θ(τ)]dτ} ≤ θ(t)/γ. Using this inequality 

* This lemma is also known as the Gronwall-Bellman lemma in the literature on 
mathematical analysis. 
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in (61), we get 

Integration of both sides from t0 to t yields 

which is equivalent to 

(62) 

By combining (58) and (62), we get the indicated inequality (59). This 
completes the proof. 

Now we turn to a consideration of the state equation, which is repeated 
here: 

Suppose that the right-hand side is close, in some sense not yet defined, 
to the right-hand side of the homogeneous reference equation 

Suppose also that all solutions of the reference equation either approach 
zero as t tends to infinity or are bounded. It would be useful to be able to 
infer as a consequence that all solutions of the original state equation 
either approach zero or are bounded. The next several theorems state precise 
conditions under which such inferences are valid. The conditions imposed 
by the theorems on the difference between A(t) and A(t) and on B(t) e(t) 
establish the sense in which we view the state equation as being close to 
the reference homogeneous equation. 
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ASYMPTOTIC PROPERTIES RELATIVE TO A TIME-INVARIANT 
REFERENCE 

For networks that are close to being described by a time-invariant 
homogeneous equation, we have the following theorem: 

Theorem 5. If all solutions of 

(63) 

where A is a constant matrix, are bounded as t - > ∞ , then all solutions of 

(64) 

are bounded as t - > ∞ , provided 

(65a) 

(65b) 

The double bars denote the norm of the matrix or vector enclosed. Refer 
to Chapter 1 to refresh your memory on the properties of norms, since 
they will be used extensively in the rest of the chapter. 

This theorem is quite valuable because it is fairly easy to establish 
whether or not all solutions of the reference equation 63 are bounded. 
Recall that e A ( t - t 0 ) y ( t 0 ) for any y(t0) is a solution of (63). It is then an 
immediate consequence of the constituent-matrix expansion of e A ( t - t 0 ) 
that all solutions will be bounded if none of the eigenvalues of A has 
positive real part. 

The proof of Theorem 5 is as follows. Rewrite the state equation as 

Now you may easily show that an equivalent integral equation is 
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where y(t) is the solution of the reference equation 63 with y ( t 0 )= x(to), 
and e A ( t - τ ) is the transition matrix associated with (63). Taking the norm 
on both sides of the integral equation, applying the triangle inequality,* 
and using the inequality for a matrix product brings us to the relation 

Since all solutions of (63) are bounded, ||y(t)|| and | | e A ( t - τ ) | | , with to ≤ T ≤ t, 
must be bounded for t ≥ t0. Let y > 0 and δ > 0, respectively, be the 
corresponding bounds. Then 

This expression is in the form of (58), and so Gronwall's lemma can be 
applied. Associate ||x(t)|| with φ(t), δ ||A(t) — A|| with ψ(t), and δ ||B(t) e(t)|| 
with θ(t). Then, by the lemma, 

The second inequality is obtained by letting t tend to infinity. The right-
hand side of this relation is finite because of the conditions (65) of the 
theorem. Thus ||x(t)|| is bounded, and, by implication, x(t) is bounded as 
t->∞. The theorem is thus proved. 

Observe that this theorem, like the others to follow, does not provide 
a constructive method by which the stability properties of the solution 
can be discovered. Instead, given a time-varying state equation as in (64), 
the theorem tells us that we must first verify that the norm of Be is 
integrable over infinite time. Then we must look for a constant matrix A 

* The term "triangle inequality," heretofore applied to the relation 

llx1 + x2|| ≤ I|x1|I + ||x2II. 

will now also be applied to the integral relation || x(τ) dτ|| ≤ ||x(τ)|| dτ. We have not 

shown this to be a valid inequality; you should do so. It is a natural extension of the 
first inequality, if you think of the integral in terms of its defining sum under a limiting 
process. 



Sec. 10.3] PROPERTIES OF THE STATE-EQUATION SOLUTION 731 

with no eigenvalues in the right half-plane, and finally we must verify 
that the norm of A(t) — A is integrable. Then we can conclude that the 
solution of the original equation will remain bounded as t —>∞. 

The absence of eigenvalues of A in the right half-plane still permits one 
or more on the jω-axis. However, if all eigenvalues of A are in the open 
left half-plane, they will have negative real part. Then all of the solutions 
of the reference homogeneous equation 63 will approach zero. Since 
this is a more restrictive property than boundedness, it might possibly 
serve to relax the conditions (65). The next theorem shows how this is 
accomplished. 

Theorem 6. If all solutions of 

(63) 

where A is a constant matrix, approach zero as t - > ∞ , then all solutions of 

(64) 

are bounded as t - > ∞ , provided 

(66) 

and B(t) e(t) is bounded for t ≥ t 0 . 

That is, if A has no eigenvalues in the right-hand plane and on the jω-axis; 
then the norm of Be need not be integrable over infinite time. It is only 
necessary for Be to be bounded. 

The proof is as follows. We start with the equation 

The solution of this equation when z(t0) = 0 is 
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Taking the norm of both sides of this equation and using the usual norm 
inequalities, we obtain 

By hypothesis, all solutions of (63) approach zero at t-> ∞ ; therefore all 
of the eigenvalues of A have negative real part. Thus positive constants 
α and δ exist such that | | e A ( t _ τ ) || ≤ δ e ~ α ( t _ τ ) . You should verify this 
statement and indicate how an α and δ may be selected. Furthermore, 
B(t) e(t) is bounded for t ≥ to ; therefore its norm is bounded. Let β be a 
bound for ||B(t) e(t)||. Substituting these bounds in the above inequality 
leads to 

This inequality shows that ||z(t)|| and hence z(t) are bounded for t≥t0. 
Now set w = x — z. Differentiation yields dw/dt = dx/dt — dz/dt. Since 

the differential equations for x and z determine dx/dt and dz/dt, we easily 
establish that w satisfies the differential equation 

This equation is similar to the state equation treated in the previous 
theorem (Theorem 5), with [A(t) — A]z(t) replacing B(t) e(t). Thus if 

the conclusion of the previous theorem applies, and w(t) is bounded as 
t->∞. The inequality is obviously true by (1) condition (66), (2) the 
boundedness of ||z(t) || for t ≥ to, and (3) the inequality 

We have now established that z(t) and w(t) are bounded as t->∞. 
Thus x(t) = w(t) +z ( t ) is bounded as t-> ∞ , and the theorem is proved. 
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Things improve even more if there is no external excitation; that is, 
if B(t) e(t) = 0, then the conclusion of the last theorem can be strengthened. 

Theorem 7 . If all solutions of 

where A is a constant matrix, approach zero as t—> ∞, then all solutions of 

approach zero as t - > ∞ , provided ||A(t) — A|| < α/δ for t ≥ t 0 . 

The constants α and δ have the same meanings as those given to them in 
the proof of the last theorem. The proof of this theorem is left to you. 

As an illustration of the second of the previous three theorems, consider 
the filter network shown in Fig. 6. The state equation is easily shown to be 

Fig. 6. Time-varying network. 

If ||A(t) — A || is to be integrable from t0 to ∞ , then we must pick A such 
that lim (A(t) — A) = 0 as t -> ∞ . As a consequence, an examination of 
A(t) reveals that 
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Next the characteristic polynomial of A is determined. The resolvent 
matrix algorithm of Chapter 4 may be used to do this by strictly numerical 
methods. The characteristic polynomial is thus found to be 

Using the Routh criterion discussed in Chapter 9, we find, by strictly 
numerical methods, that all of the zeros of d(s) have negative real part. 
Therefore all solutions of (63) approach zero as t-> ∞. 

Now form A(t) — A: 

then 

We have arbitrarily chosen to use the sum-magnitude vector norm and 
the associated matrix norm in this example. Now, since 

condition (66) of Theorem 6 is satisfied. Finally, 

is bounded. 
Thus all of the conditions of Theorem 6 are satisfied. Hence, by the 

theorem, x(t) = [q2(t) q3(t) q4(t)]' is bounded as t -> ∞ . Observe that we have 
established this fact without explicitly computing the solution to the 
state equation or (63). 

ASYMPTOTIC PROPERTIES RELATIVE TO A PERIODIC REFERENCE 

We now turn our attention to networks that are close to being described 
by a homogeneous equation with periodic coefficients. We shall call this 
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a periodic homogeneous reference equation. The next theorem is on the 
boundedness of the state vector. 

Theorem 8. If all solutions of 

(67) 

where A(t) is periodic, are bounded as t -> ∞ , then all solutions of 

are bounded as t -> ∞ , provided 

(68a) 

(68b) 

The proof of this theorem rests on the fact that any solution of (67) 
may be expressed as Q ( t )e P ( t _ t o ) y ( t 0 ) for some y(to), where Q(t) is non
singular and periodic, and P is a constant matrix. To start, the state 
equation is first rewritten as 

Let y(t) denote the solution of the reference equation 67, with y(t0) = 
x(to); then, using the transition matrix Q ( t )e P ( t — τ ) Q(τ) - 1 - associated with 
(67), the state equation may be put in the equivalent integral equation 
form 

Taking the norm of both sides of this equation and applying the usual 
inequalities associated with norms, we get 

(69) 
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Since all solutions of the reference equation 67 are bounded, ||y(t)|| is 
bounded for t ≥ to, and none of the characteristic exponents associated 
with (67) have positive real part. Thus | | e P ( t - τ ) | | , with to≤T≤t, is 
bounded for t ≥ t0. Since Q(t) is nonsingular and periodic, ||Q(t)|| and 
| |Q(τ) - 1 | | , with to ≤ T ≤ t, are bounded for t ≥ to. Let y and δ denote bounds 
on ||y(t)|| and ||Q(t)|| | | e P ( t - τ ) | | ||Q(τ)— 1||, respectively. Using these bounds 
in (69), it is found that 

This is a form on which Gronwall's lemma can be applied. If we also let 
t tend to infinity, the result becomes 

Then, by the conditions (68) of the theorem, ||x(t)|| is bounded and hence 
x(t) is bounded as t-> ∞ . Thus the theorem is proved. 

Again, the conditions of the theorem can be relaxed if A(t) is further 
restricted. Instead of asking only that the solutions of the periodic 
homogeneous reference equation 67 be asymptotically bounded, we ask 
that they approach zero as t-> ∞ . Then conditions (68) can be relaxed. 
This is stated more precisely in the next theorem. 

Theorem 9. If all solutions of 

where A(t) is periodic, approach zero as t - > ∞ , th.en all solutions of 

are bounded as t - > ∞ , provided 

(70) 

and B(t) e(t) is bounded for t ≥ t 0 . 

A S a key item, the proof, the details of which are left for you, requires 
that all of the characteristic exponents have negative real part. This 
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is implied by the assumption that all solutions of (67) approach zero as 
t -> ∞ . Thus positive constants α and δ exist such that | | e P ( t — τ ) || ≤ δ e — α ( t — T ) . 

Finally, as in the previous sequence of theorems, when there is no 
excitation—B(t) e(t) = 0—the conclusion can be greatly strengthened. 

Theorem 10. If all solutions of 

where A(t) is periodic, approach zero as t-> ∞, then all solutions of 

approach zero as t - > ∞ , provided ||A(t) — A(t)|| < β for t ≥ t 0 , where β is 
positive constant that depends on A(t) and is established during the proof. 

The proof, which is similar to that for Theorem 7, is left for you. 
To illustrate the first of the last sequence of theorems, consider the 

network in Fig. 7. The state equation is 

Fig. 7. Time-varying network with periodic homogeneous reference equation. 

The norm of ||A(t) — A(t)|| will be integrable from t0 to infinity only if 
lim[A(t) — A(t)] = 0. Thus an examination of A(t) reveals that 
t-> ∞ 
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You may verify that the solution of the reference equation 67 is 

It is seen that for all y(t0) the solution is bounded as t—> ∞. 
Next, examine 

and 

For the norm of these expressions we obtain 

and 

Note that the max-magnitude vector norm is a more convenient norm for 
this problem than the sum-magnitude norm, since the sum-magnitude 
norm of B(t) e(t) is a more cumbersome expression. In particular, 

It is clear that conditions (68) are satisfied, since 

and 
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Thus the conditions of Theorem 8 are satisfied and the state vector 
x = [q1 λ 5 λ 6 ] ' is bounded as t->∞. Unlike in the previous example, 
it was necessary to solve the homogeneous equation dy/dt = A(t)y. Thus 
the fact that A(t) is not constant requires more work in the application of 
the theorem than the corresponding case when A(t) is constant. 

ASYMPTOTIC PROPERTIES RELATIVE TO A GENERAL TIME-VARYING 
REFERENCE 

We have now discussed a number of theorems that lay out conditions 
for the solution of a general state equation, (64), to possess asymptotic 
boundedness properties. This has been done with reference to the solution 
of a homogeneous reference equation of the form 

(71) 

Two cases have been considered: (1) A(t), a constant matrix and (2) 
A(t), a periodic matrix. When A(t) is not limited to these cases, but 
assuming a solution of (71) to have the appropriate asymptotic property, 
it may be tempting to suppose that the general solution of the state 
equation will have similar properties if similar conditions are satisfied 
by A(t) and B(t) e(t). Such a supposition would be incorrect. Counter 
examples can be found to demonstrate this; one such counter example 
follows. 

Suppose 

and 

Then set 
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It is easily verified that the solution of the reference homogeneous 
equation 71 is 

It is clear that y = [y1 y2]' is bounded for 2v ≥ 1 and, in fact, approaches 

zero for 2v > 1. Observe that ||A(t) — A(t)||∞ dt =j\e-vt dt = 1/v < ∞ 

and ||B(t) e(t)||∞ dt = 0 < ∞ . We arbitrarily chose to use the max-
magnitude vector norm and the associated matrix norm in this example. 
The solution of the state equation is 

You should verify this statement. Let us turn our attention to the inte
gral in this last expression. Set tn = 2nπ + π/2; then, since e - τ s i n τ is 
positive for 0 ≤ τ ≤ t n . 

The least value of the integrand in the interval 2nπ — 3π/4 to 2nπ — π/4 
occurs at τ = 2 n π — 3 π / 4 and is € ( 2 m r - 3 i r / 4 ) / √ 2 . Therefore 

Since 2nπ — 3π/4 = tn — 5π/4, 

We now know that at t = tn 
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Since sin tn = sin(2nπ + π/2) = 1, this inequality may be written as 

Obviously, as tn tends to infinity, x2(tn) becomes unbounded when 
2v < 1 + 1/√2 and xi(0) ≠ 0. This implies that x = [x1 x2]' becomes 
unbounded as t-> ∞. Thus, for 1 ≤ 2 v < 1 + 1 /√2, all solutions of the 
reference equation 71 are bounded, and some solutions of the state equa
tion are unbounded. 

This example makes it clear that the simple modification we contem
plated making in our previous theorems will not work. It will be of value, 
nevertheless, to determine what additional restrictions are needed to 
still achieve the desired result. The state equation can be rewritten as 

Let y(t) denote the solution of (71), with y(t 0) = x(t 0), and let Y( t)Y(τ) - 1 

be the transition matrix associated with (71). Then the state equation has 
the equivalent integral equation form 

Taking the norm of both sides and applying the norm inequalities as 
previously, we get 

To apply Gronwall's lemma it is imperative that |ly(t)||, ||Y(t)||, and 
||Y(τ)— 1||, with t0≤T≤t, be bounded for t ≥ t0. If all solutions of (71) 
are bounded, ||y(t)|| and ||Y(t)|| are bounded; however, it cannot be inferred 
that | |Y(τ) - 1 | | is bounded. 

Thus we need a condition that insures the boundedness of | |Y(τ) - 1 | | . 
To this end, note that Y ( t ) - 1 = adj [Y(t)]/det [Y(t)] exists for all finite 
t ≥ t0 provided det [Y(t)] ≠ 0 and is bounded if det [Y(t)] is bounded away 
from zero. Now, recall from (41) that 
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Therefore if we add the condition 

then det[Y(t)] is bounded away from zero, and ||Y(t) - 1 | | is bounded for 
t ≥ t0. Equivalently, ||Y(τ)— 1 | | with to ≤ τ ≤ t is bounded for t ≥ t0. 

With this added condition, the proof proceeds as with previous proofs, 
making use of Gronwall's lemma at the end. Having sketched the proof— 
the details are for you to fill in—we state the last theorem in this section. 

Theorem 11. If all solutions of 

are bounded as t -> ∞ , then all solutions of 

are bounded as t -> ∞, provided 

(72a) 

(72b) 

(72c) 

The last two conditions are the same as before. The modification lies 
in condition (72a). This is the price we pay for not limiting A(t) to a 
constant or periodic matrix. Condition (72a) is quite severe; so much so, 
in fact, that a network which is known to have an asymptotically bounded 
state vector by one of the previous theorems may fail to satisfy (72a). 
For example, suppose A(t) is a constant matrix and the conditions of 
Theorem 5 are satisfied. Then, in addition, suppose all solutions of the 
reference homogeneous equation 63 approach zero as t -> ∞—certainly a 
more demanding condition than that of boundedness required by Theorem 
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5 and the above theorem. In this case condition (72a) cannot be fulfilled. 
You should verify this. 

Now let us apply this theorem to an example. Consider the network 
in Fig. 8. All elements are time-varying. The state equation is found to 
be 

Fig. 8. Time-varying network. 

If condition (72b) is to be satisfied, then A(t) must be selected such that 
lim [A(t) — A(t)] = 0; one possible choice is 
t -> ∞ 

Then the reference equation 71 has the solution 

as you may verify. Note that the solution, for all y(t0), is bounded as 
t -> ∞ . Since tr A(t) = — 2 e — 3 t , we find Γ tr A(t) dt = | ( e — 3 t — e — 3 t 0 ) and 
hence condition (72a) is satisfied. 

Now examine the other conditions of (72). For A(t) — A(t) we find 
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and as a consequence 

Thus condition (72b) is satisfied, since 

By this theorem, we may now make the following statement: For all 
excitation voltages e(t) for which condition (72c) is satisfied, the state 
[q2(t) λ5(t)]' of the network of Fig. 8 is bounded as t-> ∞. 

10.4 FORMULATION OF STATE EQUATION FOR NONLINEAR 
NETWORKS 

Although solving linear, time-varying equations is more difficult than 
solving linear, time-invariant ones, nevertheless the basic condition of 
linearity permits the application to time-varying networks of many 
procedures that were originally developed for the time-invariant case. 
This is no longer true for nonlinear networks, to which we now turn our 
attention. We assume at the very outset that the networks may be 
time-varying, as well as nonlinear. For such networks, in fact, it is neces
sary to return to the fundamental laws in order to formulate the appro
priate equations. 

TOPOLOGICAL FORMULATION 

The formulation of the state equations must combine the topological 
relationships expressed by Kirchhoff's equations for a normal tree (or 
forest)—which are valid independent of the state of linearity or time-
variation—with the nonlinear and time-varying expressions that relate 
the variables describing the branch relationships. The steps will parallel 
those in Chapter 4 that were used in the derivation of the state equations 
for linear, time-invariant networks. The topological equations given in 
(113) of Chapter 4 are repeated here for convenience. You should look 
back there for a review of the notation. 

(73a) 
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(73b) 

(73c) 

(73d) 

(73e) 

(73f) 

(73g) 

(73h) 

The details of the formulation will be different depending on the specific 
variables which are selected as components of the state vector. It is possible 
for these to be voltage and current, or charge and flux linkage. We shall 
formulate the branch relationships so as to make linear combinations of 
capacitor charges and linear combinations of inductor flux linkages the 
elements of the state vector. We know that 

(74a) 

(746) 

where the elements of qct and qcl are the charges on the twig capacitors 
and link capacitors, respectively. We shall suppose that the charges are 
nonlinear functions of the capacitor voltages. Thus 

(75a) 

(75b) 

where fC t and f C l are vector-valued functions of v C t and v C l . In addition, 
they may be functions of time. After substituting (74a) and (74b) in (73b) 
and rearranging terms, we obtain 

(76) 
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Next, let us express the linear combination of charges q C t + Q C C q C l in 
terms of the relations in (75). Thus 

(77) 

Substituting v C l from the Kirchhoff equation 73e leads to 

(78) 

We assume that this equation possesses a unique solution for v C t , which 
we write as 

(79) 

where g C t is a vector-valued function of its arguments q C t + Q C C q C l 

and v E . 
Before considering (76) and (79) further, we turn our attention to the 

branch relationships for the inductors. We know that 

(80a) 

(80b) 

where the elements of λ L t and λ L l are the flux linkages through the twig 
inductors and link inductors, respectively. We shall suppose that the 
flux linkages are nonlinear functions of the inductor currents. Thus 

(81a) 

(81b) 

where fL t and f L l are vector valued functions of i L t and i L l . Also they may 
be functions of time. Next we substitute (80a) and (80b) into the topolog
ical expression (73g) and rearrange terms to establish the following: 

(82) 

The linear combination of flux linkages λ L l — Q L L λ L t may be expressed in 
terms of the relations in (81) as follows 

(83) 
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Substituting i L t from the Kirchhoff equation 73d establishes 

( 8 4 ) 

We shall assume this equation possesses a unique solution for i L l in terms 
of λ L l — Q L L λ L t and i J , which we may express as 

( 8 5 ) 

where g L l is a vector-valued function of its arguments. 
Let us now substitute (85) into (76) and (79) into (82). Thus 

( 8 6 a ) 

(86b) 

Were it not for the presence of the resistor branch variables i R l and v R t , 
we would have the desired pair of first-order vector differential equations 
for qCt + Q C C q C l and \ L l — Q L _ λLt. Therefore we turn our attention next 
to the branch relations for the resistors. 

Suppose the relationship between the resistor voltages and resistor 
currents may be expressed by the implicit vector equation 

( 8 7 ) 

This is the counterpart of (125) in Chapter 4. Substituting the Kirchhoff 
equations 73c and 73f into this implicit equation leads to 

( 8 8 ) 

Next , substituting (79) and (85) into this expression, we obtain 

( 8 9 ) 
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This is the counterpart of (126) in Chapter 4. Recall that there we simply 
assumed that certain matrices were nonsingular so that those equations 
could be inverted. Similarly, we assume that (89) may be solved for 
v R t and iRl in terms of qct + Q C c q C l , λ x l — QLL λ L t , v - , and iJ. The 
solution will be expressed as 

(90a) 

(90b) 

Substitution of these two expressions for v R t and i R l into (86) gives the 
desired differential equations 

(91a) 

(91b) 

We take the elements of the state vector to be linear combinations of 
capacitor charges and inductor flux linkages. Thus, 

(92) 

The excitation vector is defined as 

(93) 

as before. Then the two differential equations in (91) may be combined 
and expressed as the one vector differential equation 

(94) 

where h is a vector-valued function of x and e, which is determined by 
the right-hand sides of the differential equations (91) and by the defining 
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relations (92) and (93) for x and e. You should determine the actual 
expression for h. Furthermore, h may also be an explicit function of time; 
when it is necessary to make this fact evident, we shall write (94) as 

(95) 

Since x is a state vector for the network, either of these last two differential 
equations for x will be called the state equation. 

We have shown a method for developing the state equation for a non
linear network in which the branch-variable relationships can be expressed 
in the form specified in (74), (80), and (87) and for which the algebraic 
equations (78), (84), and (89) have solutions as assumed. For any specific 
problem, you should not take the final expression and substitute the 
appropriate numerical values. Rather you should repeat the steps in the 
procedure for the particular problem at hand. The results given are 
general; in a specific case linearity of some components may permit 
simplifications that come to light only when the detailed steps of the 
formulation procedure are followed. 

Let us now apply this formulation procedure to the network shown in 
Fig. 9a. With the usual low-frequency model for the triode, the network 
may be redrawn as in Fig 9b. There is a nonlinear inductor and a non
linear controlled source. A network graph and normal tree are shown in 
Fig. 9c. There are no degeneracies, so the fundamental cut-set matrix is 
easily determined and used to express the Kirchhoff equations as in (73). 
Thus 
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For the branch relations we have, corresponding to (75) , 

In this case the functional relation is linear. Of course, this is easy to 
solve for [v2 v3 v4]' in terms of [q2 q3 q4]'; we get 

as the particular case of (79) . Similarly, corresponding to (81), we have 

from which 
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Fig. 9. Nonlinear, time-varying amplifier circuit. 

(a) 

(b) 

(c) 

Twigs 

Links 

which is the particular case of (85). 
Corresponding to (87) for the resistive branches, we have 
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The Kirchhoff equation that gives [v6 v7 v8 v9 v10]' in terms of the 
tree branch voltages is substituted; the result is 

Upon substituting the previous expression for [v2 v3 v4]', the equation 
becomes 

The solution for [v5] and [i6 i7 i8 ig i10]' is obviously 

These equations are the particular cases of (90). 
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The dynamical relation associated with the capacitors and correspond
ing to (74) is 

The second equality results from using the Kirchhoff equation giving 
[i2 i3 I4] in terms of the link currents. Next, we substitute the previ
ously established expressions for [i6 i7 i8 i9 i10]' and [i11] to obtain 

which is the counterpart of (91a) in this example. 
Now turn to the inductor. The particular case of the dynamical inductor 

relation (80) is 

The second equality reflects the Kirchhoff equation for [v11]. Substitution 
of the previously derived expression for [v2 v3 v4]' yields 

which is the particular case of (91b). 
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After combining these two first-order differential equations, we obtain 
the state equation 

With x = [q2 q3 q4 λ 1 1 ] ' and e = [v1], the right-hand side is the vector-
valued function h(x, e, t) of the state equation 95. It may not be evident 
that this right-hand side is indeed a function of x and e, since only 
dependence on the elements of x and e is evident. Therefore we shall show 
that the second row on the right-hand side, as a typical row, is a function 
of x and e. It is obvious that 

Thus the second row is a function of x and e; equivalently, we have found 
h2(x, e, t), the second element of h(x, e, t). 

OUTPUT EQUATION 

We turn now to the problem of specifying the output variables in terms 
of the state variables, the excitation, and the derivative of the excitation. 
Let us start with the inductors. The branch variables of primary interest 
are the branch fluxes, elements of λ L l and λ L t ; and the branch currents, 
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elements of iLl and i L t . B y (85), iLl is given in terms of λLl — Q'LL λLt 

(part of x) and ij (part of e). Thus 

The Kirchhoff equation 73d, combined with this expression for i L l , 
yields 

Substitution of these two expressions for i L l and i L t into the branch 
equations 

establishes λ x l and λLt as functions of λ z z — Q'LL λLt and iJ. 

The branch variables of secondary interest are the branch voltages, 
elements of v L l and v L t . It is left to you as an exercise to show that 
f L t ( i L t , i L l ) must be identically zero—no inductive twigs—or that 
f L t ( i L t , i L l ) and g L l ( λ L l — Q L L λ L t , i J ) must be differentiable functions in 
order to establish v L l and v L t as functions of x, e, and de/dt. 

Next , consider the capacitors, The variables of primary interest are 
the branch charges, elements of q C t and q C l ; and voltages, elements of 
v C t and V C l . Equation 79 gives v C t as 

Combined with the Kirchhoff equation 73e we find 

Substitution of the above two relations in the branch equations 

yields q C t and q C l as functions of q C t + Q C C q C l and v E . 
The branch variables of secondary interest are the currents, elements 

of i C t and i C l . You may show that i C t and i C l are functions of x, e, and 
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de/dt if f C l ( v C l ) is identically zero—no capacitive links—or if f C l ( v C l ) 
and g C t ( q C t + Q C C q C l , v E ) are differentiable functions. 

Last, consider the resistive components. The elements of v R t , v R l , i R t , 
and i R l are of interest. Equation 90 gives v R t and i R l as 

The other resistive variables are obtained by substituting these relations 
along with the expressions for i L l and v C t in the Kirchhoff equations 73c 
and 73f: 

We have shown the way in which the various network variables may be 
expressed in terms of x, e, and de/dt. Therefore, if w is a vector whose 
elements are a set of response variables for the network, then w may be 
expressed as 

(96) 

or 

(97) 

where, in the latter case, the output is explicitly dependent on time. 

1 0 . 5 SOLUTION OF STATE EQUATION FOR NONLINEAR 
NETWORKS 

Once a state equation has been written for a nonlinear network, the 
next task is to solve this equation. For convenience, in the equation 
dx/dt = h(x, e, t), we shall set h(x, e, t) = f(x, t). This is proper, since, 
when e(t) is given, h[x, e(t), t] is an explicit function of x and t only. Thus 
the vector differential equation that will be the center of attention in this 
section is 

(98) 
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There is no known way by which the solution of an arbitrary nonlinear 
differential equation can be obtained. In fact, closed-form analytic 
solutions are known for only a few, restricted classes of such equations. 
Therefore the effort devoted to the study of such equations is concentrated 
on the conditions for the existence and uniqueness of a solution, properties 
of a solution, and approximation of a solution. We shall give some con
sideration to the first two; the third is outside the scope of this text.* 

EXISTENCE A N D U N I Q U E N E S S 

The search for conditions under which (98) is known to have a solution, 
possibly a unique solution, is a very important task; because, amongst 
other reasons, only if a solution, usually a unique solution, is known to 
exist does it become meaningful to seek an approximate solution. Further
more, the existence or uniqueness, if one exists, is by no means certain. 
We discovered this for time-varying networks through an example in 
Section 10.3. 

As an additional example, in this case only of nonuniqueness, consider 
the network in Fig. 10. You should find it easy to verify that the state 
equation is 

Fig. 10. Nonlinear network with nonunique response. 

Negative 
converter 

Suppose q1(to) = 0. Then it is a simple matter to show that 

is a solution for all α ≥ t0. Therefore this network does not have a unique 
solution when q1(to) = 0. 

* Almost any text on nonlinear analysis will provide considerable information on this 
subject; for example, Nicholas Minorsky, Nonlinear Oscillations, D. Van Nostrand Co., 
Princeton, N.J., 1962. 
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The conditions for a solution to exist for all t ≥ t0, the time interval of 
interest to us, are usually established in two parts. First, given t1 ≥t0, 
conditions are established whereby a solution exists in an interval 
t2 ≥ t ≥ t1, where t2 is determined by properties of the function f(x, t) in 
the interval t2 ≥ t ≥ t1. Then conditions are established by which a 
solution can be extended from one interval of time to the next until the 
solution for all t ≥ to is insured. 

A solution of (98) in the ordinary sense requires that x satisfy the differ
ential equation for all finite t ≥ t0. It is often possible to find a function 
that satisfies (98) for almost all t, although dx/dt fails to exist for some 
discrete values of t. To admit this type of function as a solution, we con
sider the integral equation 

(99) 

associated with (98). We shall call any solution of (99) a solution of (98) 
in the extended sense. You should convince yourself that (99) can possess 
a solution for t ≥ t0 and yet (98) will not have a solution in the ordinary 
sense for t ≥ t0. 

Apropos of existence, we state the following theorem without proof:* 

Theorem 12. Given any t1 ≥ t 0 and x(ti) , the differential equation 98 
possesses at least one continuous solution in the extended sense for t 2 > t ≥ t 1 , 
equal to x(ti) at time t 1 , if f(x, t) is continuous in x for fixed t ≥ t 0 and 
locally integrable in t for t ≥ t 0 and fixed x, and if ||f(x, t) || is bounded in 
any bounded neighborhood of the origin 0 by a locally integrable function of 
t for t ≥ t 0 . 

The conditions of this theorem are more extensive than needed to estab
lish existence of a solution for t2 > t ≥ t1; however, they are appro
priate to the statement of the next theorem on the extension of the solution 
to the entire half-line t ≥ t0. 

Theorem 13. Suppose the conditions of Theorem 12 on existence apply, 
then any solution of (98) in the extended sense, equal to x(t 0 ) at time t 0 , 
may be extended to yield a defined solution for all t ≥ t 0 , if ||f(x, t)||i ≤ 
α(t)φ(||x|| 1), for t ≥ t 0 , where α(t) is non-negative and locally integrable 
and where φ(v) is positive and continuous for v > 0 and satisfies 

(100) 

for some u 0 > 0. 

* See the footnote on page 757. 
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Other extension theorems exist* and may be more useful in a given situa
tion. One of these other theorems, because it is extremely simple, is given 
in the problem set as a theorem to be proved. 

Before continuing, let us indicate under what additional restrictions 
the solution in the extended sense is also a solution in the ordinary sense. 
Applying the definition of a derivative to the integral equation (99) 
yields 

The solution in the extended sense is continuous. Therefore, if f(x, t) is 
continuous in t, as well as being continuous in x, then f[x(τ), T ] will be a 
continuous function of r. Then the first mean-value theorem of integral 
calculus may be used and, as a consequence, the above relation yields 

for t ≤ θ ≤ t + Δt, if Δt > 0, or t + Δt ≤ θ ≤ t, if Δt < 0. Because f [x(θ), θ] 
is a continuous function of θ, the limit, on the right-hand side of the equa
tion, as Δt tends to zero exists and equals f[x(t), t]. Thus 

since lim [x(t + Δt) — x(t)]/Δt = dx/dt. Hence when f(x, t) is continuous 
Δ t->0 

in t, as well as x, the solution of the integral equation is differentiable and 
also satisfies the differential equation. 

Now that we know under what conditions a continuous solution exists 
on the half-line t ≥ t0, it is significant to inquire as to what additional 
restrictions are needed to guarantee a unique solution. This brings us to 
the next theorem.† 

Theorem 14. Suppose the conditions of Theorems 12 and 13 on existence 
apply, then (98) possesses a continuous solution in the extended sense for 
t ≥ t0 which is unique, if ||f(x1, t) — f ( x 2 , t)|| ≤ γ(t) ||x1 — x 2 | | for t ≥ t 0 

and for all xi and x 2 in some neighborhood of every point, where γ(t) is a 
non-negative, locally integrable function. 

The added condition, ||f(x1, t) — f ( x 2 , t)|| ≤ γ(t)||x1 — x 2 | | for t ≥ to and 

* As an initial reference, see G. Sansone and R. Conte, Non-Linear Differential 
Equations, The Macmillan Co., New York, 1964. 

† See the footnote on page 757. 
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all x1 and x 2 , that is needed to insure uniqueness is known as a Lipschitz 
condition. 

Let us pause for a moment and reexamine the example shown in Fig. 
10 in the light of these theorems and side comments. The scalar q1 

establishes the state of the network. For compatibility of notation with 
the theorems, we shall replace q1 by x. Then f(x, t) is the scalar function 
3x 2 / 3 . By the existence theorem, a solution x(t) starting from x = 0 at 
t = 0 exists for t in some positive time interval since 3x 2 / 3 is continuous in 
x and bounded in any bounded neighborhood of the origin; for example, 
if for all x in some neighborhood of the origin | x| ≤ ρ, then |3x 2 / 3 |

 ≤ 3 ρ 2 / 3 < ∞. 
By the extension theorem, a solution can be extended to the entire 
half-line t ≥ t0 if |3x 2 / 3 | ≤ φ(|x|) for some continuous φ(v) with the property 
(100). The condition is satisfied by taking φ(v) = 3v 2 / s . By the uniqueness 
theorem, the solution will be unique if 3x 2 / 3 satisfies a Lipschitz condition; 
that is, if | 3x 1

2 / 3 — 3x 2

2 / 3 | ≤ γ | x 1 — x2| for all x1 and x2 in some neighborhood 
of every point, and for some finite γ. This condition is not satisfied. Take 
x2 = 0; then for any finite γ the inequality is violated by taking |x1| 
sufficiently small. The application of these theorems gives results that 
conform with our prior knowledge of the solution as given in the example. 

It is not necessarily an easy task to verify that the vector function 
f(x, t) satisfies a Lipschitz condition. Therefore it is of value to realize 
that if the partial derivatives dfi(x, t)/dxi exist and are continuous in x 
for almost all t ≥ t0, and are bounded in magnitude in some neighborhood 
of every point by non-negative locally integrable functions of t ≥ t0, then 
the Lipschitz condition is satisfied. The proof of this fact will not be 
given, but is suggested to you as a problem. 

As an illustration of this means of showing that the Lipschitz condition is 
satisfied, consider the network in Fig. 11 for t ≥ — 1 . The state equation is 

Fig. 11. Nonlinear time-varying network. 
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You should show that the conditions of the existence and extension 
theorems are satisfied. Let us then turn our attention to the Lipschitz 
condition. We shall set q2 = x1 and λ 5 = x 2 ; then 

The partial derivatives of fi(x, t) with respect to x j are 

Obviously, the derivatives exist and are continuous in x \ and x 2 for almost 
all t; d f 1 /dx 1 does not exist for t = 0. Further, | d f 1 / d x 1 \ ≤ 3|t| —1/3, 
\df1/dx2\ ≤ 1, |df 2/dx 1 | ≤ 1, and |df 2 /dx 2 | ≤ 5; therefore, for all x and hence 
in some neighborhood of every x, the derivatives are bounded by non-
negative locally integrable functions of t for t ≥ — 1 . Thus the Lipschitz 
condition is satisfied, and, by the uniqueness theorem, the solution will be 
unique. 

It can in fact be shown, as you should verify, that, when the sum-
magnitude vector norm is used; 

The same result would be obtained if the max-magnitude vector norm 
were used. 

PROPERTIES OF THE SOLUTION 

In the case of time-varying networks we discovered various properties 
of the solution by relating the state equation to a reference homogeneous 
equation. A similar approach provides answers in the nonlinear case also. 

Suppose the right-hand side of the nonlinear equation 
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is close, in a sense we shall define in subsequent theorems, to the right-
hand side of 

Then we might anticipate that, if all solutions of the latter equation are 
bounded or approach zero as t-> ∞ , the solutions of the former equation 
will do likewise. It turns out that this inference is true if A(t) is a constant, 
or periodic, matrix. It will be left as a task for you to show that a theorem 
similar to those to be given does not exist when A(t) is an arbitrary time-
varying matrix. 

For networks that are close to being described by a time-invariant, 
homogeneous differential equation (namely, A(t) = A) we shall present a 
sequence of useful theorems. The first theorem describes conditions for a 
bounded response. 

Theorem 15. Suppose all solutions of the reference equation 

(101) 

where A is a constant matrix, are bounded as t tends to infinity. Further, 
suppose f(x, t) = Ax + f(x, t) + g(t). Then all solutions of 

with an initial vector x(t 0 ) such that ||x(t 0)|| ≤ δ , where δ is a constant that 
depends on f(x, t), are bounded as t tends to infinity if 

(102a) 

(102b) 

(102c) 

where γ is a suitably chosen positive constant. 

The proof makes use of Gronwall's lemma. The state equation 
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is equivalent to the integral equation 

where e A ( t - τ ) is the transition matrix associated with (101). Upon taking 
the norm of both sides of this equation and applying the usual norm 
inequalities, it is found that 

Since all solutions of (101) are bounded, a positive constant α exists such 
that | | e A ( t — τ ) | | ≤ α for to ≤ T ≤ t and for all t ≥ t0. Using this bound, that 
of (102a), and ||x(t0)|| ≤ δ, we get 

provided ||x(τ)|| ≤ ζ for t0 ≤ τ ≤ t. Gronwall's lemma may be applied to 
this relation by setting φ(t) = ||x(t)||, ψ(t) = αβ(t), and θ(t) = α||g(t)||. The 
resulting inequality is 

The second inequality, obtained by first letting t approach infinity and 
then invoking (102c), shows that ||x(t)|| is bounded as t tends to infinity, 

because í °°αβ(τ)dτ is bounded by virtue of (102b). It further shows that 

||x(t)|| is uniformly bounded for all t. Hence ||x(t)|| ≤ ζ for t 0 ≤ τ ≤ t 
and all t ≥ t0, as required to satisfy a preceding condition if 

Thus, unlike the case of the time-varying linear networks considered 
previously, the boundedness depends on the initial state; that is, ||x(t0)|| 
must be sufficiently small. Furthermore, the function g(t) is restricted as 
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indicated in (102c). (Note: the conclusion of the theorem becomes valid for 
all initial states only if ζ = +∞. 

As the next theorem shows, the conclusions of the previous theorem can 
be strengthened, if all solutions of (101) approach zero as t tends to infinity. 

Theorem 16. Suppose all solutions of the reference equation 101 in which A 
is a constant matrix, approach zero as t tends to infinity. Furthermore, 
suppose f(x, t) = Ax + B (t)x + f(x, t) + g(t). Then all solutions of the 
nonlinear equation 98 with initial vector x(t 0 ) such that ||x(t 0)|| ≤ δ, where 
δ is a constant that depends on f(x, t) , approach zero as t tends to infinity if 

(103a) 

(103b) 

(103c) 

where β and γ are suitably chosen positive constants. 

The proof of this theorem is somewhat different from previous proofs. 
The integral equation equivalent to (98) is 

Taking the norm of both sides and applying the usual norm inequalities 
yields 

Since all solutions of (101) approach zero as t tends to infinity, positive 
constants α and v exist such that 

Further, by (103c) there exists a positive constant ζ such that 
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Using these bounds and ||x(to)|| ≤ δ, we find 

or, equivalently, 

provided 

Gronwall's lemma is applicable, with φ(t) = ||x(t)||e v t, ψ(t) = α ||B(t)|| + V/2, 
_ 

θ(t) = αe v t||g(τ)||. The result obtained is 

The second inequality follows from the first upon letting t approach 
infinity in the first integral and using (103b) with β = v in the second 
integral. Multiplication by e~vt yields 

Now set Y < v/2; then ||x(t) || is uniformly bounded, by virtue of (103a), and 
less than 

for all t ≥ t0. Hence, to satisfy the condition that ||x(τ)|| < ζ for t0 ≤ T ≤ t 
and all t ≥ t0, it is merely necessary to select δ such that 
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Further, with reference to the bound on ||x(t)||, we see that x(t) must 
approach zero as t tends to infinity since ||x(t)|| is bounded by a decaying 
exponential. 

Other theorems are possible. The two we have given establish the type 
of conditions that are usually needed to get a proof. You will find it to be 
a relatively easy task to vary these conditions and still get a valid proof. 
For example, in the last theorem, condition (103c) can be replaced by 
||f(x, t)|| ≤ μ||x|| for ||x|| ≤ ζ and μ sufficiently small. This variation is 
significant because it permits a small linear term to be part of f(x, t). 

In the two theorems given, if we replaced A by A(t), where A(t) is 
periodic, we would still have true theorems. The proofs vary only slightly 
from those given. You should determine what changes are needed. 

As an illustration of the second theorem, consider the network in 
Fig. 12 for t ≥ 0. With q2 = x1 and λ 5 = x2, the state equation is 

Fig. 12. Nonlinear time-varying network with no excitation. 

First of all, we shall express this equation in the form to which the theorem 
applies. Thus 

The characteristic polynomial of A is d(s) = s2 + 5s + 1. The eigenvalues 
are clearly negative real. (If the characteristic equation had been of 
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higher degree, then the Routh criterion or one of the other similar criteria 
could have been used to show whether or not all the roots had negative 
real part.) Thus all the solutions of (101) approach zero as t—>∞. By 
using the sum-magnitude vector norm, we get 

and 

Thus condition (103a) is satisfied. Condition (103b) is met since g(t) = 0. 
Now let us consider 

Now 

The inequality follows from the fact that |x2| ≤ |x1| + |x2|. Now, as 
||x||1 and hence |x2| approach zero, 4 | x 2 — t a n h x 2 | / | x 2 | and hence 
||f(x, t)|| 1/||x|| 1 approach zero. This follows from the fact that 

Thus condition (103c) is satisfied. 
All the conditions of the theorem are satisfied; therefore, by Theorem 

16, all solutions approach zero as t->∞ for ||x(0)||1 ≤ δ . The value of δ 
is not known, but we know that it does exist. You should take it upon 
yourself to find a value of δ. 
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The assignment of the terms of f(x, t) to Ax and to f(x, t) is not unique. 
In fact, any linear term can be assigned to Ax if its negative is assigned 
to f. This flexibility can be utilized to help satisfy the condition (103c). 
This is indeed the reason for expressing the term —x 2 in the example as 
—5x 2 + 4x 2 . 

10.6 NUMERICAL SOLUTION 

The several situations in which numerical solution of the state equation 
is called for are (1) when the exact analytic solution cannot be determined, 
(2) when an approximate analytic solution of sufficient accuracy can be 
determined only by an inordinate amount of work, and (3) when a family 
of solutions for only a limited number of parameter value variations 
is sought. In this section we shall turn our attention to the numerical 
solution of the state equation as expressed in the form 

(104) 

We shall develop some of the elementary methods of numerical solution of 
(104) and state without proof one sophisticated method. 

N E W T O N ' S B A C K W A R D - D I F F E R E N C E F O R M U L A 

Several methods of numerical solution of the state equation become 
easy to establish if one starts from an expression for the value of a function 
at some point in time in terms of its values at previous points. We shall 
therefore treat this subject first. 

To provide a basis in familiar terms for the formula to be discussed, 
consider the vector function y(t) expressed as a truncated power series 
with a remainder; that is 

where y ( k ) ( t i ) = dÄ:y(t)/dtk|t=ti. Often y(t) can be approximated by the 
polynomial obtained when r(t) is neglected. Of course, if y(t) is a poly-
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nomial of degree no greater than j , then there is no error in such an approx
imation. The major fault with using (105) is that it requires knowledge 
of the derivatives of y(t), and such knowledge may not be available. 

To avoid the problem of evaluating derivatives of y(t), we shall search 
for an alternative, but equivalent, representation of y(t). Let ti—1, ti—2, 
..., ti-j be a set of j distinct values of time. If we substitute each of 

these values into (105), we obtain j equations with the derivatives as 
unknowns. These may be solved for y ( k ) ( t i ) in terms of y(t i), y ( t i — k ) , and 
the remainder r ( t i — k ) , where k = 1, ..., j . If these solutions for the y ( k ) ( t i ) 
are substituted into (105), the resulting expression for y(t) may be put 
into the following form: 

(106) 

where r(t) is a remainder that is, of course, different from r(t); the ak(t) 
are polynomials in t of degree no greater than j . By neglecting r(t), a 
polynomial that approximates y(t) is obtained. 

The coefficients ak(t) are not as easy to evaluate as might be desired. 
However, if the terms in (106) are rearranged to express y(t) in terms of 
sums of and differences between, the various y ( t i — k ) , the new coefficients are 
easy to evaluate. This will become evident as the representation evolves. 

Let us first define a set of functions, which are sums and differences of 
the values of y(t) at different points in time, as follows: 

(107a) 

(107b) 

(107c) 

Each function, after the first one, is the difference between the preceding 
function at two successive instants in time, divided by a time difference. 
Thus these functions are known as divided differences. You should note 
that, since the first divided difference is just y(t i) by definition, all succes
sive divided differences are sums and differences of y(t) at various points 
in time, divided by time intervals. 

Our next task is to express y(t) in terms of sums and differences of its 
values at ti, ti—1, ...; that is, in terms of the divided differences. We shall 
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first express y(t) in terms of δ[t i, t]. Then, by expressing δ[t i, t] in terms 
of δ [ t i — i , ti] and δ [ t i — 1 , ti, t], we shall establish y(t) in terms of δ [ t i — i , ti] 
and δ [ t i — i , ti, t]. This substitution process will be continued to get y(t) 
in terms of the divided differences of all orders. 

Let us start with the divided differences δ[t i, t]. By (107b) we know that 

B y substituting (107a), we get 

(108a) 

Next, consider the divided difference δ [ t i — 1 , ti, t]. By (107c) we obtain 
an expression for δ [ t i — 1 , ti, t] which, when terms are rearranged, may be 
written as 

B y substituting in (108a), we obtain 

(108b) 

From (107c) we know that 

B y repeated use of this relation, (108b) becomes 

(108c) 

where 

(109) 

is viewed as the error in approximating y(t) by the polynomial 

(110) 
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Based on previous comments relevant to (106), we know that e(t) = 0 if 
y(t) is a polynomial of degree no greater than j . By examining (109) you 
will also observe that e(t) = 0 for t = ti, ti—1, ..., ti—j whether or not y(t) 
is a polynomial. 

Since divided differences are not as easy to calculate as simple differ
ences, we shall now reformulate (110) in terms of the simple differences 
taken backwards, as follows. 

(111a) 

(1116) 

(111c) 

These are defined as the backward differences. Let us assume in all that 
follows that differences between adjacent values of time are equal; that is, 
tk — tk-1 = h for k = i — j + 1, ..., i. Then, starting with (111a), we obtain 

Similarly, starting with (111b), we get 

The second line follows from the first by using the previously derived 
expression for Vy(t i), and the third line follows from the second by using 
(107c). Continuing in this manner, it is found that 

(112a) 

(112b) 

(112c) 
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or, equivalently, 

(113) 

If this relationship between the divided differences and backward 
differences is now inserted into (108c), we get 

(114) 

Similarly, the approximating polynomial of (110), obtained by neglecting 
e(t), is 

(115) 

Equation 114 is Newton's backward-difference formula; (115) is that formula 
truncated after j + 1 terms. 

OPEN FORMULAS 

Using Newton's backward difference formula, we shall construct some 
quite general formulas for the solution of the state equation at time t i + 1 

in terms of the backward differences of its derivatives at preceding points 
in time. These formulas, known as open formulas, are the basis for many 
of the specific numerical methods to be presented subsequently. 

Denoting d/dt by a dot and setting y(t) = x(t), we get from Newton's 
backward-difference formula (115), truncated after j + 1 terms, 

(116) 

If x(t) is integrated from ti to t i + 1 = ti + h, the result is x ( t i + 1 ) — x(t i); 
equivalently, 

(117) 
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By substituting (116) into (117), we get 

(118) 

where b0 = 1, and, for k > 0, 

(119) 

The second integral in (119) is obtained from the first by the change of 
variable T = (t — ti)/h and the fact that ti—l = ti — lh. Upon evaluating this 
integral for several values of k and substituting the result into (118), 
we find that 

(120) 

We have, in a sense, achieved the goal. If we know x(t 0), x(t1), ..., 
and x(tj), then we can use the state equation to determine x(to), x(t i) , 
..., and x(tj). The backward differences V x(tj), V 2 x(tj), ..., and V j x(t;) are 
computed next, and (118) is used to evaluate x ( t j + 1 ) . The steps are then 
repeated to evaluate x(t j+2) starting with x( t 1 ) , x(t2), ..., and x(tj+i). 
Continuing in this way, the value of x(t) at t = t j + 1 , t j + 2 , ... is established. 
We shall give this subject greater attention later. 

Equation 118 states the dependency of χ ( t i + 1 ) on the immediately 
preceding value of x (namely, x( t 1 )) and on x(t i), Vx(t i), ..., and V jx(t i). We 
can just as easily establish the dependency of x ( t i + 1 ) on x(t i — l) for l ≤ O 
and on x(t i), Vx(t i), ..., and V j x(t i). This is accomplished by integrating 
x(t) from t i - l = ti — lh to t i + 1 = ti + h. The integral relation obtained 
thereby is 

(121) 

Upon substituting (116), we obtain 

(122) 
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where b0(l) = l + 1 and, for k > 0, 

(123) 

For subsequent use, values of the coefficients bk(l) that appear in the very 
general relation (122), are given in Table 1. 

Table 1. Values of bk(ì) 

Nothing has been said about the error arising from using the truncated 
version of Newton's backward-difference formula. A good treatment of 
truncation errors is to be found in most texts on numerical analysis.* 
However, it should be noted that the error in (122) is proportional to 
hj+2. Thus, in an intuitive sense, if h is sufficiently small and j is sufficiently 
large, the error should be quite small. 

CLOSED FORMULAS 

The relations obtained from (122) for the various values of l are known 
as open formulas because x(t i+ 1) depends not on x at t i + 1 but only on x at 
previous points in time. On the other hand, the closed formulas to be 
derived next exhibit a dependency relationship between x(t i+ 1) and x at 
t i + 1 as well as preceding points in time. 

Set y(t) = x(t) and then replace ti by t i + 1 in Newton's backward-

* See, for example, R. W. Hamming, Numerical Methods for Scientists and Engineers, 
McGraw-HiU Book Co., New York, 1962. 
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difference formula, truncated after j + 1 terms. The resulting equation is 

( 1 2 4 ) 

The integration of x(t) between ti_l = ti — lh and t i + 1 = ti + h leads to 
the relation 

( 1 2 5 ) 

Upon substituting (124), it is found that 

( 1 2 6 ) 

where c0(l) = l + 1 and, for k > 0, 

( 1 2 7 ) 

Values of ck(l), for the completely general closed formula (126), have been 
computed and are given in Table 2. 

Table 2. Values of ck(l) 
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As in the case of the open formulas, the error in (126) due to truncating 
Newton's backward difference formula for x(t) is proportional to hj+2. 

At first glance it might appear as though closed formulas are of little 
value, since the state equation cannot be used to compute x(t i+ 1) until 
-(ti+1) is known, and (126) cannot be used to determine x(t i+ 1) until 
—(ti+1) is known. However, the closed formulas are useful in numerical 
solution of the state equation by what are known as predictor-corrector 
methods, which we shall examine shortly. 

EULER'S METHOD 

Consider, simultaneously, the open formula (118) with j = 0 and the 
state equation evaluated at ti. Thus 

(128a) 

(128b) 

The value of x at t = ti inserted into the right-hand side of the second 
equation gives the value of the derivative x(t i). When this is inserted into 
the right-hand side of the first equation, the result is the value of x at 
t i + 1 . Alternate use of these two expressions leads to the values of x at 
ti + kh for all values of k. This numerical procedure is called Fuler's 
method. 

We shall not devote much more attention to this elementary method 
because the error is significantly larger than that associated with other 
methods. There is the further undesirable feature that the error may grow 
significantly as time progresses. This is best illustrated by example. 
Consider the scalar equation 

with x(0) = 1. The exact solution e t is concave upwards, as shown in Fig. 
13. In Euler's method the value of x(h) is computed by using x(0) and the 
slope of the solution passing through the point [x(0), 0] . As illustrated in 
Fig. 13. x(h) is less than the exact solution value. You will find it easy to 
convince yourself that the numerical solution, as it is computed for sub
sequent points in time, will depart by ever increasing amounts from the 
exact solution—a most undesirable situation. This is illustrated in Fig. 13, 
with h = 0.5, which is an unusually large value, so as to make this phe
nomenon more clearly evident. 
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Fig. 13. Numerical solution of dx/dt = x by the Euler method, with h = 0.5. 

Exact solution 

Numer ical solution 

THE MODIFIED EULER METHOD 

A modification of Euler's method is designed to overcome one of its 
shortcomings by making x(t i+ 1) dependent on x at both ti and t i + 1 rather 
than at ti alone. 

We start with the closed formula (126), with j = 1 and 1=1; this gives 

(129) 

which, if V x ( t i +i) = x(t i+ 1) — x(ti) is substituted, becomes 

(130) 

Thus, if (129) is used, x(t i+ 1) is determined by x(t i) and the average of x 
at ti and t i + 1 . At first glance it might appear that this relation is useless, 
since x ( t i + 1 ) can be determined from the state equation only when x ( t i + 1 ) , 
which is the quantity being evaluated, is known. This difficulty is over
come in the following manner: Starting with x(t i), Euler's method is used 
to predict the value of x ( t i + 1 ) . With this predicted value of x ( t i + 1 ) , equation 
129, together with the state equation, is used to compute a corrected 
value of x ( t i + 1 ) . This last step is then repeated until successive corrected 
values of x ( t i + 1 ) are equivalent, to the desired numerical accuracy; for 
example, equivalent to four significant decimal digits. 
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This is the modified Euler method; as the words used were meant to 
imply, it is a predictor-corrector method. It is just one method, perhaps the 
most elementary one, from a large class of such predictor-corrector 
methods, some others of which will be considered. 

To illustrate the calculations required in the modified Euler method, 
suppose that 

is the state equation and x(0) = [1.000 —2.000]'. We shall arbitrarily 
set h = 0.1. Now, x(0) and the state equation together yield x(0) = 
[—1 3]' . Equation 128a in the Euler method gives 

as the predicted value of x(h). The state equation then gives the corres
ponding value of x(h) as x(h) = [—0.729 2.600]'. When (130) of the modi
fied Euler method is used, the first corrected value of x(h) becomes 
[0.914 —1.740]'. The state equation now gives a new value of x(h), 
and (130) yields the second corrected value of x(h). These are 

Repetition of this step yields a new x(h) and a third corrected value of 
x(h); they are 

Assuming that three-digit accuracy is adequate, the calculation of x(h) is 
terminated, since the last two calculated values of x(h) are equivalent to 
that accuracy. The evaluation of x(2h), x(3h), ... is carried out in the same 
manner, with the next calculations beginning from the value of x(h) just 
established. 

THE ADAMS METHOD 

The open formula (118) for some j , such as the particular case of 
j = 3 given here, 

(131) 
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forms the basis for the Adams method. The state equation is used, of course, 
to evaluate x(t i) from x( t i ) . 

Like other methods that use the open and closed formulas with j > 1, 
the Adam's method is not self-starting; that is, it is not sufficient to know 
just the state equation and x( t 0 ); the values of x ( t 1 ) , ..., and x(tj) must also 
be known, Only with this added information can the first complete set of 
backward differences be calculated, at time tj, and (118) used to evaluate 
x ( t j + 1 ) . 

The additional values of x needed to start the Adams method can be 
generated by some other method. Alternatively, a truncated Taylor 
series expansion at t0 for x(t) may be used to evaluate x ( t 1 ) , ..., and x(tj). 
To keep the errors in the Adams method and the series evaluation of the 
starting values equivalent, the Taylor series should be truncated after 
j + 2 terms; that is, the following truncated series should be used: 

(132) 

This series method clearly requires that f ( x , t) be sufficiently differentiable 
( j times in x and t) at t0 ; only then can x ( k ) ( t o ) be evaluated; for example, 
x(t0) = fx[—(t0), to]—(t0) + f t [ x ( t 0 ) , t0] = f x[x(t0), t0]f[χ(t0), t0] + f t [ x ( t 0 ) , t0]. 

To illustrate the Adams method, let us consider the very simple state 
equation 

with x(0) = 0. Set h = 0.1 and take j = 3. Thus (131) will be the particular 
case of (118) used here. 

The starting values will be obtained using a truncated Taylor series. 
First, 

Hence, the truncated series (132) is, in this case, 
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By using this series, x(h), x(2h), and x(3h) are evaluated; thus x(h) = 0.0905, 
x(2h) = 0.1637, x(3h) = 0.2222. With these values (131) can be used to 
compute subsequent values of x(ih). These values along with those of the 
several backward differences are shown in Table 3 for values of i up to 10. 
For comparison, the exact values, (ih)e-(ih), of x at t = ih are also tabulated. 

Table 3 

i 
Exact 
x(ih) 

Numerical 
x(ih) x(ih) V x(ih) V 2 x(ih) V 3 x(ih) 

0 0.0000 0.0000 1.0000 

1 0.0905 0.0905 0.8143 -0 .1857 

2 0.1637 0.1637 0.6550 -0 .1593 0.0264 

3 0.2222 0.2222 0.5186 -0 .1364 0.0229 -0 .0035 

4 0.2681 0.2681 0.4022 -0 .1164 0.0200 -0 .0029 

5 0.3032 0.3032 0.3033 -0 .0989 0.0175 -0 .0025 

6 0.3293 0.3292 0.2196 -0 .0837 0.0152 -0 .0023 

7 0.3476 0.3475 0.1491 -0 .0705 0.0132 -0 .0020 

8 0.3595 0.3594 0.0899 -0 .0592 0.0113 -0 .0019 

9 0.3659 0.3658 0.0408 -0 .0491 0.0101 -0 .0012 

10 0.3679 0.3678 

MODIFIED ADAMS METHOD 

A modification of the Adams method can be made, similar to the modifi
cation of the Euler method. The Adams method is used to predict a value 
for x ( t i + 1 ) . The closed formula (126) for some j and l = 0 is used repetitively 
until, to the desired numerical accuracy, successive corrected values of 
x ( t i + 1 ) are equivalent. As a typical case, (131) [i.e., (118) with j = 3] is 
used to predict the value of x ( t i + 1 ) ; then 

(133) 

which is (126) with j = 3 and I = 0, is used to compute corrected values of 
x ( t i + 1 ) . This method is called the modified Adams method; like the modified 
Euler method, it is a predictor-corrector method. 
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MILNE METHOD 

The Milne method is another predictor-corrector method; in particular 
it is a method that makes good use of zeros that appear in Tables 1 and 2. 
Equation 122 with j = 3 and l = 3 is used to predict the value of x ( t i + 1 ) . 
Because b3(3) = 0, the term V 3 x(t i) need never be included in the equation. 
Thus 

(134) 

Note that only two backward differences are computed, as when truncat
ing the open formula (122) at j = 2. However, the accuracy is the same as 
that achieved when truncating the open formula at j = 3 . The closed 
formula (126) with j = 3 and l = 1 is used to compute the corrected values 
of x ( t i + 1 ) . Since c3(l) = 0, only two, rather than three, backward differen
ces must be computed. Thus the equation may be written without the 
V 3 x(t i+ 1) term as 

(135) 

A second Milne method uses the open formula (122) with j = 5 and 
l = 5 to predict x ( t i + 1 ) , and the closed formula (126) with j = 5 and l = 3 
to correct x ( t i + 1 ) . The fact that b5(5) and c5(3) are zero reduces the comput
ing effort to that expended when (122) and (126) are truncated at j = 4. 

PREDICTOR-CORRECTOR METHODS 

Several of the methods we have examined are predictor-corrector 
methods. They belong to a large class of such methods that use the open 
formula (122), for some j and l, to predict x(t i + 1 ); and the closed formula 
(126), for some j and l, to correct x ( t i + 1 ) . The indices j and l may be differ
ent in the two equations. As a matter of convention, (122) is called a 
predictor and (126) is called a corrector. 

To illustrate how these equations provide a particular method, let us 
see how the modified Euler method can be improved without adding to 
the amount of computing involved. The corrector 

is (126) with j = 1 and l = 0. The predictor 
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is (122) with j = 0 and l = 0. Thus the predictor is not as accurate as the 
corrector. This means that the corrector, most likely, will have to be used 
more times to arrive at successive values of x(t i+ 1) that are equivalent, 
than would be necessary if the predictor and corrector had the same 
accuracy. If you examine Table 1, you will find that bi(l) = 0. Thus (122) 
with j = 1 and l=1 yields a predictor 

with the same accuracy as the corrector; and the amount of computing 
needed to predict x(t i+ 1) is the same as with the original predictor. 

You should make particular note of the fact that most of the predictor-
corrector methods based on (122) and (126) are not self-starting. The 
exceptions are (122) with j = 0 and l=0 and (126) with j = 0 or 1 and 
l=0. 

RUNGE-KUTTA METHOD 

The fourth-order Runge-Kutta method is widely known and used for 
obtaining a numerical solution of the state equation. It is self-starting— 
a distinct advantage—and quite accurate. 

The fourth-order Runge-Kutta method is expressed by the equation 

(136) 

where 

The validation of this equation will not be attempted, as it is quite long 
and provides no useful information for development of other methods. It 
is known that the error term is proportional to h5. Thus, if h is sufficiently 
small, we may well expect the error to be negligible. 
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Observe that no corrector is employed in the method. Compared with 
other methods that have similar accuracy and no corrector, more comput
ational effort is required. For each time increment x must be evaluated 
four times compared with only one evaluation in the other methods. 
Furthermore, in a predictor-corrector method employing a sufficiently 
small step size h, x will seldom be evaluated more than twice. Thus, the 
Runge-Kutta method also compares poorly with a predictor-corrector 
method. 

Let us observe, however, that the advantages and disadvantages of the 
Runge-Kutta method and the predictor-corrector methods complement 
each other. The Runge-Kutta method is self-starting and the predictor-
corrector methods require less computation. Thus the Runge-Kutta 
method is best used to start one of the predictor-corrector methods. 

ERRORS 

We have said very little about errors in the numerical solution of the 
state equation except to point out the dependence on h of the error due to 
truncation of Newton's backward-difference formula. There are other 
errors, and you should be aware of how they occur. 

There are errors that occur because arithmetic is done with numbers 
having a limited number of significant digits. This type of error is known 
as roundoff error, since the word "roundoff" denotes eliminating insigni
ficant digits and retaining significant digits. 

The truncation and roundoff errors occurring at each step in the calcula
tion affect not only the error of the numerical solution at that step but also 
the error at subsequent steps; that is, the error propagates. 

Another source of error is properly viewed as a dynamic error and occurs 
in the following manner. The equations used to obtain a numerical 
solution of the state equation may exhibit more dynamically independent 
modes than the state equation. If any of the additional modes are unstable 
then the numerical solution may depart radically from the actual solution. 

We shall not consider errors any further but refer you to books on 
numerical analysis. (See Bibliography.) 

1 0 . 7 LIAPUNOV STABILITY 

In the case of linear networks, for which general analytic solutions of the 
state equation exist and can be determined, it is possible to examine the 
solution and study its properties. In particular, it is possible to make 
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observations about the stability properties of the solution—whether it 
remains bounded or even approaches zero as t -> ∞. For nonlinear net
works general analytic solutions do not exist, and so quantitative obser
vations cannot be made about the solution. It is important therefore to 
have some idea of the qualitative behavior of a solution of the state 
equation, in particular its behavior as t -> ∞ , which describes the degree 
of stability or instability of the solution. 

STABILITY DEFINITIONS 

The nonlinear state equation is repeated here: 

(137) 

It is observed that at those points at which f(x, t) = 0 for all t ≥ t0, the 
time rate of change of x is identically zero. This implies of course that if 
the state starts at or reaches one of these points, it will remain there. 
Clearly these points are distinctive; they are therefore, given the special 
name of singular points. 

The subject of stability is concerned with the behavior of the state 
equation solution relative to a singular point. It is a matter of convenience 
in definitions and theorems to make the singular point in question the 
origin. To see that this is always possible, let x 5 be a singular point. Next, 
set y(t) = x(t) — x s . Then x(t) = xs corresponds to y(t) = 0. The equivalent 
identification x(t) = y(t) + xs substituted in the state equation 137 gives 

(138) 

Since y and x differ only by the constant vector x s , either determines the 
state of the network. If we view y as the state vector, then (138) is the 
state equation and the origin is a singular point. Thus, without loss of 
generality, we shall assume that (137) establishes the origin as a singular 
point. 

In what follows we shall be using norms without reference to a particu
lar norm; however, the illustrations will pertain to the Euclidean norm. 
We shall let Sp denote the spherical region ||x|| < ρ in vector space and 
Bρ denote the boundary of the spherical region Sp. Thus Bρ is the sphere 

H = ρ. 

It is assumed that a unique, continuous solution of the state equation 
exists in the spherical region SE. The locus of points x(t) in vector space 
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for t ≥ t0 is called a positive half-trajectory or, for brevity, trajectory and 
is denoted by x+. 

Each of the following three definitions is illustrated in Fig. 14 to give a 
visual as well as a verbal interpretation of stability. 

Fig. 14. Illustrations of stability definitions: (a) Stable origin: (6) asymptotically 
stable origin; (c) unstable origin. 

(a) (b) 

(c) 

Definition. The origin is stable, if for each R < E there is an Γ ≤ R such 
that any trajectory x + originating in Sr remains in S R . [The point at which 
the trajectory originates is x(t0).] 

The asymptotic behavior of the solution as t -> ∞ is determined by the 
set of points that the trajectory approaches at t -> ∞ . If the trajectory 
tends to the origin, the particular type of stability is given a name. 
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More precisely, 

Definition. The origin is asymptotically stable if it is stable and if for any 
e > 0 there exists a te such that the trajectory remains in Se for t > t e . 

This definition states in a precise way that x(t) approaches zero as t tends 
to infinity, by requiring the existence of a value of time after which the 
norm of the solution remains less than any abritrarily small number. 
Observe that both stability and asymptotic stability are local, or in-the-
small, properties, in that their definitions permit r > 0 to be as small as 
necessary to satisfy the defintion. On the other hand, if, when R = +∞, 
the origin is asymptotically stable for r = + ∞ , then the origin is said to 
be asymptotically stable in-the-large, or globally asymptotically stable. In 
other words, x(t) approaches zero as t tends to infinity for all x(t 0). 

Since not all networks are stable, the concept of instability must be 
made precise; this is done by the next definition. 

Definition. The origin is unstable, if for some R < E and any r ≤ R there 
exists at least one trajectory originating in S r that crosses B R . 

The conditions under which the origin is stable or asymptotically 
stable are stated in terms of the existence of certain classes of functions. 
We shall now define these functions. 

Definition. The scalar function V(x) is said to be positive definite, if 
(1) V(x) and its first partial derivatives are continuous in an open region* 
D containing the origin, (2) V(0) = 0, and (3) V(x) > 0 for x ≠ 0 in D. 

Because the scalar function V may sometimes be an explicit function of t 
as well as of x, the notion of positive definiteness must be extended to 
such cases. 

Definition. The scalar function V(x, t) is said to be positive definite, if 
(1) V(x, t) and its first partial derivatives are continuous for t ≥ t0 and in an 
open region D containing the origin, (2) V(0, t) = 0 for t ≥ t0 , and (3) 
V(x, t) ≥ W(x) for t ≥ t0 , where W(x) is a positive definite function of x 
alone. 

The continuity of the first partial derivatives guarantees the existence 
of VV(x, t), the gradient of V(x, t). Therefore we may write 

(139) 

* A region is said to be open if it contains none of its boundary points. 
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The last form follows since dx/dt = f(x, t) along a trajectory of the network. 
Thus it is meaningful to talk about the time rate of change of V along a 
trajectory of the network. A very important class of functions is defined 
on the basis of the sign of this rate of change. 

Definition. A positive definite function V(x, t) is called a Liapunov 
function if—dV/dt ≥ 0 along trajectories in D, 

On the basis of these definitions we can now discuss the question of 
stability and the conditions under which a singular point is stable. 

STABILITY THEOREMS 

In order to make the theorems relating to stability more meaningful 
we shall observe the behavior of a particularly simple Liapunov function 
V(x), which is time invariant and involves a state vector with only two 
elements, x1 and x2. 

Since V(χ) > 0 for x ≠ 0 and V(x) = 0 for x = 0, v= V(x) may be 
depicted as a bowl-shaped surface tangent to the x1 — x2 plane at the 
origin, as shown in Fig. 15. The intersection of this surface with the hori
zontal planes v = Ci, where C1 < C2 < ..., will be closed curves. If these 

Fig. 15. Liapunov function. 

curves are projected vertically into the x1 — x2 plane, they will form a set of 
concentric constant-V contours with the value of V decreasing toward 
zero as the contours are crossed in approaching the origin. This is illustra
ted in Fig. 15. Since V is a Liapunov function, V must be nonincreasing 
along a trajectory. Hence a trajectory originating inside the contour 
V(x) = Ci can never cross that contour. The trajectory is thus constrained 
to a neighborhood of the origin. This is very nearly the condition laid 
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down for stability. Therefore, we may properly anticipate that stability 
follows from the existence of a time-invariant Liapunov function. 
Although this illustration used a two-element state vector, it is not difficult 
to imagine the generalization to a state vector with n elements. 

The theorems to be given next will make these notions more precise 
and will permit the Liapunov function to vary with time. 

Theorem 17. The origin is stable if in an open region D containing the origin 
there exists a Liapunov function such that V(x, t) ≤ U(x) for all t ≥ t 0 

where U(x) is a positive definite function. 

This theorem is proved as follows. Given a number R, let C be the mini
mum value* of W(x) for all x such that ||x|| = R. Let x r be a vector x 
having the least norm for which U(x) = C. This vector exists and is not the 
zero vector, since U(x) = 0 if and only if x = 0. Further, because I7(x) 
≥ W(x) for all t ≥ t0, ||xr|| ≤ R. Let r = ||xr||. Then any trajectory origin
ating in Sr does not leave SR. This is verified as follows: By continuity, 
if x(to) is contained in Sr, then x(t) must be contained in SR for small 
values of t—t0. Suppose, at t1, that ||x(t1)|| = R. Then 

(140) 

Because x r was a vector x of least norm for which U(x) = C and because 
V(x, t) ≤ U(x) for all t ≥ t0, V(x, t0) < C for all x such that ||x|| < ||x r|| = r. 
Thus for all x(t 0) in Sr, 

(141) 

Next, because — dV/dt ≥ 0, 

(142) 

Clearly, (140) is in contradiction with (141) and (142). Thus t1 does not 
exist and x + is contained in SR. 

This proof can be given the following geometrical interpretation when 
x is a 2-vector, as illustrated in Fig. 16. The relation W(x) = C defines a 
closed contour K1 contained in SR plus its boundary BR. The relation 
U(x) = C defines a closed contour K2 contained in the closed region† 

* Recall from the definition for a time-varying positive definite function V(x, t) 
that W(x) is a time-invariant positive definite function such that V(x, t) > W(x) for all 

t ≥ t 0 . 

† A region is said to be closed if it includes all the points of its boundary. 
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Fig. 16. Liapunov-function contour Ks(t) for stable origin. 

bounded by K1. The spherical region Sr is the largest in the open region 
bounded by K2. Since W(x) ≤ V(x, t) ≤ U(x) for all t ≥ t0, V(x, t) = C 
defines a closed contour K3(t) contained in the annular region bounded 
between K1 and K2, Now, since V[x(t0), t0] <C for all x(t0) in Sr and 
— dV/dt ≥ 0, a trajectory originating in Sr cannot cross K3(t) for t ≥ t0. 
This means that x + cannot cross K1 either and must remain in SR. 

Now let us turn to asymptotic stability. To establish asymptotic 
stability, an additional hypothesis must be introduced. 

Theorem 18. The origin is asymptotically stable if in an open region D 
containing the origin there exists a Liapunov function such that V(x, t) ≤ U(x) 
for all t ≥ t 0 , where U(x) is a positive definite function, and such that 
— dV/dt is positive definite. 

The additional requirement for asymptotic stability is that —dV/dt be 
positive definite. The proof of this theorem begins where the proof of the 
previous theorem stopped. Select any e that satisfies 0 < e ≤ r. We must 
show that there exists a te such that x+ is contained in Se for all t > t e . 
In the proof of the previous theorem, the value of r depended only on R 
and not on t0. Therefore we may infer the existence of a δ dependent 
only on e such that a trajectory, passing through a point of Sδ at time te, 
remains in Se for t > te. To complete the proof, we must show that x + 

originating in Sr at time t0, passes through a point of Sδ. Let w be the 
least value of W(x) for x such that δ ≤ ||x|| ≤ R. Then, since V(x, t) 
≥ W(x) for t ≥ to, V[x(t), t] <w only if x(t), which remains in SR for all 
t ≥ t0, is also in Sδ. We shall use this fact to show by contradiction that 
x(t) is contained in Sδ for some t ≥ t0. Because —dV/dt is positive definite, 
a positive definite function W(x) exists such that —dV/dt ≥ W for all 
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t ≥ t0. Let w be the least value of W(x) for x such that δ/2 ≤ ||x|| ≤ R. 
Then, under the restriction δ/2 ≤ ||x|| ≤ R, 

Since dV/dt ≤ —w this relation yields the inequality 

(143) 

valid for δ/2 ≤ ||x|| ≤ R. Now suppose x(t) is not in Sδ for any t ≥ to ; that 
is δ ≤ ||x(t)|| ≤ R for all t ≥ t0. Then, by (143), 

This is a contradiction, since V[x(t), t] < w only if x(t) is in S. The proof 
is now complete. 

There remains the question of asymptotic stability in-the-large, which 
we shall address by means of a theorem. The additional condition in this 
theorem requires the use of a particular type of positive definite function, 
which we shall now define. Loosely speaking, a function is radially 
unbounded if V(x, t) grows without bound, independent of the value of 
t ≥ t0, as x moves away from the origin or, alternatively, as ||x|| increases. 
In more precise terms, V(x, t) is said to be radially unbounded if, given 
any M > 0, there exists an m such that V(x, t) > M for all t ≥ t0 whenever 
||x|| > m. With this background, we may state the theorem. 

Theorem 19. The origin is asymptotically stable in-the-large if there exists 
a Liapunov function defined everywhere (the state equation has a solution) 
such that V(χ, t) ≤ U(x) for all t ≥ t 0 , where U(x) is a positive definite 
function, such that W(x) is radially unbounded* and such that —dV/dt is 
positive definite. 

The proof does not depart very much from those given for the previous 
two theorems. Therefore it is left for you as an exercise. 

Examples 

Let us now illustrate some of the preceding theory with examples. 
Consider the network shown in Fig. 17. It is described by the state 
equation 

* See the footnote on page 757. 
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Fig. 17. Nonlinear network. 

Though we shall not do so, it can be shown that the solution of this 
state equation exists and is unique for all initial-state vectors x(t 0); 
that is, the positive scalar E that appears in the stability definitions 
is infinite. 

A decision as to stability requires the discovery of a Liapunov function. 
There is no algorithm that can be followed to arrive at one. Experience is 
a guide; so, to gain some experience, let us see if the positive-definite 
function 

is a Liapunov function. To make this determination we must examine 
dV/dt; the result is 

The second line is obtained by substituting dxi/dt and dx2/dt from the 
state equation. Clearly —dV/dt is positive definite. Thus V is a Liapunov 
function that, furthermore, satisfies the additional restrictions of the 
theorem on asymptotic stability in-the-large. You may feel we forgot to 
consider the problem of selecting U(x); however, a moment's reflection 
will convince you that, when V is time invariant, the supplemental 
condition calling for the existence of a U(x) with the properties indicated 
is trivially satisfied by setting U(x) = V(x). We now know that the origin 
is asymptotically stable in-the-large. 

It is not always possible to establish asymptotic stability in-the-large. 
Often only local stability properties can be certified. As an example, 
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Fig. 18. Nonlinear time-varying network. 

consider the network illustrated in Fig. 18. It has the state equation 

for which a unique solution may be shown to exist for all initial-state 
vectors. We shall use the same positive-definite function as before to be a 
trial Liapunov function; that is, 

To verify that this function is a Liapunov function, we must evaluate 
dV/dt; the result is 

The second line follows by substitution of dx1/dt and dx2/dt from the 
state equation. Observe that —dV/dt is positive definite if 6x 2 tanh x2 

— x2

2 is positive for x2 ≠ 0. This is approximately equivalent to |x2| 
< 5.99999. Now, in the open region |x2| < 5.99999 (all values of x1 are 
allowed) —dV/dt is bounded from below by the positive-definite function 

which we may take to be W(x). This is just one W(x) function; other 
positive-definite functions may also be found and used for W(x). 

All the conditions of the theorem on asymptotic stability have been 
satisfied; therefore the origin is locally asymptotically stable. In fact, it 
may be shown, though we shall not do so, that all trajectories originating 
inside the disk of radius 5.99999 in the x1 — x2 plane approach the origin 
asymptotically. 
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INSTABILITY THEOREM 

The stability theorems only specify sufficient conditions for stability, 
not necessary conditions. Therefore, if the conditions of the theorem are not 
satisfied, it is still possible for the origin, or other singular point being 
investigated, to be stable in one of the three senses considered. Another 
way in which the question of stability can be answered with certainty is 
to find sufficient conditions for instability. Thus, if it can be shown that 
the sufficiency conditions of some instability theorem are satisfied, then 
the origin cannot be stable. The following instability theorem, due to 
Chetaev, embraces two instability theorems originally formulated by 
Liapunov: 

Theorem 20. Let D be an open region containing the origin and let D be an 
open region in D such that (1) the origin is a boundary point of D; (2) for 
all t ≥ t 0 the function V(x, t) is positive and, along with its first partial 
derivatives, is continuous in D ; (3) dV(x, t)/dt ≥ W(x) for t ≥ t 0 , where 
W(x) is positive and continuous in D ; (4) V(x, t) ≤ U(x) for t ≥ t 0 , where 
U(x) is continuous in D ; and (5) U(x) = 0 at the boundary points ofD in D . 
Then the origin is unstable. 

The proof is quite short. The illustrations in Fig. 19 are helpful in the 
proof. Pick R such that D does not lie entirely within SR. For any arbi
trarily small, positive r ≤ R, it is possible to find a point in both Sr and 
D. Let x(t0) be such a point. By conditions 4 and 5 there exists a region 

Fig. 19. Unstable origin. 

(a) (b) (c) 
Dr 

Points common 
to Dr and SR 
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contained entirely within D such that U(x) is greater than V[x(t0), t0] > 0; 
denote it by D r . Let w > 0 denote the greatest lower bound assumed by 
W(x) at the points common to both D r and SR. Now 

yields the inequality 

since V(x, t) ≥ V[x(t0), t0] and dV/dt ≥ w at the same points. By condition 
4 , V(x, t) is bounded from above at those points that are common to both 
D r and SR. Therefore the above inequality indicates that the trajectory 
originating at x(t0) must reach the boundary of those points in both D r 

and SR. By the way we constructed D r , the trajectory must, in fact, 
reach a point of RR, the boundary of SR. 

Fig. 20. Unstable nonlinear network. 

Negative 
converter 

To illustrate this instability theorem, consider the network shown in 
Fig. 20. It possesses the state equation 

It is possible to show, though we shall not do so, that a unique solution 
exists for all x(to). The function 

is positive for |x2| < |x1|. If the conditions of the instability theorem are to 
be satisfied, then we must show that dV/dt > 0 for |x2| < |x1| in some 
neighborhood of the origin. To start with, 
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Upon substituting dx1\dt and dx2/dt, we get 

The second line was obtained from the first by adding and subtracting 
x 2

2 . Clearly, 

The latter expression is clearly positive for |x2| < |x1| in every neighbor
hood of the origin. Thus the origin must be unstable. 

LIAPUNOV FUNCTION CONSTRUCTION 

Observe the nature of the stability theorems. We are not given a definite 
prescription to follow; that is, there is no defined set of steps at the end of 
which we can reach an unambiguous conclusion as to whether or not the 
network is stable. Rather, the theorems provide a "hunting license." 
They ask that we seek a Liapunov function whose value remains bounded 
by a time-invariant positive-definite function. Finding an appropriate 
Liapunov function is a creative, inductive act, not a deductive one. 

The functional form of a Liapunov function is not rigidly fixed. On the 
one hand, this is an advantage, because it affords a greater opportunity to 
establish stability by trying numerous potential Liapunov functions. On 
the other hand, it is a disadvantage, because there are no guidelines in 
picking a potential Liapunov function from the countless positive-definite 
functions one can think of. We shall now discuss a particular Liapunov 
function for time-invariant networks and establish, as a consequence, an 
alternative set of conditions for stability. Following this, we shall discuss 
a method of generating Liapunov functions. 

Suppose that the network under consideration is described by the time-
invariant state equation 

(144) 

Let us make explicit note of the fact that f(x) is a real-valued vector 
function of x. In searching for a possible Liapunov function, consider 

(145) 
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This is first of all a positive-definite function. We must therefore examine 
dV/dt. The time derivative of f(x) is 

( 1 4 6 ) 

where F(x) is the Jacobian matrix of f(x); that is, 

( 1 4 7 ) 

Now, differentiation of (145) and subsequent substitution of (146) leads 
to 

( 1 4 8 ) 

The matrix —[F'(x) + F(x)] is symmetric and real; if it is also positive 
semidefinite in some neighborhood of the origin, then —dV/dt ≥ 0 and the 
theorem on stability is verified. Other fairly obvious conditions give either 
local or global asymptotic stability. These results, due to Krasovskii, 
are stated precisely in the following theorem: 

Theorem 21. Let f(x) be differentiable with respect to x and let f(0) = 0; 
then the origin is (1) stable if —[F'(x) + F ( x ) ] is positive semidefinite in 
some neighborhood of the origin, (2) asymptotically stable if — [F'(x) + F(x)] 
is positive definite in some neighborhood of the origin, or (3) asymptotically 
stable in-the-large if — [F'(x) + F(x)] is positive definite for allx and f'(x) f(x) 
is radially unbounded. 

To illustrate this theorem, consider the network in Fig. 21. The state 
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equation for this network 

has a unique solution for all x(t 0). The Jacobian matrix is 

Fig. 21. Asymptotically stable nonlinear network. 

Negative 
converter 

Upon adding F'(x) to F(x) and taking the negative of the resulting matrix, 
we find 

The ascending principal cofactors are 

Clearly, each of these cofactors is positive and, hence, —[F'(x) + F(x)] 
is positive definite for all x1, x2

2 <2 /3 , and all x3.* Thus the origin is 

* See Section 7.2 for a discussion of the conditions for positive definiteness of a matrix. 
Then see Problem 18 in Chapter 7 for the particular criterion for positive definiteness 
used here. 
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asymptotically stable. The asymptotic stability is not global because the 
x2 needed to make —[F'(x) + F(x)] positive definite is bounded from above 
and below. 

This last theorem, though useful, is restrictive in that the Liapunov 
function is completely specified once the state equation is given. To make 
full use of the stability theorems, one must have some freedom to try 
different potential Liapunov functions. Obviously, however, something 
more than trial and error would be valuable. What is needed is some 
guideline for generating a Liapunov function. We shall now discuss such 
a procedure. 

In what follows, the state equation is permitted to be time-varying; 
however, the Liapunov function is required to be time-invariant. The time 
derivative of V along a trajectory of the state equation is 

(149) 

where 

is the gradient of V. From (149) it is clear that the sign of dV/dt is deter
mined by the sign of the gradient of V, since f(x, t) is known. Hence, 
instead of looking for a Liapunov function V the sign of whose derivative 
will be suitable, we can look for a gradient function V V that, in (149), 
makes dV/dt have the appropriate sign. Then the Liapunov function V 
itself can be determined by the line integral of the gradient from 0 to x: 

(150) 

If the scalar function V is to be uniquely determined by this line integral 



Sec. 10.7] LIAPUNOV STABILITY 799 

of its gradient, then the Jacobian matrix of V V with respect to x 

(151) 

must be symmetric* Assume D(x) is symmetric and hence V(x) is unique. 
This implies the integral is independent of the path of integration. Thus 
we may use the most convenient path. Such a path would lie along coor
dinate axes or parallel to coordinate axes, as in the following expanded 
form of (150): 

(152) 

As you see, the problem of finding a Liapunov function by picking an 
arbitrary positive-definite function V(x), and then ascertaining whether or 
not —dV/dt is non-negative or positive definite, has been replaced by pick
ing a function V V(x) such that —dV/dt is non-negative or positive definite, 
as determined from (149), and D(x) is symmetric, and then ascertaining 
whether or not V(x) is positive definite. Usually there is less guesswork 
involved in using this latter method, which is known as the variable-
gradient method. However, this method of finding a Liapunov function is 
not really decisive; if the V(x) found from the selected gradient function 
does not turn out to be positive definite, it cannot be concluded that the 

* The requirement that D(x) be symmetric is equivalent to requiring that the curl 
of VF(x) be zero. It is a known theorem of vector analysis that, when the curl of a vector 
is zero, the vector is the gradient of a scalar function. For further discussion see H. Lass, 
Vector and Tensor Analysis, McGraw-Hill Book Co., New York, 1950, p. 297. 
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origin is not stable in some sense. It only means that a suitable Liapunov 
function has not yet been found. 

It is usual practice to start by selecting the gradient of V to be of the 
form 

( 1 5 3 ) 

The scalars α i j may be functions of x, though for subsequent ease in 
evaluating the line integral (152), it is desirable for them to be constant. 

The variable-gradient method may be summarized by a simple set of 
rules: (1) determine dV/dt as specified in (149) by using VV(x) of (153); 
(2) select the coefficients α i j such that —dV/dt is non-negative or positive 
definite and D(x) is symmetric; (3) evaluate V(x) by using the line integral 
of (152); and (4) determine whether or not V(x) is positive definite. 

To illustrate the variable-gradient method, consider the network 
illustrated in Fig. 22. The state equation is 

Fig. 22. Nonlinear network. 

Negative 
converter 

k= 1 

We first compute dV/dt from (149) as follows: 
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Let us pick α 1 1 such that the coefficient of x1x2 is zero; that is, 

Then, if —dV/dt is to be positive definite, we must have 

Let α 2 1 = —b and α 2 2 = a, where a and b are positive constants. Then 

and 

If D(x) is to be symmetric, then α 1 2 must satisfy the partial differential 
equation 

As you may easily verify, the solution of this equation is 

Hence substituting this expression for α 1 2 into the relation for VV(x) 
yields 
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Before taking the line integral of VV(x), we must verify that —dV/dt is 
positive definite for the chosen α 2 1 and α 2 2 , and the resultant α 1 2 derived 
by the symmetry condition of D(x). To verify that —dV/dt is positive 
definite, we must show that the two previously stated inequalities hold. 
First α 2 1 = —b, so — α 2 1 is positive. Second, 

so, for a > 2b and x\ and x2 sufficiently small, 2 α 1 2 + α 2 2 ( l — x2

2) is 
positive. The line integral of VV(χ) according to (152) is 

This function may be expressed as the quadratic form 

which you may easily verify is positive definite provided a > 0, a condi
tion already imposed, and a2 + ab > 2b 2 . This latter inequality is satisfied 
when the previous requirement a > 2b is satisfied. Thus, for a > 2b, a 
Liapunov function has been constructed such that —dV/dt is positive 
definite in a suitably small neighborhood of the origin. This implies that 
the origin is asymptotically stable. 

In this section we have introduced the basic concepts of Liapunov 
stability relative to a singular point, have proven some basic theorems on 
stability, and have given two methods by which to guide a search for a 
Liapunov function. Much more is known. The concept of stability can be 
extended in a useful way to stability relative to a set of points. More 
sophisticated theorems on stability and instability exist. Also, other 
guidelines for selecting a Liapunov function for specific classes of problems 
are known. These advanced topics are treated in the books on stability 
listed in the bibliography. 
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PROBLEMS 

1. Derive the state equations for the time-varying networks shown in Fig. 
P1 by using the state vector of (5). Repeat with the state vector of (10) 
Assume the element parameters are in Farads, Ohms, or Henrys. 

Fig. P1 

(a) 

(b) 

(c) 

2 . Suppose 
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for all t, t ≥ t0. Prove that 

for all t ≥ t0. 

3. Use the condition in Problem 2 to determine which of the following 

matrices A(t) commutes with its integral í 1 A(τ) dτ for all t ≥ t0: 
J to 

(a) (b) 

(c) (d) 

4. For those matrices A(t) of Problem 3 that commute with their integral 

J^A(τ) dr for all t≥t0, express e x p [ A ( τ ) dτ], the solution of (21), 

as a matrix. 
5. Which of the following state equations, with t0 = 0, have a solution 

in the extended sense? Of those that do, which have a solution in the 
ordinary sense? Of those that have a solution only in the extended sense, 
indicate whether or not the associated homogeneous equation has a 
solution in the ordinary sense. 

(a) 

(b) 



PROBLEMS 805 

(c) 

(d) 

(e) 

6 . Determine Y(t) and then Q(t) and P in Y(t) = Q ( t ) e p t when 

(a) 

(b) 

(c) 

(Hint: In each case A(t) commutes with Γ*A(τ) dτ; therefore (28) 
J ̂ 0 

is valid.) 
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7. By Theorem 5, with t0 = 0, for which of the following state equations 
are all solutions bounded as t -> ∞? 

(a) 

(b) 

(c) 

(d) 

8 . If all eigenvalues of A have negative real part, select an α and δ such 
that 

(Hint: Start with e A t expressed in terms of the constituent matrices 
and eigenvalues of A.) 

9. By Theorem 6, with t0 = 0, for which of the following state equations 
are all solutions bounded as t-> ∞? 

(a) 
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(b) 

(c) 

(d) 

10. Prove Theorem 7. 
11. Prove Theorem 9. 
12. Prove Theorem 10. 
13. Consider the following state equations: 

(a) 

(b) 

(c) 

Take t0 = 0. By Theorem 7, for which of these state equations do all 
solutions approach zero as t -> ∞, if μ is sufficiently small? In those 
cases to which Theorem 7 applies, determine an upper bound on μ. 

14. For each of the following state equations, indicate which of Theorems 
8, 9, and 10 have their conditions satisfied. If the state equation involves 
a parameter μ, indicate permissible values that μ may assume. Take 
t0= 1. 

(a) 
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(b) 

(c) 

(d) 

(e 

( f ) 

15. Verify that the network illustrated in Fig. 8 has the state equation 
given on p. 743. 

16. Consider the following state equations: 

(a) 

(b) 

Take t0 = 0. By Theorem 11, for which of these state equations do all 
solutions approach zero at t—> ∞? 
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17. Let Y(t) Y(τ)— 1 be the state-transition matrix associated with (71). 
Prove the theorem obtained after replacing condition (72a) in Theorem 
11 by 

Does this new theorem apply to the example following Theorem 11? 
If so, find a value for δ. This new theorem is less restrictive than 
Theorem 11, but it may be more difficult to apply. Explain why. 

18. Show that the state equations in the examples of Section 10.7 are those 
for the networks illustrated in Figs. 17, 18, 20, 21, and 22. 

19. Derive the state equations for each of the networks in Fig. P19. 

Fig. P19 

(a) 

(b) 

(c) 
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2 0 . Derive the state equations for the amplifier depicted in Fig. P20a. Use 
the transistor model shown in Fig. P20b. 

Fig. P20 

(a) 

(b) 

21. Derive the state equations for the amplifier depicted in Fig. P21. Use 
the transistor model shown in Fig. P20b. 

22. Derive the state equations for the amplifier shown in Fig. P22. Use 
the transistor model depicted in Fig. P20b. 

23. Derive the state equations for the amplifier depicted in Fig. P23. Use 
the transistor model shown in Fig. P20b. 

24. (a) Show that fLt in (81a) must be identically zero or that fLt and g L l 

in (85) must be differentiable functions in order to express v L l and 
v L t as functions of x, e, and de/dt. 
(b) Show that f C l , in (75b), must be identically zero or that fC l and 
g C t in (79) must be differentiable functions in order to express i C t and 
i C l as functions of x, e, and de/dt. 
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Fig. P21 

Fig. P22 

Fig. P23 

25. Consider the networks that can be represented as the interconnection 
of a capacitor subnetwork, an inductor subnetwork, and a resistor and 
independent source subnetwork as shown in Fig. P25a. Formulate the 
state equation in terms of the port parameters of each subnetwork 
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when the state vector is the concatenation of a set of linearly inde
pendent port charge variables, q C , for the capacitor subnetwork and a 
set of linearly independent port flux variables, λ L , for the inductor 
subnetwork. Apply the result to establish a state equation for the 
network in Fig. P25b. 

Fig. P25 

(a) 

Capacitor 
subnetwork 

Resistor and 
independent 

source 
subnetwork 

Inductor 
subnetwork 

Capacitor 
subnetwork 

Resistor and 
independent 

source 
subnetwork 

Inductor 
subnetwork 

(b) 

26. Using Theorem 13, determine which of the following state equations 
has a solution for all t ≥ 2. 

(a) 
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(b) 

(c) 

(d) 

(e) 

27. Prove the following theorem: Suppose the conditions of Theorem 12 on 
existence apply, then any solution of (98) in the extended sense, equal to 
x(t0) at time t0, may be extended to yield a defined solution for all t ≥ t0, 
if x'f (x, t) < 0 for t ≥ t0. (Hint: Start by writing the differential equation 
that is satisfied by the scalar x'x.) 

28. Using the theorem proved in Problem 27, determine which of the follow
ing state equations has a solution defined for all t ≥ 1: 

(a) (b) 

(c) 



814 LINEAR TIME-VARYING AND NONLINEAR NETWORKS [Ch. 10 

(d) 

(e) 

Would Theorem 13 also have established the existence of those 
solutions? 

29. (a) Prove that the theorem stated in Problem 27 remains valid if the 
condition x' f (x, t) < 0 is replaced by x'P f (x, t) < 0, where P is a 
symmetric positive-definite matrix. 
(b) If possible, apply the result of (a) to the following state equations: 

30. Prove that f (x, t) satisfies a Lipschitz condition if the partial derivatives 
dfi (x, t)/dxj exist, are continuous in x for almost all t ≥ t0, and are 
bounded in magnitude in some neighborhood of every point by non-
negative locally integrable functions of t ≥ t0. Show by counterexample 
that these conditions are not necessary and therefore are only sufficient. 

31. Verify that each of the functions f (x, t) in Problems 28 and 29 satisfies 
a Lipschitz condition in the neighborhood ||x — x|| < 1 of the arbitrary 
point x by finding a γ(t) that satisfies the conditions set forth in 
Theorem 14. 

32. For each of the following state equations, verify whether the conditions 
of Theorems 15 and/or 16 are satisfied. Set t0= —1. 

(a) 
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(b) 

(c) 

(d) 

(e) 

In each case, specify an upper bound on ||x(to)||. 
33. Prove Theorems 15 and 16 after replacing A by A(t), where A(t) is a 

periodic matrix. 
34. Prove Theorem 16 after replacing (103c) by the condition ||f(x, t)|| <μ| |x | | 

for ||x|| < ζ and μ sufficiently small. 
35. Prove the following theorem: Suppose all solutions of the reference 

equation 

are bounded as t tends to infinity. Further, suppose f (x, t) = 
A(t) + f (x, t) + g(t). Then all solutions of 

with an initial vector x(t 0) such that ||x(t0)|| < δ, which is a constant 
depending on f (x, t), are bounded as t tends to infinity, if 
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where Y(t) Y (τ ) - 1 is the state-transition matrix associated with the reference 
equation, and if 

where γ is a suitably chosen positive constant. 
36. Consider the second-order system 

Let x s be a singular point. Suppose fx (x5) = A ≠ 0. If the eigenvalues 
of A are not imaginary, it is known* that the behavior of the solution 
in the neighborhood of x 5 is the same as that of y + x s , where y 
satisfies the equation of first approximation at x s ; that is, 

Let y = Pz, where P is a nonsingular 2 × 2 matrix. Then z is the solution 
of the equation 

(a) When A has distinct real eigenvalues and, in some cases, equal real 
eigenvalues, there exists a P such that 

Solve for the elements of P in terms of the elements of A and the 
eigenvalues λ1 and λ 2 . 

* Solomon Lefschetz, Differential Equations: Geometric Theory, 2nd ed., Interscience, 
New York, pp. 188-195. 
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(b) Solve for z and sketch a typical set of trajectories in the z1 — z2 

plane, when (i) both eigenvalues are positive, (ii) both eigenvalues 
are negative, and (iii) the eigenvalues have opposite sign. 
(c) In case (iii) above, the trajectories corresponding to z1(to) = 0 or 
z 2(t 0) = 0 terminate at the origin and are known as separatrices. Since 
the word separatrix means something that separates, why do you think 
the word is applied to each of these particular trajectories ? 

3 7 . With reference to Problem 36 and for each of the following A matrices, 
(i) determine the eigenvalues λ1 and λ 2 , (ii) determine the trans
formation P, (iii) sketch a typical set of trajectories in the z1 — z2 plane, 
and (iv), using the results from (iii) and the transformation y = Pz, 
sketch a typical set of trajectories in the y1 — y 2 plane. 

(a) (b) 

(c) (d) 

3 8 . With reference to Problem 36: 
(a) When A has equal real eigenvalues (λ1 = λ 2 = λ ) and is not diagonal, 
there exists a P such that 

Solve for the elements of P in terms of the elements of A and the 
eigenvalue λ . 
(b) Solve for z and sketch a typical set of trajectories in the z1. — z2 

plane, when (i) λ is positive and (ii) λ is negative. 
(c) For 

(i) determine λ , (ii) determine P, (iii) sketch a typical set of trajectories 
in the z1 — z2 plane, and (iv), using the result from (iii) and the trans
formation y = Pz, sketch a typical set of trajectories in the y1 —y2 

plane. 
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3 9 . With reference to Problem 36: 
(a) When A has conjugate complex eigenvalues (λ1 = λ 2 = σ + jω), 
there exists a P such that 

Solve for the elements of P in terms of the elements of A and the real 
and imaginary parts, σ and ω, of the eigenvalues, 
(b) Polar coordinates in the z1 — z2 plane are r and θ, where r2 = z1

2 

+ z2

2 and tan θ = z2/z1. Verify that 

(c) Solve for r and θ and sketch a typical set of trajectories in the 
z1 — z2 plane, when (i) σ is positive and (ii) σ is negative. 
(d) For 

(i) determine α and β, (ii) determine P, (iii) sketch a typical set of 
trajectories in the z1 — z2 plane, and (iv), using the result from (iii) and 
the transformation y = Pz, sketch a typical set of trajectories in the 
y1 — y2 plane. 

40. With reference to Problem 36: The singular point x s is called (i) a node 
if A has distinct, real eigenvalues of the same sign, (ii) a log-node if 
A has equal, real eigenvalues, (iii) a saddle if A has real eigenvalues of 
opposite sign, and (iv) a focus if A has conjugate complex eigenvalues 
with nonzero real part. The singular point is said to be stable, if both 
eigenvalues are negative real or have negative real part; otherwise, the 
singular point is said to be unstable. Let δ1 = det A and δ 2 = tr A. 
Divide the δ1 — δ 2 plane into regions corresponding to the different 
classifications for a singular point such as stable node. 

41. With reference to Problem 36: The x1 —x2 plane is known as the phase 
plane, and a typical set of trajectories in the phase plane is called a 
phase portrait. For each of the following state equations find the singular 
points and, using the results of Problems 36 through 40, sketch a phase 
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portrait in the neighborhood of each singular point and classify the 
singular point: 

(a) (b) 

(c) (d) 

(e) 

Sketch a phase portrait valid throughout the phase plane using the 
local phase portraits just completed. You will find it useful to keep in 
mind that xi, for i = 1 and 2, is increasing along a trajectory in that 
region of the phase plane where fi(x) > 0 and decreasing along a tra
jectory in that region of the phase plane where fi(x) < 0. Furthermore, 
the trajectory is vertical [horizontal] where it crosses the curve 
f1(x) = 0[f2(x) = 0]. 

42. Obtain a numerical solution of each of the following state equations by 
using Euler's method. Set h = 0.1 and compute x(ih) for i = 1, 2, ..., 10. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Next, obtain the solutions by using the modified Euler method. Assume 
three-digit accuracy is adequate. For the state equations in (c) and (d) 
compare the two numerical solutions and the exact solutions 
evaluated at ih. 

43. Repeat Problem 42 by using the Adams method with j = 3 and the 
modified Adams method with j = 3 in place of Euler's method and the 
modified Euler method, respectively. Obtain starting values by using 
a truncated Taylor series. 

44. Obtain a numerical solution of the following state equation by using 
the Adams method with j = 1, 2, 3, 4, 5. Set h = 0.1 and compute 
x(ih) for i = 1, 2, ..., 15. Obtain the starting values by using a truncated 
Taylor series. Compare the numerical solutions and the exact solution 
evaluated at ih. 

45. Obtain a numerical solution of each of the state equations in Problem 
42 by using the Milne method. Set h = 0.1 and compute x(ih) for i = 
1, 2, ..., 10. Assume three-digit accuracy is adequate. Obtain the starting 
values by using the Runge-Kutta method. 

46. Obtain a numerical solution of the following state equation by using 
the modified Euler method. Set h = 0.1 and compute x(ih) for i = 1, 
2, ..., 10. Assume three-digit accuracy is adequate. 

Next, obtain the solution by using the corrector in the modified Euler 
method and (122), with j = 1 and l = 1 as the predictor. Obtain the 
starting values by using the preceding numerical solution. Compare the 
number of times the corrector had to be applied at each time step in 
each of the two methods. 

47. Create three predictor-corrector pairs from (122) and (126) and use them 
to obtain a numerical solution of the following state equations. Set h = 0.1 
and compute x(ih) for i = 1, 2, ..., 10. Assume three-digit accuracy is 
adequate. Obtain starting values by using a truncated Taylor series. 

(a) 

(b) 
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4 8 . Let M be a set of m non-negative integers and N be a set of n non-negative 
integers. Let 

then 

The C L may be solved for in terms of x(t i — j) for each j in M, and 
x ( h - h ) for each k in N. When the results are substituted in the 
expression for x(t) and t is set equal to ti+1, a predictor of the following 
general form is obtained: 

Let t i + 1 = ti + h for each value of i. Then determine the aj and bk when: 

(a) 

(b) 
(c) 
(d) 

(e) 
( f ) 
(g) 
(h) 

4 9 . By using each of the predictors in Problem 48, obtain a numerical solution 
of the following state equations. Set h = 0.2 and compute x(ih) for 
i = 1, 2, ..., 10. Assume three-digit accuracy is adequate. Obtain 
starting values using a truncated Taylor series. 

(a) 

(b) 

50. Let M be a set of m non-negative integers and N be a set of ñ integers, 
one of which equals —1 and the rest are non-negative. Let 

then 
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The C l may be solved in terms of x(t i — j) for each j in M, and b(ti—k) 
for each k in N. When the results are substituted in the expression for 
x(t) and t is set equal to ti+1, a corrector of the following general form is 
obtained: 

Let t i + 1 = ti + h for each value of i. Then determine the aj and bk when 

(a) 

(b) 
(c) 
(d) 

(e) 

( f ) 
(g) 
(h) 

51. Create three predictor-corrector pairs from the results of Problems 48 
and 50. In each case select m + n = m + n so that the predictor and 
corrector have the same accuracy. By using each of these predictor 
corrector pairs, obtain the numerical solutions called for in Problem 49. 

52. The correctors derived from (126) for specific j and l when combined with 
the state equation (104) yield implicit equations of the form 

It was proposed in Section 10.6 that solution of a corrector should be 
accomplished by the iteration 

where x ( t i + 1 ) ( n ) denotes the nth iterate; the zero-th iterate x ( t i + 1 ) ( 0 ) is 
the solution of a predictor. An alternate method for solving the corrector 
uses the well known Newton-Raphson iteration; in this case the 
iterates are given by 

where g x ( x ( t i + 1 ) ( n - 1 ) ) is the Jacobian matrix of g(x) evaluated at the 
(n — l)-st iterate for x(t i + 1 ).* This latter method for solving the 

* This approach to numerical solution of a differential equation was proposed in 
I. W. Sandberg, "Numerical Integration of Systems of Stiff Nonlinear Differential 
Equations," Bell System Technical Journal, Vol. 47, No. 4, April 1968, pp. 511-528. 
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corrector usually requires fewer iterations to achieve a specified level of 
accuracy; however, it does require evaluation of the Jacobian derivative 
gx(x) . 
(a) Consider the correctors derived from (126) with: 

(i) (ii) 

(iii) (iv) 

Let x ( t i + 1 ) ( 0 ) = x(t i) ( 1 ) and determine x( t i + 1 . ) ( 1 ) in terms of x(t i) ( 1 ) using 
the Newton-Raphson iteration. If the Newton-Raphson iteration is 
terminated at this point and x ( t i + 1 ) ( 1 ) is viewed as the (approximate) 
solution of the corrector, then the resulting equations are explicit 
expressions for x ( t i + 1 ) ( i ) in terms of x(t i) ( 1 ); they are predictors derived 
by truncating iterations used in solving correctors. 
(b) Repeat (a) using a linear projection from the two preceding solution 
points to get x ( t i + 1 ) ( 0 ) ; that is 

[Note: Higher order polynomial fitting of preceding solution points 
could be employed to give a more refined projection used to determine 
x ( t t + l ) ( 0 ) . ] 

(c) Repeat (a) using the solution of the Euler predictor for x ( t i + 1 ) ( 0 ) ; 
that is 

[Note: Other predictors could be used to determine x ( t i + i ) ( 0 ) . ] 
(d) Obtain a numerical solution of each of the following state equations 
using the predictors created in (a) through (c). Set h = 0.2 and compute 
x(ih) for i = 1, 2, ... , 10. 

(i) 

(ii) 

(iii) 

(iv) 
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Obtain starting values by using a truncated Taylor series. For (i) 
through (iii) compare the three different predictors by considering the 
accuracy of the numerical solutions relative to the exact solutions. 

53. For many networks the state vector varies rapidly in some intervals of 
time and slowly in others. In the former the time interval between 
solution points must be smaller than that permitted in the latter if the 
accuracy is to be comparable in both instances. Therefore, in the interest 
of computational efficiency it is desirable to have a criterion by which to 
adjust the integration interval size as the numerical evaluation of the 
solution progresses. An integration formula used in conjunction with such 
a criterion should possess the property that for infinite precision arithmetic 
the difference between the numerical solution and the actual solution 
(at the points in time when the numerical solution is evaluated) vanishes 
with increasing time for all possible values of the integration interval. A 
study of integration formulas relative to such a property is beyond the 
scope of this text. Therefore, we will consider the particular integration 
formula established in Part (a) (i) of Problem 52, which possesses this 
property for stable, time-invariant, linear state equations and all values of 
the integration interval. The corrector error is —1/2h2

+1x(θ) for some θ such 
that ti < θ < t i+1 = ti + hi+1. Now, if the error is too large, hi+1 should be 
made smaller and the calculation of x(ti+i) should be repeated; if the error 
is sufficiently small, the value of the integration interval at the next step, 
hi+2, should be made larger than hi+1. This serves as justification for the 
following criterion: 

Set hi+2 = 2hi+1 if 

Set hi+2 = h i + 1 if 

Repeat calculation of x(t i+1) with 
hi+1 half as large if 

Apply the integration formula indicated and this criterion for 
determining h to obtain the numerical solution of 

at twenty-five points in time. Take 1/2 × 10 — 2 as the initial value for hi+1. 
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Indicate the range of values hi+1 takes on. To determine x(t i+ 1) you will 
find the following fact useful: 

54. Which of the following scalar functions are positive definite for all x? 
Let t0 = 1. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

55. Consider a linear, time-varying RLC network with no external excitation. 
The state equation (not in normal form) is 

and the stored energy is 

Under what condition will V be a Liapunov function? 
56. Determine an open region D, containing the origin, within which the 

following scalar functions are positive definite. Let t0 = 0. 

(a) 

(b) 

(c) 
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57. Prove Theorem 19. 
58. Each of the following state equations is paired with a positive-definite 

function. Determine whether the positive-definite function is a Liapunov 
function for the state equation and, if so, which of the Theorems 17, 18, 
and/or 19 is satisfied. Set t0 = 1. 

(a) 

(b) 

(c) 

(d) 

59. Describe how the stability theorems 17, 18, and 19 establish that a 
solution of the state equation 98, equal to x(t0) at time t0, may be 
extended to yield a defined solution for all t ≥ t0. Indicate any 
restrictions on x(t0). Find a state equation, of order greater than 1, to 
which these results apply and to which Theorem 13 does not apply. 

6 0 . Each of the following state equations is paired with a scalar function of 
the state vector. Let the scalar function be V(x, t) in Theorem 20; then, 
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by this theorem, determine whether the origin is unstable. Set t0 = 1. 

(a) 

(b) 

(c) 

61. Apply Theorem 21 to each of the state equations in Problem 58. How 
do the results, here obtained with Theorem 21, compare with those 
obtained in Problem 58? 

62. Use Theorem 21 to show that the origin is asymptotically stable in-the-
large when 

where A is a constant n × n matrix with negative eigenvalues. 
63. By using the variable-gradient method, seek a Liapunov function for each 

of the following state equations: 

(a) 

(b) 
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(c) 

64.* Prepare a program flow chart and a set of program instructions, in some 
user language such as FORTRAN IV, for a digital computer to obtain a 
numerical solution of the state equation 104 by the 

(a) Euler method 
(b) Modified Euler method 
(c) Adams method (j = 4) 
(d) Modified Adams method (j = 4) 
(e) Milne method 
(f) Predictor-corrector pairs of Problem 47 
(g) Predictors of Problem 48 
(h) Predictor-corrector pairs of Problem 50 

The Runge-Kutta method should be used to generate starting values. 
Assume that x(t0), f (x, t), h, and the total number of time steps will be 
specified by the user of the program. Include a set of user instructions 
for each program. 



Appendix 1 

GENERALIZED FUNCTIONS 

Analysis of physical systems is often facilitated by employing the 
impulse function and/or its derivatives. Now, the impulse function is not 
a function in the usual sense; therefore we are, strictly speaking, in viola
tion of rigorous mathematics in applying theorems developed for ordinary 
point functions to relations involving the impulse function. Thus, from 
1927, when Dirac popularized the impulse function as a tool of mathe
matical physics,* till 1950, when Schwartz published a complete and 
rigorous basis for it, the impulse function stood in mathematical disrepute 
but was nevertheless used by physicists and engineers. 

The theory of distributions developed by Schwartz† provides the basis 
for using the impulse function in mathematical analysis, the impulse 
function being a distribution within this theory. In addition to refinements 
to and to more lucid presentations of distribution theory published since 
1950,‡ work has progressed along other lines, § as well. A particularly 

* P. A. M. Dirac, "The Physical Interpretation of the Quantum Mechanics," Proc. 
Roy. Soc, Ser. A., Vol. 113, 1926-1927, pp. 621-641. 

P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 
London, 1930. 

† L. Schwartz, Théorie des distributions, Vols. I and II, Herman, Paris, 1950 and 1951. 
‡ I. M. GeΓfand and G. E. Shilov, Generalized Functions, Vol. 1, "Properties and 

Operations," Academic Press, New York, 1964. 
V. Dolezal, Dynamics of Linear Systems, Publishing House of the Czechoslovak 

Academy of Sciences, Prague, 1964. 
A. H. Zemanian, Distribution Theory and Transform Analysis, McGraw-Hili, New 

York, 1965. 
§ J. Mikusiñski, Operational Calculus, 5th ed. (in English) Macmillan, New York, 1959. 

The first edition (in Polish) was published in 1953. 
G. Temple, "Theories and Applications of Generalized Functions," J. London Math. 

Soc, Vol. 28, 1953, pp. 134-148. 
M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambridge 

University Press, Cambridge, 1958. 
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830 GENERALIZED FUNCTIONS [App. 1 

understandable alternative to distribution theory was introduced by 
Mikusinski in this period. 

Convolution in the set of continuous functions is similar to multiplica
tion in the set of integers. When division—inverse operation to multi
plication—of two integers is defined, the resulting set of rational numbers 
contains the integers as a proper subset. Perhaps a suitably defined 
convolution division—inverse operation to convolution—of two continu
ous functions will establish, similarly, a set of convolution quotients or 
generalized functions, containing the continuous functions as a proper 
subset. As Mikusinski discovered, this does happen. In particular, the 
impulse function and all its derivatives are included in this set of general
ized functions. 

In this appendix we shall give a brief description of the theory of 
generalized functions based on convolution division. For simplicity, we 
shall treat only scalar-valued, and not vector-valued, functions. The 
extension of these concepts to vector-valued functions will be left to you. 
The discussion here is not complete, but it is adequate for putting the use 
of impulse functions in Chapter 5 on a firm basis. 

To preclude notational confusion—a possibility when new concepts are 
presented—we shall adhere rather rigidly to the following conventions. 
A lower case Greek letter, with the exception of δ, will denote a scalar. 
A function of time, in its entirety for non-negative time, will be denoted by 
a lower case italic letter, with the exception of s and t. If f is an arbitrary 
function of time, f(t) will denote the value of f at time t. Note that f(t) 
is a scalar. There are situations in which a function will be given explicitly; 
for example, te-t. To denote this function in its entirety, we shall use the 
notation {te—t}. Observe that {α} is not a scalar but the function that as
sumes the constant value α for t ≥ 0. The product of two scalars, of a sclalar 
and a function, and of two functions will be denoted in the usual manner; 
for example, αβ, αf or {αf(t)}, and fg or {f(t)g(t)}. The usual exponent 
convention for a repeated product will apply; for example, αααα = α 4 and 
fff=f3. As in the main body of the text , convolution will be denoted by 

J. D. Weston, "Operational Calculus and Generalized Functions," Proc. Roy. Soc, 
Ser. A, Vol. 250, 1959, pp. 460-471. 

J. D. Weston, "Characterization of Laplace Transforms and Perfect Operators," 
Arch. Rat. Mech. and Anal, Vol. 3, 1959, pp. 348-354. 

A. Erdélyi, Operational Calculus and Generalized Functions, Holt, Rinehart & Winston, 
New York, 1962. This is a lucid and succinct description of Mikusiñski's convolution 
quotients as the basis for a theory of generalized functions. 
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To denote repeated convolution we shall use a positive, boldface exponent; 
for example, f *f *f=f3. 

A1.1 CONVOLUTION QUOTIENTS AND GENERALIZED FUNCTIONS 

In solving a scalar equation, such as 

(1) 

where α ≠ 0 and β are known scalars, we express the solution as ζ = β/α; 
that is, the quotient of β by α. This is possible because scalar multiplica
tion has a uniquely defined inverse—scalar division. 

Let us now consider the convolution equation 

( 2 ) 

where a ≠ {0} and b are known functions. Since the convolution of functions 
has the same algebraic properties as scalar multiplication—associativity, 
commutativity, and so on—it is tempting to suppose that there exists a 
uniquely defined inverse operation to convolution, which permits us to 
express the solution as z = b//a; that is, the convolution quotient of b by a. 
(Observe the double slant line used as the symbol.) We shall show that the 
notion of a convolution quotient is meaningful. 

To set the background for defining convolution quotients, let us turn 
again to the algebraic equation (1), when α and β are known integers, and 
consider its solution. It is the uniqueness of that solution that gives 
meaning to the quotient, β/α, by which the solution is expressed. Suppose 
(1) has more than one solution; then let ζ i and ζ 2 denote two distinct 
solutions. Since ocζi and α ζ 2 both equal β, then a(ζ±— ζ 2 ) = 0. But α is 
assumed to be a nonzero integer; hence ζ i — ζ 2 = 0 and, by contradiction, 
the solution of (1) must be unique. If the solution ζ is an integer, then that 
is the value assigned to β/α. Of course, (1) may not have an integer solu
tion. However, because the solution is unique, we could say that β/α is 
the quantity, called a quotient, that denotes the unique solution; in this 
way β/α is made meaningful. In fact, history has given the name rational 
number to the quotient of two integers. Now, β/α is a rational-number 
solution of αζ = β that is unique to within the equivalence β/α = γβ/γα, 
where γ is any nonzero integer. 

Now let us give similar consideration to the convolution equation (2), 
a * z = b, when a and b are known continuous functions and a ≠ {0}. 
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If we can show that it has a unique solution, then that solution ascribes 
meaning to the convolution quotient, 6 /α, that expresses the solution. 
Suppose (2) has more than one solution; then let z1 and z2 be two distinct 
solutions. Since a * z1 and a * z2 both equal b, then a * (z1 — z2) = {0}. 
There is a theorem due to Titchmarsh* that states the following: 

Theorem I . If f and g are continuous and f * g = {0}, then either f = {0} 
or g = {0} or both. 

Since the function a ≠ {0} in the previous result a * (z1 — z2) = {0}, then 
z1 — z2 must be the zero function {0}. But this is a contradiction of the 
assumption that z± and z2 are distinct. Hence the solution of (2) must be 
unique. 

If the solution of (2) is a continuous function, then b//a is identified 
with that function. Of course, there may be no continuous function that 
solves (2), just as αζ = β may not have an integer solution; for example, 
if b(0) ≠ 0, then the solution cannot be a continuous function. (Why?) 
However, because the solution is unique, we could extend the meaning of 
the term "funct ion" by saying b//a is the quantity, called a convolution 
quotient, that denotes the unique solution. In this way b//a becomes 
meaningful. 

Now suppose the function c ≠ {0} and consider the convolution equation 

(3) 

or, equivalently, 

By Theorem 1, a * z — b = {0}. Thus (3) has a solution if and only if (2) 
has a solution; furthermore, a solution of (2) must also be a solution of (3). 
Since each has a unique solution and since b//a denotes the solution of (2) 
and c * b//c * a denotes the solution of (3), we must have 6 /α = c * b//c * a. 
Hence b//a is the unique solution of (2) to within the equivalence 
c * b//c * a, where c ≠ {0}. 

We shall say that two convolution quotients b//a and d//c are equivalent 
—that is, b//a = dffc—if b * c = a * d. The set of all convolution quotients 
that are equivalent to any one convolution quotient is called an equivalence 
class. Obviously, any one convolution quotient is in one and only one 
equivalence class; that is, the convolution quotients are sorted into equiv
alence classes in a unique manner. Thus each equivalence class is identi-

* This theorem is a special case of Theorem 152 in E. C. Titchmarsh, Introduction to 
the Theory of Fourier Integrals, 2nd ed., Oxford University Press, London, 1948. 
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fied by any one of its convolution quotients. Therefore it is the equivalence 
class containing b//a that should be viewed as the unique solution of 
a * z = b and referred to as a generalized function. 

A1.2 ALGEBRA OF GENERALIZED FUNCTIONS 

Let us temporarily denote a generalized function by brackets around 
any convolution quotient in its equivalence class; for example, [b//a]. 
The first relation we must establish is that of equality. This we do by 
noting that 

(4) 

This is an immediate consequence of the following: ( l ) I f b * c = a*d, 
then b//a and d//c are equivalent and, hence, determine the same equiva
lence class. (2) If [b//a] — [d//c], then b//a and d//c are in the same equiva
lence class and, hence, b * c = a * d. 

We now define addition of two generalized functions, convolution of two 
generalized functions, and the product of a scalar and a generalized 
function as follows: 

(5a) 

(5b) 

(5 c) 

You should verify that the generalized functions on the right are indepen
dent of the specific convolution quotients that characterize each of the 
generalized functions on the left; for example, suppose b//a = b''//a' and 
d/c = d'/c';then 

and 
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will be equal if b * d * a' * c' = a * c * b' * d'. This equality is an obvious 
consequence of b * a' = a * b', d * c' = c * d', and the commutative prop
erty of convolution. Because the algebraic operations defined in (5) are 
independent of the specific convolution quotient that characterizes the 
corresponding generalized function, the brackets need not be used in 
denoting a generalized function. We shall therefore dispense with the 
brackets and refer to b//a as a generalized function. This should cause 
no confusion. 

With the equality relation established in (4) and the basic operations 
defined in (5), it is easily shown that the usual laws of algebra given in 
(6) below are valid. The verification is left to you. 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

(6f) 

(6g) 

(6h) 

(6i) 
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The cancellation law is also valid; that is, if e ≠ {0} and f ≠ {0}, then 

(7) 

Theorem 1 is required in the proof of the cancellation law. 
Next , we note that if a ≠ {0}, then {0}//a is the " z e r o " generalized 

function and that a//a is the " u n i t " generalized function. This follows by 
showing that both are unique and verifying that 

(8a) 

(8b) 

(8c) 

This task is left to you. 

CONVOLUTION QUOTIENT OF GENERALIZED FUNCTIONS 

The convolution division of two ordinary functions was defined as the 
inverse operation of convolution. It is only natural to inquire whether such 
an inverse operation, convolution division, can be defined for generalized 
functions. The answer is given by proceeding in the same manner as we 
did in introducing the convolution quotient of ordinary functions. This 
was done by showing that the convolution equation (2) has a unique 
solution. Similarly, we must show that the following convolution equation 
of generalized functions, 

(9) 

where b//a ≠ {0}//a, has a unique, generalized function solution. Clearly, 
by substitution in (9) and application of (8c), x//y = a*d//b*c is a solu
tion of (9); hence we need to show only that it is the unique solution. 
Suppose x'//y' is another solution. Then (b//a) * {x //y') = d//c combined 
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with (9) yields (b//a) * (x//y — x'//y') = {0}/a or x//y = x'//y', since b//a ≠ 
{0}//a. Thus a * d//b * c is the unique, generalized-function solution of (9). 

The solution of (9) indicates that the convolution quotient of the general
ized function d//c by the generalized function b//a, that is, (d//c)//(b//a), 
has the following meaning: 

(10) 

Recall that repeated convolution is denoted by a positive, boldface 
exponent. Let us arbitrarily set (b/a)0 = a/a, the unit generalized func
tion. Next , let us denote the convolution quotient of a//a by (b//a)n as 

(ii) 

B y using (10) it is easily shown that (b//a)~n = (a//b)n. 
With this background you should have no difficulty verifying the usual 

operations with exponents; that is, 

(12a) 

(12b) 

(12c) 

where m and n are integers: positive, zero, or negative. 

A 1 . 3 PARTICULAR GENERALIZED FUNCTIONS 

Equations for most dynamic systems are formulated in terms of scalars; 
in terms of ordinary point functions—usually continuous, piecewise 
continuous, and locally integrable; and in terms of operators—usually 
differential, integral, and delay. In this and the next section we shall show 
that all of these scalars, functions, and operators may be identified as 
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generalized functions. In this way the equation for a dynamic system 
will be meaningful as an equation on the set of generalized functions. 

Let us begin with the set of scalars. This set can be embedded in the set 
of generalized functions if the following two conditions are satisfied: 

1. There is a one-to-one correspondence between the set of scalars and 
a subset of the set of generalized functions. 

2. Every algebraic operation that is defined on the set of scalars has 
a counterpart that is defined on the set of generalized functions. 

If a is any continuous function other than {0}, then the generalized 
function αa//a stands in a one-to-one relation with the scalar α; thus 
condition 1 is satisfied. This relation is symbolically denoted as 

(13) 

The verification of condition 2 is left to you; however, to illustrate how this 
is done, we shall verify that addition of scalars has its counterpart. If 
α <-> αa//a and β <-> βa/a , then 

The several steps make use of (5c) and (8d). 
Let us next consider the set of continuous functions. This set can also 

be embedded in the set of generalized functions if the same two conditions 
as for scalars are satisfied, with the words " continuous function " replac
ing the word "scalar." To establish condition 1, let a be any continuous 
function other than {0}; then the continuous function c stands in a one-to-
one relation with the generalized function c * a//a; this relation is symbol
ically denoted by 

(14) 

We leave the task of verifying condition 2 to you; however, we shall 
illustrate how this is done. If b <-> b * a//a and c <-> c * a/a, then 

The several steps make use of (5b) and (8c). 
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These embeddings give justification to viewing α and αa/a as being 
interchangeable and c and c * α//α as being interchangeable. In addition, 
the identification of c with c * a//a permits us to assign a value to c * a//a 
at time t. In general, this is not possible; a generalized function is an entity 
for which the value at time t may have no meaning. We shall later show 
that some generalized functions other than those identified with continu
ous functions may be assigned a value at time t. 

CERTAIN CONTINUOUS FUNCTIONS 

A function that will appear often is the constant function {1}, which we 
shall denote henceforth by u; that is, 

( 1 5 ) 

This is the well-known unit step function with its value specified as 1 at 
t = 0 as well as at t > 0. 

Repeated convolution of u with itself yields an often-encountered set of 
functions. Thus 

( 1 6 ) 

as you should verify by carrying out the indicated convolutions. The 
generalized function that is identified with the continuous function un 

may be expressed as un * a//a, where a ≠ {0}. Setting a = u, we get the 
interesting result 

( 1 7 ) 

Many other continuous functions that are commonly encountered in 
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analysis can be identified with generalized functions, each expressed as a 
convolution quotient of polynomials in u; for example, 

(18a) 

(18b) 

(18c) 

Each of these equalities can be checked according to the general equality 
relation (4). As an illustration, consider (18b). The two expressions are 
equal if and only if 

B y Theorem 1, u may be "cancel led" on both sides. Thus we only need to 
verify 

or, equivalently, 

(19) 

You should verify this integral relation, thus verifying (18b). 
The one-to-one relationships between continuous functions and general

ized functions, such as given in (18), are useful in solving some convolution 
equations. As an example, consider 

The generalized-function solution is 

Now, by (18c) we know that this is the same as the continuous function 
{cos ωt}. 
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LOCALLY INTEGRABLE FUNCTIONS 

A class of functions that is somewhat less "well behaved" than continu
ous functions is the class of locally integrable functions. By a locally 
integrable function we mean a function (1) that is continuous except at a 
finite number of points in any finite interval and (2) that possesses a 
proper or absolutely convergent improper Riemann integral on every 
finite interval over the interior of which the function is continuous. 
Under these conditions the integral on the interval 0 ≤ t ≤ t for each 
t > 0 is defined as the sum of the Riemann integrals over the continu
ous subintervals, over the interior of which the function is continuous. 
It is of interest to note that the convolution of two locally integrable 
functions is a locally integrable function and that the convolution of a 
locally integrable function with a continuous function is a continuous 
function. 

It is clear from the definition of a locally integrable function that two 
such functions will have the same integral on the interval 0 ≤ t ≤ t for 
all t > 0 if they differ in value only at a finite number of points in any 
finite interval or, equivalently, if they have the same value at points 
where both are continuous. We shall follow the usual practice of regarding 
two such functions as being equivalent. 

Let us see if locally integrable functions can be identified with some 
generalized functions. This set can be embedded in the set of generalized 
functions if the same two conditions as before are satisfied; the word 
"scalar" must, of course, be replaced by the words "locally integrable." 
To see whether they are satisfied, note that, if a is any continuous function 
other than {0} and b is a locally integrable function, then the generalized 
function b * a//a stands in a one-to-one relation with b; thus condition 1 is 
satisfied. This relation is symbolically expressed as 

(20) 

which is the same type of relationship as given in (14) for continuous 
functions. We leave the verification of condition 2 to you. 

The set of locally integrable functions obviously contains the set of 
continuous functions. More significantly, however, it also contains the 
set of piecewise continuous functions. Note that any piecewise continuous 
function can be expressed as the sum of a continuous function and of a 
weighted sum of displaced step functions.* The displaced step function, to 

* This statement is easy to prove provided the equivalence among the loca l ly integra
ble functions is kept in mind. 
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be denoted by uα, is defined as 

(21) 

where 

The generalized function identified with uα is, of course uα * a//a. We 
shall consider this generalized function again, in the next section. 

Up to this point a lower case italic letter has designated a function— 
in general, a locally integrable function. Now there is a one-to-one corre
spondence between such functions and a subset of generalized functions. 
Hence it is possible to let the italic letter itself stand for the generalized 
function. Thus if b is a locally integrable function, the corresponding 
generalized function has heretofore been expressed as b * a//a. For conveni
ence, we shall henceforth express this generalized function simply as b. 
This will cause no notational difficulties, because each operation on ordi
nary functions, including convolution division, has its counterpart on 
generalized functions. 

Besides being a notational simplification, the preceding plan may lead 
to more meaningful things. Thus the un on the left side in (17) was an 
ordinary function. With the new notation it can be regarded as a general
ized function, and (17) becomes 

(22) 

Although when first introduced in (17), n was a positive integer, we can 
now set n = 0 and find 

(23) 

The significance of this quantity will be discussed in the next section. 
In view of the above comments the relations in (18) may now be replaced 

b y 

(24a) 
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(24b) 

(24c) 

We shall discuss one of these and leave to you the examination of the 
others. Focus attention on the right side of (24c). It is the generalized-
function solution of the convolution equation 

(25) 

There is a term in this equation unlike any we have previously encoun
tered, u0 * z. From (23) we see that u0 * z, in more precise terms, is u * z//u. 
Now, if z is a continuous or locally integrable function, u * z//u is, by (14) 
or (20), just z.* With this in mind, the convolution equation, defined on 
the set of continuous or locally integrable functions, corresponding to 
(25) is 

(26) 

By (24c) we know z(t) = cos ωt is the solution of (26). The other relations 
in (24) may be examined in a similar manner. 

A 1 . 4 GENERALIZED FUNCTIONS AS OPERATORS 

Up to this point we have discussed the relationship of functions to 
generalized functions. We shall now look at integral and differential 
operators and discuss their relationship to generalized functions. 

Consider again the function u. The convolution of u with the function 
a is 

(27) 

Thus, in addition to being regarded as the continuous function {1}, u may 
be viewed as an integral operator. Similarly, un+1 for n positive, which was 

* Note that this is the same result as that obtained by convolving an impulse function 
with z. We shall discuss this identification of u0 with the impulse function in the next 
section. 
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seen earlier to be the function {tn/n!}, may be thought of as an (n + 1) 
fold integral operator. As an illustration of this operator interpretation of 
un+1, observe that the operator view indicates that the integral equation 
corresponding to (25), on the space of continuous or locally integrable 
functions, is 

(28) 

Note that (28) has the same solution, z(t) = cos ωt, as the convolution 
equation (26) that corresponds to (25). 

Before going on, let us use this idea of un being an n-fold integration 
to help assign a value to a generalized function at time t. Let a denote an 
arbitrary generalized function. Suppose un * a stands in a one-to-one 
relation with the ordinary function b, which possesses an nth derivative 
for τ1 <t < τ 2 . Then, for τ1 <t < τ 2 , we shall assign the value b(n)(t) to 
a at time t. The value assigned to a in this manner is unique.* 

As an example, take a = u0 and determine a value to be assigned to it. 
Now u * u0=u2//u is by (14) the same as the continuous function u, 
which is differentiable for 0 <t. Since du(t)/dt = 0 for t > 0, we assign 
the value zero to u0 for t > 0. 

Now we turn to an interpretation of un for negative n. Alternatively, 
we shall examine u-n for positive n. For convenience, let pn = u-n. Next 
suppose that a is a function that is n — 1 times continuously differentiable 
and that possesses a locally integrable nth derivative. Then 

(29) 

where a(k) denotes the kth derivative of a with respect to t. This relation 
is easily established by induction. We shall start the proof and leave its 
completion to you. Let n = 1; then (29) becomes 

which in more precise notation is 

* The uniqueness is established by Theorem 6 in Arthur Erdélyi, Operational Calculus 
and Generalized Functions, Holt, Rinehart & Winston, New York, 1962. 
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By the relations in (5), (6), and (8), this equation becomes 

If this is a valid relation, then, by (4), 

or, equivalently, 

By Theorem 1, this becomes 

or 

which is true if a(1) is locally integrable. Thus (29) is valid for n = 1; 
the proof is completed by induction. 

If a is sufficiently differentiable and α(0) = a(1)(0) = ... = a(n-1)(0) = 0, 
(29) shows that the generalized function pn * a stands in a one-to-one 
relation with the function a(n). Hence the generalized function pn should 
be viewed as a differential operator. If a is not sufficiently differentiable 
or if one or more of the a(Ä:)(0), k = 1, ..., n—1, are not zero, then 
pn * a does not stand in a one-to-one relation with an ordinary function. 
In this case pn * a exists only as a generalized function; we shall refer to 
pn * a as the generalized nth derivative of a. 

Let us now apply some of these results to an example. The ordinary 
differential equation 

( 3 0 ) 

has the generalized-function counterpart 
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For z(0) = 2, the generalized-function solution is 

(31) 

Recalling that p = u 1 and that p0 = u0, we get 

which, by (24a) is the same as 2{e — α t ) . This agrees with our knowledge that 
the solution of the differential equation (30) is 2 { e - α t } for z(0) = 2. 

In finding the ordinary function standing in a one-to-one relation with 
the generalized function in (31), it was useful to have had the relation 
in (24a). In the solution of other differential equations, which will be 
considered in the next section, it would be helpful to have relationships 
between generalized functions expressed in terms of p and the corre
sponding ordinary functions. Such relationships are shown in Table 1. 

Table 1. Ordinary Function—Generalized Function Pairs 

Ordinary 
Function 

Generalized 
Function 

Ordinary 
Function 

Generalized 
Function 
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THE IMPULSE FUNCTION 

Most of the preceding effort has been devoted to considering the general
ized functions that have a one-to-one relationship with ordinary functions 
or the properties of operators on ordinary functions. We shall now turn to 
a consideration of the relationship of generalized functions to the impulse 
function and its derivatives. We shall find that p0 = u0 is properly inter
preted as the impulse function. To verify this, let a be a continuous func
tion; then 

(32) 

If, following custom, we let δ be a symbolic function corresponding to p0, 
then (32) is equivalent, in a formal sense, to the following: 

(33) 

This is what is called the sifting property associated with the impulse 
function δ. 

The generalized function p is properly interpreted as the first derivative 
of the impulse function. To show this, let the function a possess a continu
ous first derivative. Then by using (29) we have 

(34) 

If u(0) ≠ 0, p * a is a generalized function that does not stand in a one-to-
one relation with an ordinary function. However, as previously shown, 
p0 can be assigned the value 0 for all t > 0. This is a useful fact. Since p is 
the generalized first derivative of p0, which is interpreted as the impulse 
function, let δ ( 1 ) denote a symbolic function corresponding to p; then for 
t > 0 (34) is equivalent in a formal sense to 

(35) 

We can continue in this manner to interpret pn as the nth derivative of 
the impulse function. The detailed justification of this statement is left 
to you. 

Consider now the generalized function p * uα as an operator, where uα 
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is the displaced step given in (21). Suppose the generalized function a is 
also a continuous function; then 

By applying (34), we obtain from this relation 

(36) 

Thus the generalized function p * uα has the property of a delay, or 
shift, operator. This property makes p * uα useful in the solution of differ
ence equations. Since difference equations are not encountered in this 
book, we shall not give further consideration to p * uα. 

A1.5 INTEGRODIFFERENTIAL EQUATIONS 

In the study of linear, time-invariant, lumped-parameter networks, the 
subject of the major portion of this book, the dynamical equations en
countered are integrodifferential equations. (In the state formulation they 
are purely differential equations.) These equations, considered as equations 
on the set of generalized functions, have generalized-function solutions. 
It would be desirable, if possible, to identify these generalized functions 
with ordinary functions. We shall show how to accomplish this by extend
ing the concept of partial-fraction expansion to generalized functions. 

The generalized-function solution of a linear integrodifferential equation 
can be expressed as the sum of (1) a convolution quotient of polynomials 
in p and (2) a convolution quotient of polynomials in p convolved with 
another generalized function. As an example, consider the equation 

(37) 

with z(0) = — 1 . The corresponding equation on the set of generalized 
functions is 
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The generalized-function solution for z is 

or, equivalently, 

( 3 8 ) 

Clearly, if we can identify p//(p2 + 3p + 2p0) with an ordinary function, 
then z will also be identifiable as an ordinary function. 

In the general case, which we leave to you to verify, we have the solu
tion of a linear integrodifferential equation expressed as follows: 

( 3 9 ) 

If each of these convolution quotients can be identified with ordinary 
functions and if the generalized function f is also an ordinary function, 
then the generalized function z that constitutes the solution will be an 
ordinary function. 

Since both convolution quotients in (39) are of the same form, we shall 
examine only the second: 

In the event that l ≥ n, it is easy to verify that scalars ξ0, ..., ξl-n and 
v0, ..., v n — 1 exist such that 

(40) 

The denominator pn + ... + γ 0 p 0 is factorable as 

(41) 
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where the λ1 are the zeros of λ n + γ n — 1 λ n - 1 + ... + γ 0 λ 0 . This may be 
verified by (4), after setting p = u//u2 and p0= u//u. Thus 

(42) 

Assume that the λ1 are distinct; the right side may then be expressed as a 
sum of convolution quotients. Thus 

(43) 

where 

(44) 

The right side of (43) is the partial-fraction expansion of the left side, 
when the λ i are distinct. You should verify (44). If the λ i are not distinct, 
the partial-fraction expansion is more complicated and cumbersome in 
notation. However it is quite similar to the ordinary variable case. We 
shall not consider this case in detail. To complete the case of distinct λ i , 
substitution of (43) into (42) and of that result into (40) establishes the 
following: 

(45) 

We shall call the convolution quotient on the left a rational convolution 
quotient in p and say that it is proper, if I < n or, equivalently, if ξ 0 = 
... = ξ 1 - n = 0. 

Each of the terms μ ip0//(p + λ i p0) in (45) stands in a one-to-one relation 
with a continuous function, as seen from Table 1: μ ip0//(p + λip0)<-> 
{ μ i e _ λ i t } and each of the terms ξ i p 1 can be assigned the value zero for 
t > 0. Thus we can make the following statements about the generalized 
function z in (39): 

1. If m <n, I <n, and f is a locally integrable function, then z is a 
continuous function. 
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2. If m > n, l < n, and f is a locally integrable function, then z can be 
assigned a value for t > 0. 

3. If m <n, l≥ n, and f has a continuous (l— n)th derivative, then z 
can be assigned a value for t > 0. 

4. If m ≥ n, I ≥ n, and f has a continuous (l — n)th derivative, then z 
can be assigned a value for t > 0. 

To illustrate (45), consider the particular z given in (38). Now 

The last line is obtained from Table 1. By substituting this result in (38), 
we get 

as the solution of (38). 

A1.6 LAPLACE TRANSFORM OF A GENERALIZED FUNCTION 

In the analysis of linear, time-invariant networks, it is common practice 
to use Laplace-transform techniques and, in doing so, to introduce the 
transform of the impulse function and its derivatives. To justify this latter 
act, we must extend the definition of the Laplace transform to include the 
generalized functions, or, at the very least, the specific generalized func
tions pπ, n > 0, which are associated with the impulse function and its 
derivatives. 

The Laplace transform of a large subset of generalized functions can be 
defined by a theorem due to Krabbe.* Before stating this very useful 
theorem we must define several sets of functions. Let M denote the set of 
all functions of the complex variable s that are regular, except at a finite 
number of poles, in some right half-plane [Re (s) > Re (s) for some s]. 
Let M denote the subset of functions in M, each of which is equal in 

* G. Krabbe, "Ratios of Laplace Transforms, Mikusinski Operational Calculus," 
Math. Annalen, Vol. 162, 1966, pp. 237-245. This paper is reprinted in Contributions to 
Functional Analysis, Springer-Verlag, New York, 1966. 



Sec. A1.6] LAPLACE TRANSFORM OF A GENERALIZED FUNCTION 851 

some right half-plane to the ratio of two functions that are bounded and 
regular in that right half-plane; for example, l/(s + 2) and (s + l)/(s + 3) 
are bounded, regular functions of s for Re (s) > — 2 ; their ratio [l/(s + 2)] / 
[(s + l)/(s + 3)] = (s + 3)/(s + l)(s + 2) is regular, except at the pole 
s = — 1, for Re (s) > — 2 . Thus (s + 3)/(s + l)(s + 2) is a function in M. 
Next, let C denote the set of all continuous functions c such that 

( 4 6 ) 

exists for some s = s. Then £{c} is regular in the right half-plane 
Re (s) > Re (s). Finally, let G be the subset of generalized functions b//a 
such that a and b are functions in C and £{b}/£{a} is a function in M. 
With these definitions, Krabbe's theorem can be stated as follows: 

Theorem 2. There exists a one-to-one relation, denoted £ - 1 , from the set of 
functions M onto the set of generalized functions G. The relation £-1 

possesses an inverse £ that is linear and satisfies 

( 4 7 ) 

where g1 and g 2 are two generalized functions in G. Furthermore if a//b is a 
generalized function in G, then 

( 4 8 ) 

NOW let I denote the set of all locally integrable functions b such that 

exists for some s = s. Next, consider the generalized function u * b//u 
identified with b. The function 

is continuous, and its Laplace transform exists for s = s, since b is in I. 
Hence u * b is in C. Furthermore, £{u * b} = £{b}/s is bounded and 
regular in some right half-plane, and £{u} = 1/s is bounded and regular in 
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the right half-plane Re (s) > e for any ε > 0. Thus u * b//u is in G. There
fore 

(49) 

This shows US that the transformation £, of a generalized function into a 
function of the complex variable s, coincides with the Laplace transfor
mation, if that generalized function is also a Laplace transformable, 
locally integrable function. Thus the transformation £ is an extension of 
the Laplace transformation £. This being the case, no confusion will arise 
if we henceforth drop the circumflex from £. 

Let us now turn our attention to the generalized functions pn = u//un+1. 
Since u and un+1 are both in C and since £{u} = 1/s and £{un+1} = l / s n + 1 

are both in M, £{pn} exists. By (48), 

(50) 

Recall that pn is the generalized function associated with δ ( n ) , the nth 
derivative of the impulse function. The Laplace transform of δ ( n ) , in 
books on applications of Laplace-transform theory, is given as sn ; (50) 
is in agreement with the notion that £{δ ( n ) } = sn. 

We shall not give further consideration to the Laplace transform of a 
generalized function. It is sufficient that it is an extension of the usual 
Laplace transform and preserves the heuristic Laplace transform of the 
impulse function and its derivatives. 



Appendix 2 

THEORY OF FUNCTIONS 
OF A COMPLEX VARIABLE 

The purpose of this appendix on functions of a complex variable is 
twofold. First, it will serve as a reference for those who are familiar with 
the subject through an earlier encounter but would like to refresh their 
memories on specific points. Secondly, it will provide a skeleton that an 
instructor can augment by supplying proofs, examples, etc. The material 
is almost entirely in summary form. There is no attempt to provide 
motivation, and few proofs are given. Nevertheless, results are stated 
precisely. 

A 2 . 1 ANALYTIC FUNCTIONS 

We assume familiarity with the algebra of complex numbers (addition, 
subtraction, multiplication, and division) and the representation of 
complex numbers as points on a plane. We also assume familiarity with 
the elements of the theory of functions of a real variable. 

Let s = σ + j ω denote a complex variable. We say that another com
plex variable F= U + j X is a function of the complex variable s, if to 
each value of s (in some set), there corresponds a value of F or a set of 
values of F. We write F = F(s), where F(•) is the rule that associates the 
values of F with values of s. If to each value of s (in the set) there is only 
one value of F, we say that F is a single-valued function of s; otherwise 
it is multivalued. 

Continuity for a function of a complex variable is formally defined in 
the same way as for functions of a real variable; namely, F(s) is continuous 

853 
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at s0 if it is defined in a neighborhood of s0 and if 

(1) 

We may interpret this statement in the complex plane as follows. Let 
ε > 0 be a given number. We consider a circular neighborhood of F(s0) 
as in Fig. 1, where all the points within the circle of radius ε around 

Fig. 1. Neighborhoods in the s-plane and F-plane. 

F(s0) belong to this neighborhood. Now (1) is equivalent to the following 
claim. We can find a small enough neighborhood of s0, of radius δ > 0, 
such that the values of F(s) at all points in this neighborhood fall within 
the circle of radius ε about F(s0). 

Differentiability in the complex plane is also defined by the same 
formal relation as on the real line, but is conceptually of much greater 
significance. 

F(s) is differentiable at s0, with the derivative F'(s0), provided 

(2) 

exists and is finite. 
Implicit in this definition is the assumption that s may approach so in 

any direction, or may spiral into it, or follow any other path. The limit 
in (2) must exist (and be unique) independently of how s approaches s0. 
It is this fact that makes differentiability in the complex plane a very 
strong requirement. In consequence, differentiable functions of a complex 
variable are extremely "well-behaved," as contrasted with real functions, 
which can be "pathological." 

It can be shown (this is only one of many " i t can be shown's" that we 
shall meet in this appendix) that the usual rules for derivatives of sums, 
products, quotients, etc., carry over from the real case, with no changes. 
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So does the chain rule for the function of a function; and all the familiar 
functions have the same derivatives as on the real line, except that the 
variable is now complex. We summarize these results below. 

Let F1(s) and F2(s) be two differentiable functions. Then 

( 3 ) 

( 4 ) 

(5) 

(6) 

(7) 

If a function F of a complex variable is differentiable at the point s0 

and at all points in a neighborhood of s0, we say that F(s) is regular at s0. 
Notice that the statement "F(s) is regular at s0" is a very much 

stronger statement than "F(s) is differentiable at s0." A function F(s) 
that has at least one regular point (i.e., a point at which the function is 
regular) in the complex plane is called an analytic function. A point s0 

at which the analytic function F(s) is not regular is a singular point of the 
function. F(s) is said to have a singularity at s0. In particular, a point 
at which the derivative does not exist is a singular point. 

Although the requirement of regularity is a very strong condition and 
therefore the class of analytic functions is a "very small" subset of the 
set of all functions, almost all functions that we meet in physical applica
tions are analytic functions. An example of a nonanalytic function is 
|s|2. This function has a derivative at s = 0 and nowhere else. Hence it has 
no regular points. The function s(= σ — jω) is another simple example of 
a nonanalytic function. The function F(s) = l/(s — 1) is a simple example 
of an analytic function. Its region of regularity consists of the whole plane 
exclusive of the point s = 1. The point s = 1 is a singular point of this 
function 

The singularities of an analytic function are extremely important, as 
we shall see. For the present we can only distinguish between two kinds 
of singularities. The point so is an isolated singularity of F(s), if so is a 



856 THEORY OF FUNCTIONS OF A COMPLEX VARIABLE [App. 2 

singular point, but there is a neighborhood of s0 in which all other points 
(except so) are regular points. If no such neighborhood exists, s0 is a 
nonisolated essential singularity. Thus in every neighborhood of a non-
isolated singularity there is at least one other singular point of the 
function. Hence a nonisolated singularity is a limit point (or point of 
accumulation) of singularities and conversely. 

Rational functions (quotients of polynomials) are examples of functions 
that have only isolated singularities. To give an example of a function 
that has nonisolated singularities, we have to use trigonometric functions 
that we have not defined yet. Nevertheless, an example of a nonisolated 
singularity is the point s = 0 for the function 

(8) 

The denominator becomes zero whenever 

(9) 

and so these points are singular points of F(s). The origin is a limit point of 
these singularities. 

The famous French mathematician Augustin Cauchy (who originated 
about half of complex function theory) gave the following necessary and 
sufficient condition for the differentiability of a function of a complex 
variable: The function 

is differentiable at s 0 if and only if the partial derivatives dU/dσ, dU/dω, 
dX/dσ, and dX/dω exist and are continuous at ( σ 0 , ω 0 ) and satisfy the 
equations 

(10a) 

(10b) 

at this point. 

The necessity is proved by letting s approach s0 in (2) by first letting σ 
approach σ 0 and then letting ω approach ω0 for one computation, and 
reversing the order for another computation. Equating the two derivatives 
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so obtained leads to (10). The sufficiency is proved by using the concept 
of the total differential of a function of two variables and the definition of 
the derivative. 

The equations in (10) are known as the Cauchy—Reimann equations in 
honor of the German mathematician Bernhard Reimann (who made these 
equations fundamental to the theory of analytic functions) in addition to 
Cauchy. We can use the Cauchy-Riemann equations as a test for the 
regularity of a function as follows. 

If the four partial derivatives are continuous in a region of the complex 
plane and if they satisfy the Cauchy-Riemann equations at every point 
of this region, then F(s) is regular in the region. 

Notice that this condition involves the neighborhood about s0 just as 
the definition of the regularity of a function does. The proof of the result 
again depends on the concept of a total differential for a function of two 
variables. 

By differentiating one of the two equations in (10) with respect to σ 
and the other with respect to ω, and combining, we may observe the 
important fact that the real and imaginary parts of an analytic function 
satisfy Laplace's equation in two dimensions, within the region of regu
larity; that is, 

(11a) 

(11b) 

Thus the real and imaginary parts of an analytic function are harmonic 
functions. The converse of this statement is also true. Every harmonic 
function (in two dimensions) is the real part of an analytic function, and 
the imaginary part of another analytic function. This fact makes analytic 
functions of considerable interest in two-dimensional potential theory. 

A 2 . 2 MAPPING 

A function of a real variable can be represented geometrically as a graph. 
However, for a function of a complex variable, a " g r a p h " would require 
four dimensions, two for the variable and two for the function. Hence it is 
impossible to draw a graph for an analytic function. Nevertheless, the 
concept of a geometrical representation can still be used for analytic 
functions to provide a better understanding of these functions. We use 
two planes, an s-plane for the variable and a F-plane for the function, 
as in Fig. 1, and thus get four coordinate axes. 
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To draw a complete picture, showing what the value of the function is 
at each point in the s-plane, is futile, since this merely results in a smear. 
Therefore we choose certain representative lines in the s-plane and show 
in the F-plane the functional values of F(s) at points on these lines. 
Single-valued functions F(s) will give us smooth lines in the F-plane, as 
a result. As an example, we have a representative sketch of the function 
F(s) = s2 in Fig. 2. Here we have taken some lines along which either σ 

Fig. 2. Representation of the mapping F(s) = s 2 . 

s-plane 

s 2-plane 

or ω is constant as representative lines. The corresponding lines in the 
s2-plane are all parabolas. The two sets of parabolas, corresponding to 
- = const, and ω = const., are orthogonal families. If we had chosen other 
representative lines in the s-plane, we would have obtained other types 
of curves in the s2-plane. 

We refer to this graphical concept as a mapping. The s-plane is said to 
be mapped into the F-plane; the F-plane is a map of the s-plane. The 
lines in the F-plane are images of the lines in the s-plane, under the 
function F(s). We also refer to F(s) as a transformation. The function F(s) 
transforms points in the s-plane into points in the F-plane. The concept 
of a mapping by an analytic function is a very useful one. 

The fact that the parabolas of Fig. 2 constitute an orthogonal family is no 
accident. The reason is that the original lines in the s-plane intersect at 
right angles, and an analytic function preserves angles, except when the 
derivative does not exist or is zero. Let us make a definition before estab
lishing this fact. A conformal transformation F is one in which the angle 
of intersection of two image curves in the F-plane is the same in (both 
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magnitude and in sense) as the angle of intersection of the two correspond
ing curves in the s-plane. 

The mapping by an analytic function is conformal at all points at which 
the function is regular and the derivative is nonzero. 

To prove this result we take two smooth curves C1 and C2 in the 
s-plane that intersect at s0. Let s be an arbitrary point on C1. Let us 
introduce polar coordinates about s0, by defining 

( 1 2 ) 

Then as s approaches s0, the angle θ\ approaches the angle α i , which is 
the angle of the tangent to C1 at s0. By the definition of the derivative, 

(13) 

Since this derivative exists, we may take the limit along C1, and since the 
derivative is nonzero, we may write 

(14) 

Then from (13), 

(15a) 

and 

(15b) 

Equation 15b can be rewritten 

(16) 

The point F(s) is on the curve C'1, which is the image of C\ under the 
mapping F(s). Thus the left side of (16) is the angle of the tangent to 
C'1 at F(so). Thus from (16), the curve C'1 has a definite tangent at F(so), 
making an angle β + α1 with the positive real axis. An identical argument 
gives the angle of the tangent to C2 at F(so) to be β + α 2 . Thus the angle 
between the two tangents, taken from C[ to C2, is (α 2 — α1), which is the 
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same (in magnitude and sign) as the angle between the curves C1 and C2 

at so measured from C1 to C2. 
Incidentally, we see from (15a) that the local magnification (i.e., the 

increase in linear distance near s0) is independent of direction and is given 
by the magnitude of the derivative. Thus, locally, the mapping by an 
analytic function [when F'(s0)≠0] produces a linear magnification 
|F'(s0)| and a rotation arg F'(s0), thus preserving shapes of small figures. 

An auxiliary consequence is that the images of smooth curves are also 
smooth curves; that is, they cannot have "corners." 

We have not yet defined some point-set-topological concepts about 
regions and curves that are really needed to clarify the earlier discussions. 
Let us proceed to rectify this omission, although we cannot be completely 
precise without introducing very complex ideas, which we do not propose 
to do. Therefore we shall take a few concepts such as path, continuous 
curve, etc., to be intuitively obvious. 

A simple arc is a continuous path in the complex plane that has no 
crossover or multiple points. A simple closed curve is a path in the complex 
plane that, if cut at any one point, becomes a simple arc. If the end points 
of a simple arc are joined, we form a simple closed curve. 

An open region is a set of points in the complex plane each of which 
has a neighborhood all of whose points belong to the set. The region 
" ins ide" a simple closed curve, not counting the curve itself, is an 
example. If we add the points on the boundary of an open set to the open 
set itself, the combined region is called a closed region. An open or closed 
region is said to be connected if any two points in the region can be con
nected by a line all points on which are in the region. 

In the preceding paragraph the word " ins ide" was put in quotation 
marks. Although we have a strong intuitive feeling that the inside of a 
closed curve is well defined, nevertheless this requires a proof. The 
Jordan curve theorem gives the desired result. It states that every simple 
closed curve divides the complex plane into two regions, an "inside" and an 
"outside" the curve itself being the boundary of these two regions. If we start 
at some point on the curve and traverse it in a counterclockwise sense, 
the region to the left of the curve will be called the inside; that to the right, 
the outside. 

If we do not permit a closed curve to pass through infinity, then the 
" ins ide" region, as just defined, will be bounded; that is, all points in the 
region will satisfy the condition |s| ≤ M, where M is a fixed positive 
number. On the other hand, if the closed curve goes through infinity, 
then neither the inside nor the outside is bounded. 

The question arises as to what is meant by a closed curve passing 
through infinity. The path consisting of the imaginary axis, for example, 
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is such a curve. But this may appear to be a simple arc rather than a 
closed curve. The Reimann sphere will serve to clarify this point. 

Consider a sphere placed on the complex plane with its "south pole" at 
the origin, as illustrated in Fig. 3. Now consider joining by a straight line 

Fig. 3. The Riemann sphere. 

North pole 

South pole 

each point in the plane to the "north pole" of the sphere. These lines will 
all intersect the sphere, thus setting up a one-to-one correspondence 
between the points in the plane and those on the sphere. Each point in the 
finite plane will have its counterpart on the sphere. As we go further and 
further away from the origin of the plane in any direction, the point of 
intersection of the lines with the sphere will approach closer and closer to 
the north pole. Thus the north pole corresponds to infinity. On the sphere 
infinity appears to be a unique point. Both the real and the imaginary 
axes become great circles on the sphere, and a great circle appears like a 
simple closed curve. 

The concept of the Reimann sphere serves another purpose; it permits 
us to look upon "infinity" as a single point, whenever this is convenient. 
We refer to infinity as the point at infinity. 

Very often we wish to talk about the behavior of a function at the point 
infinity. A convention in mathematics is that no statement containing the 
word "inf inity" is to be considered meaningful unless the whole statement 
can be defined without using this word. This convention is introduced 
to avoid many inconsistencies that would otherwise arise. The behavior of 
a function at the point infinity is defined as follows. 

That behavior is assigned to the function F(s) at s = ∞ , as is exhibited 
by the function 



862 THEORY OF FUNCTIONS OF A COMPLEX VARIABLE [App. 2 

at s = 0; for example, the function F(s) = 1/s is regular at s = ∞ since 
G(s) = F(l/s) = s is regular at s = 0. Similarly, the function F(s) = as2 + bs 
is not regular at infinity since G(s) = a/s2 + b/s has a singularity at s = 0. 

By a similar artifice we can also talk about the value of a function at a 
point in the complex plane being ∞ , if we are careful. By this statement 
we mean that the reciprocal of the function is zero at this point. 

A2.3 INTEGRATION 

The definite integral of a function of a complex variable is defined in a 
manner similar to the definition of real integration. In the case of real 
variables the definite integral can be interpreted as an area. For complex 
variables such a geometrical interpretation is not possible. In Fig. 4 

Fig. 4. The definite integral. 

two points P1 and P 2 are connected by a simple arc C. The path is divided 
into intervals by the points sk ; the chords* joining these points are labeled 
Δ k s . Suppose we multiply each of the chords by the value of a function 
F(s) evaluated at some point sk* of the interval and then add all these 
products. Now we let the number of intervals increase with a simultaneous 
decrease in the lengths of the chords. We define the definite integral of F(s) 
as the limit of this sum as the number of intervals goes to infinity while 
the length of each chord goes to zero. More precisely, 

(17) 

provided the limit on the right exists. 

* Here the chords are taken to be expressed as complex numbers. Thus Δks = — s k - 1 . 
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Note that in addition to the lower and upper limits P1 and P 2 , we have 
indicated that in going from P1 to P 2 we shall follow the path C. It is 
conceivable that a different answer will be obtained if a different path is 
followed. It would not be necessary to write the limits on the integration 
symbol if we were to always show the path of integration on a suitable 
diagram together with the direction along the path. Because the path, or 
contour, is inseparable from the definition of an integral, we refer to it as a 
contour integral. 

To determine the conditions under which the definite integral in (17) 
exists, we must first express this integral as a combination of real 
integrals. With F(s) = U +jX, and after some manipulation, (17) becomes 

(18) 

Each of the integrals on the right is a real line integral; if these integrals 
exist, then the contour integral will exist. From our knoweldge of real 
integrals we know that continuity of the integrand is a sufficient condition 
for the existence of a real line integral. It follows that the contour integral 
of a function F(s) along a curve C exists if F(s) is continuous on the curve. 

CAUCHY'S INTEGRAL THEOREM 

The question still remains as to the conditions under which the integral 
between two points is independent of the path joining those points. 
Consider Fig. 5, which shows two points P1 and P 2 joined by two simple 

Fig. 5. Conditions for the value of an integral to be independent of the path of 
integration. 

paths C1 and C2. Note that the directions of these paths are both from 
P1 to P 2 . The combined path formed by C1 and the negative of C2 
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forms a simple closed curve, which we shall label C = C1 — C 2 . If the 
integral of a function F(s) along path C1 is to equal the integral along 
path C2, then the integral along the combined path C must be equal to 
zero, and conversely. The inquiry into conditions under which an integral 
is independent of path is now reduced to an inquiry into conditions under 
which a contour integral along a simple closed curve is equal to zero. 
The question is answered by the following theorem, which is known as 
Cauchy's integral theorem. 
Let F(s) be a function that is regular everywhere on a simple closed curve C 
and inside the curve. Then 

(19) 

This is a very powerful and important theorem, but we shall omit its 
proof. 

A word is in order about the connectivity of a region in the complex 
plane. Suppose we connect any two arbitrary points P1 and P 2 that lie 
in a region by two arbitrary simple arcs C1 and C2 also lying in the region. 
The region is said to be simply connected if it is possible to slide one of 
these arcs along (distortion of the arc is permitted in this process) until 
it coincides with the other, without ever passing out of the region. 
Cauchy's theorem is proved ab initio for just such a region. The hatched 
region between the two closed curves in Fig. 6 is called doubly connected. 

Fig. 6. A doubly-connected region. 

(a) (b) 

Such a region can be reduced to a simply connected region by the artifice 
of "digging a canal" between the two closed curves. The region now is 
bounded by the composite curve whose outline is shown by the arrows in 
Fig. 6b. 

Suppose that a function F(s) is regular in the hatched region shown in 
Fig. 6a including the boundaries. Cauchy's theorem can be applied here 
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to the composite curve consisting of the inner and outer curves and the 
"canal ." The canal is traversed twice, but in opposite directions, so that 
its contribution to the complete contour integral is zero. If we denote the 
outside and inside curves by C1 and C2, respectively, both in the counter
clockwise direction, then Cauchy's theorem will lead to the result that 

(20) 

As a matter of fact, if we choose any other closed path between the inner 
and outer ones in Fig. 6, the same reasoning will tell us that the integral 
around this path in the counterclockwise direction will be equal to each 
of the integrals in (20). 

This reasoning leads us to conclude that the value of a contour integral 
around a simple closed curve will not change if the contour is distorted, 
so long as it always stays inside a region of regularity. 

Turn again to Fig. 5. The points P1 and P 2 are in a simply connected 
region R throughout which a function F(s) is single valued and regular. 
Let P1 be a fixed point that we shall label s0, and P 2 a variable point 
that we shall label s. We have stated that the integral from s0 to s is 
independent of the path of integration so long as the paths remain in the 
region of regularity. Hence we can define the function G(s) as 

(21) 

where z is a dummy variable of integration. This function is a single-
valued function of the upper limit s for all paths in the region of regularity. 
It is easy to show that G(s) is regular in R and that its derivative is F(s). 
We call it the antiderivative of F(s). (For each s0 we get a different anti-
derivative.) 

Actually it is not necessary to assume that F(s) is regular in the region. 
Instead it is sufficient to assume that F(s) is continuous in R and that its 
closed-contour integral for all possible simple closed curves in R is zero. 
However, Morera's theorem, which we shall discuss later, states that a 
function satisfying these conditions is regular. 

In evaluating a definite integral in real variables we often look for an 
antiderivative of the integrand. The same procedure is valid for complex 
variables; that is, if an antiderivative of F(s) is C(s), then 

(22) 
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CAUCHY'S INTEGRAL FORMULA 

Let us now consider a simple closed curve C within and on the boundary 
of which a single-valued function F(s) is regular. It is possible to express 
the value of the function at any point so inside the curve in terms of its 
values along the contour C. This expression is 

(23) 

It is referred to as Cauchy's integral formula (as distinct from Cauchy's 
theorem). This result can be proved by noting that in the integral involved, 
the contour C can be replaced by a circular contour C' around the point 
so without changing its value, according to the discussion centering 
around (20). The purely algebraic step of adding and subtracting F(s0) 
in the integrand then permits us to write 

(24) 

The last integral on the right can be shown to be zero. It remains to 
evaluate the first integral on the right. 

Let us write s — s0 = rejö; then ds = j r e j θ d θ , since the contour C' 
is a circular one and only θ varies. Then 

(25) 

The desired expression now follows immediately upon substituting this 
result into (24). 

Cauchy's integral formula sheds much light on the properties of analytic 
functions. We see that the value of an analytic function that is regular in 
a region is determined at any point in the region by its values on the 
boundary. Note that the point so is any point whatsoever inside the region 
of regularity. We should really label it with the general variable s, which 
would then require that in (23) we relabel the variable s (which merely 
represents points on the boundary and is thus a dummy variable) with 
some other symbol. For clarity, we shall rewrite (23) as 

(26) 
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Here s represents any point inside a contour C in which F(s) is regular, 
and z refers to points on the contour. 

Another very important fact about analytic functions can be deter
mined from Cauchy's integral formula. Let us try to find the nth order 
derivative of an analytic function F(s). For the first and second derivatives 
we can use the definition of a derivative directly on (26), without getting 
bogged down in a great mass of algebra. The result will be 

(27a) 

(27b) 

The form of these expressions, which seems to indicate that we simply 
differentiate with respect to s under the integral sign, suggests the follow
ing expression for the nth derivative. 

(28a) 

This result can be corroborated by the use of mathematical induction. 
An extremely important implication of the points we have just been 

discussing is the following. If a single-valued function F(s) is regular at a 
point, it follows that the function will have derivatives of all orders at that 
point. This same statement cannot be made for a function of a real 
variable. 

Having seen that the derivative of an analytic function is itself 
analytic and has the same region of regularity, we can now make a state
ment that appears to be the converse of Cauchy's theorem Let F(s) be 
a function that is continuous in a region R and whose closed contour integral 
around all possible paths in the region is zero. These conditions ensure that 
F(s) has an antiderivative G(s) that is regular in the region R. But the 
derivative of G(s) is F(s); consequently F(s) is also regular in R. This 
result is known as Morera's theorem. 

MAXIMUM MODULUS THEOREM A N D SCHWARTZ'S LEMMA 

Cauchy's formula leads to some other very interesting results. However, 
we shall demonstrate these same results from the viewpoint of mapping. 
Let F = F(s) be an analytic function that is regular within and on a curve 
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C in the s-plane; let this region, including the curve C, be R. The map of the 
the curve C may take one of the forms shown in Fig. 7. Note that the maps 

Fig. 7. Demonstration of the principles of maximum and minimum. 

(a) (b) (c) 

of the region R cannot extend to infinity, since infinity in the F-plane 
corresponds to a singular point in the s-plane, and there are no singular 
points in R. Both maps of the curve C have been shown as simple closed 
curves for simplicity; they need not, and usually will not, be. In the map 
shown in part (b) the origin of the F-plane is inside the region. This corres
ponds to the possibility that F(s) has a zero in the region R. The origin is 
not included inside the map of region R shown in part (c). 

In either of these eases it is clear from the figures that the point in R1 
or R2 that lies farthest from the origin of the F-plane lies on the boundary 
of the region, which is the map of curve C. Similarly, if F(s) does not have 
a zero in region R, then the point in R2 which lies closest to the origin of 
the F-plane lies on the boundary, as illustrated in part (c) of the figure. 
It is also clear from the figure that the minimum values in region R2 of 
the real part of F, and the imaginary part, lie on the boundary. The last 
statement is also true when F(s) has a zero in the region, as part (b) of the 
figure illustrates. But in this case the smallest value of the magnitude, 
which is zero, lies inside the region and not on the boundary. We shall 
summarize these results as follows. 

Let a closed curve C and its interior constitute a region R in the s-plane 
and let F= F(s) = U + j X be regular in R. The largest value reached by 
the magnitude | F(s)|, the real part U and the imaginary part X in region 
R occurs for some point or points on the boundary. Likewise, the minimum 
values reached by the real part and the imaginary part in R occur on 
the boundary. The last is also true for the magnitude if F(s) has no zero in 
region R. The statements concerning the magnitude are referred to as the 
maximum modulus theorem and the minimum modulus theorem. Similar 
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designations can be applied to the other cases b y replacing "modulus" 
by "real part" and "imaginary part." 

A somewhat stronger statement than the maximum modulus theorem 
can be made if, F(s) satisfies the additional condition that F(0) = 0, and 
if the region R is a circle. More specifically, suppose F(s) is regular within 
a circular region of radius r and has a zero at s = 0. Let its maximum 
magnitude on the circle be M. Then F(s)/s is also regular within the circle 
and satisfies the conditions of the maximum modulus theorem. Hence, 
|F(s)/s| ≤ M/r. That is, for all points within the circle, 

( 2 8 6 ) 

The equality holds only at s = 0 or if F(s) = Ms jr. This result is called 
Schwartz's lemma. 

A2.4 INFINITE SERIES 

Let f2(s),f2(s), ... be an infinite sequence of functions and consider the 
sum of the first n of these: 

( 2 9 ) 

This is called a partial sum of the corresponding infinite series. Now 
consider the sequence of partial sums, S1, S2, ..., Sn. We say that this 
sequence converges in a region of the complex plane if there is a function 
F(s) from whose value at a given point the value of the partial sum Sn 

differs as little as we please, provided that we take n large enough. The 
function F(s) is called the limit function of the sequence. More precisely, 
we say that the sequence converges in a region R if, given any positive 
number ε, there exists an integer Nj and a function F(s) such that at any 
point sj in the region 

(30) 

for all values of n greater than Nj. The value of the integer Nj will depend 
on the number ε and on the point sj. 

We say that the sequence is uniformly convergent in a closed region 
if the same integer N can be used in the role of Nj for all points in the 
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region instead of having this integer depend on the point in question. 
(N still depends on ε.) 

The infinite series is said to converge (or converge uniformly) to the 
function F(s) if the sequence of partial sums converges (or converges 
uniformly). An infinite series is said to converge absolutely if the series 
formed by taking the absolute value of each term itself converges. 
Absolute convergence is a stronger kind of convergence. It can be shown 
that if a series converges absolutely in a region R it also converges in the 
region. 

We shall now state a number of theorems about sequences of functions 
without giving proofs.* 

Theorem 1 . If a sequence of continuous functions S n (s) is uniformly 
convergent in a region R, then the limit function of the sequence is continuous 
in the same region R. 

Theorem 2 . If a sequence of continuous functions S n (s) converges uni
formly to a limit function F(s) in a region R, then the integral of F(s) along 
any simple arc C in the region R can be obtained by first finding the integral 
along C of a member S n(s) of the sequence and then taking the limit as 
n -> ∞ ; that is, 

(31) 

Theorem 3. If a sequence of analytic functions S n(s) is regular in a region 
R and if they converge uniformly in R to a limit function F(s), then F(s) is 
regular in the region R. 

Theorem 4. If the members of a sequence of analytic functions S n(s) are 
regular in a region R and if the sequence converges uniformly in R to a 
limit function F(s), then the sequence of derivatives S'n(s) converges uniformly 
to the derivative of F(s) for all interior points in R. 

Repeated applications of the theorem shows that the sequence of kth 
order derivatives Sn

(k)(s) converges uniformly to F(k)(s). 

* All of these theorems have to do with conditions under which two limit operations 
can be interchanged. They are of the general character 

This interchange is permissible if both limits (separately) exist and one of them (say 
x -> a) exists uniformly with respect to the other variable. 
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TAYLOR SERIES 

These theorems can be used to establish many important properties of 
infinite series by letting the sequence of functions Sn(s) represent the 
partial sums of a series. Let us consider an important special case of 
infinite series. 

We shall define a power series as follows: 

(32) 

The partial sums of a power series are polynomials in (s — s0); hence 
they are regular in the entire finite complex plane (this implies that they 
are continuous as well). If we can now determine the region of uniform 
convergence, we can use Theorems 1 through 4 to deduce properties of 
the limit function. 

Suppose that a power series converges for some point s = s1. It is easy 
to show that the series will converge absolutely (and hence it will also 
converge) at any point inside the circle with center at s0 and radius 
|s1 — s0|- The largest circle with center at s0 within which the series con
verges is called the circle of convergence, the radius of the circle being the 
radius of convergence. It follows that a power series diverges (does not 
converge) at any point outside its circle of convergence, because if it 
does converge at such a point s2, it must converge everywhere inside the 
circle of radius |s2 — s0|, which means, that the original circle was not 
its circle of convergence. 

Let R0 be the radius of convergence of a power series and suppose that 
R1 is strictly less than R0. Then it can be shown that the given series is 
uniformly convergent in the closed region bounded by the circle of radius 
R1< Ro with center at s0. 

Suppose now that a power series converges to a function F(s) in a 
circle of radius R0. This means that the sequence of partial sums Sn(s) 
will have F(s) as a limit function. Since Sn(s) is a continuous function, 
it follows from Theorem 1 that F(s) is also continuous everywhere inside 
the circle. Furthermore, since the partial sums are regular in the region 
of uniform convergence, it follows from Theorem 3 that F(s) is regular 
in the region. Thus a power series represents an analytic function that is 
regular inside its circle of convergence. 

Two other important conclusions about power series follow from 
Theorems 2 and 4. According to Theorem 2, since the partial sums of a 
power series satisfy the conditions of the theorem, a power series that 
converges to F(s) can be integrated term by term and the resulting series will 
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converge to the integral of F(s) for every path inside the circle of convergence. 
Similarly, according to Theorem 4, a power series may be differentiated 
term by term, and the resulting series will converge to the derivative of F(s) 
everywhere inside the circle of convergence. The circles of convergence of 
both the integrated series and the differentiated series are the same as that 
of the original series. 

We saw that a power series converges to an analytic function that is 
regular within the circle of convergence. The converse of this statement, 
which is more interesting, is also true. Every analytic function can be 
represented as a power series about any regular point s0. The desired 
result is Taylor's theorem, which states: Let F(s) be regular everywhere in a 
circle of radius R 0 about a regular point s 0 . Then F(s) can be represented as 

(33) 

where the coefficients are given by 

(34) 

The circle of convergence of the power series is the largest circle about s 0 

in which F(s) is defined or is definable as a regular function. 
This series is referred to as a Taylor series. The theorem is proved by 

starting with Cauchy's integral formula given in (23) and expanding 
(z— s)—1 as a finite number of terms in inverse powers of (z — s0) (after 
adding and subtracting s0 to the denominator of the integrand), together 
with a remainder term. Use of the integral formulas for the derivatives 
of an analytic function given in (28) leads to a polynomial in (s — s0) 
plus a remainder term. The proof is completed by noting that the remaind
er term vanishes as the order of the polynomial in (s — s0) approaches 
infinity. 

An important consequence of Taylor's theorem is that the circle of 
convergence of any power series passes through a singular point of the 
analytic function represented by it, because by Taylor's theorem, the 
radius of convergence is the distance from the point so to the nearest 
singular point. 

To find the power-series representation of a function, it is not necessary 
to use the formulas given in Taylor's theorem. But independent of the 
method used to find the power series representation, we shall end up with 
Taylor's series, with the coefficients satisfying Taylor's formula. This fact 
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is established through the following identity theorem for power series. If 
the two power series 

have positive radii of convergence and if their sums coincide for an infinite 
number of distinct points having the limit point s 0 , then a n = b n for all n; 
that is, they are identical. 

In particular, the conditions of the theorem are satisfied if the two 
series agree in a neighborhood of so or along a line segment (no matter how 
small) that contains s0. This result is proved by induction on n. Thus 
the representation of an analytic function by a power series about a given 
regular point s0 is unique. 

LAURENT SERIES 

We have seen that a power-series representation can be found for an 
analytic function in the neighborhood of a regular point with a region of 
convergence which extends to the nearest singular point of the function. 
The question arises whether it is possible to find other infinite-series 
representations for an analytic function that converge in other regions. 
Consider the annular region between the two concentric circles C\ and C2 

with center at so shown in Fig. 8. A function F(s) is regular on C\, C2, and 

Fig. 8. Region of convergence of a Laurent series. 

the region between them. The point so may be a regular point or a singular 
point of F(s). Also there may be other singular points of F(s) inside the 
inner circle. The annular region can be made simply connected by the 
device of "digging a canal" discussed in a preceding section. If we now 
apply Cauchy's integral formula, we get 

(35) 
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where s is a point in the interior of the annular region and z represents 
points on the contours of the two circles. For the quantity (z — s)—1 we can 
write 

(36) 

(37) 

These can be checked by noting that the expression 

(38) 

is an identity for all values of w except w = 1. Equation 36 is obtained by 
adding and subtracting s0 in the denominator on the left and then writing 
it in the form of (38) with 

(39) 

A similar case obtains for (37), except that w is now 

(40) 

Now let us use (36) in the first integral in (35) and (37) in the second 
integral. Each integral will give a finite number of terms plus a remainder 
term. It can be shown, as in the proof of Taylor's theorem, that the 
remainder terms vanish as n-> ∞ . The final result is 

(41) 

or 

(42) 

where ak in the last expression is given by 

(43) 
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The contour C is any closed contour in the annular region between C1 
and C2. 

The series just obtained is called a Laurent series. It is characterized by 
having negative as well as positive powers. Its region of convergence is an 
annular region, as contrasted with the region of convergence of a Taylor 
series, which is a circle.* For a given function F(s) and a point of expan
sion so there can be more than one Laurent series with different regions of 
convergence. The point of expansion can be a regular point or a singular 
point. As in the case of a Taylor series, it is not necessary to use the formula 
in order to determine the coefficients in any particular case. But the 
identity theorem for Laurent series, which follows the statement of the 
residue theorem in the next section, tells us that no matter how the 
Laurent series of a function may be obtained, it must be unique, for a 
given region of convergence. 

Let us now consider the particular case of a Laurent expansion of a 
function F(s) about a point s0, which is a singular point. The inner circle 
in Fig. 8 is to enclose no other singularities (this implies that the singul
arity is isolated). Hence we should expect the Laurent series to tell us 
something about the nature of the singularity at s0. Remember that the 
Laurent series consists of two parts, the positive powers and the negative 
powers. Let us define the regular part Fr(s) of the Laurent expansion as 
the series of positive powers and the constant, and the principal part 
Fp(s) as the series of negative powers. If there were no principal part, the 
Laurent series would reduce to a Taylor series and s0 would be a regular 
point. Thus the principal part of the Laurent series contains the clue 
regarding the nature of the singularity at so. 

To describe the singularity at so we make the following definitions. 
We say F(s) has a pole of order n at s0 if the highest negative power in the 
principal part is n. (A pole of order 1 is also called a simple pole.) On the 
other hand, if the principal part has an infinite number of terms, the 
singularity at so is called an isolated essential singularity. (The word 
"iso lated" is often omitted.) 

FUNCTIONS D E F I N E D B Y SERIES 

One of the results that we noted previously is that a power series defines 
an analytic function that is regular inside its circle of convergence. 
We shall now use this fact to define some specific functions. Up until now 

* This property of Laurent series can be interpreted as saying that the series of posit
ive powers in (s — s0) converges everywhere inside C2 of Fig. 8 and the series of negative 
powers converges everywhere outside of C1, the two converging simultaneously in the 
annular region between C1 and C2. 
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we have explicitly mentioned rational functions. In the case of real vari
ables we know the importance of such functions as exponentials, trigono
metric and hyperbolic functions, and others. However, we have no basis 
for taking over the definitions of such functions from real variables. The 
tangent of a complex variable, for instance, cannot be defined as the ratio 
of two sides of a triangle. 

We use the above-quoted property of power series to define an exponen
tial function as follows: 

(44) 

The last form is obtained by inserting s = σ + j ω in the series; expanding 
the powers of s; collecting terms; and finally identifying the real power 
series representing e σ , cos ω, and sin ω. We are not completely free in 
choosing a defining series for e s , because it must reduce to the correct 
series when s is real. 

To determine the radius of convergence of the defining series we can 
resort to various tests for the convergence of series (which we have not 
discussed). Alternatively, since the series represents an analytic function, 
we can use the Cauchy-Riemann equations. In the latter case we find that 
there are no singular points in the entire finite plane, since the Cauchy-
Riemann equations are satisfied everywhere. Hence the series converges 
everywhere. (The same result is, of course, obtained by testing the series 
for convergence.) 

We can now follow the same procedure and define other transcendental 
functions in terms of series. However, it is simpler to define the trigono
metric and hyperbolic functions in terms of the exponential. By definition, 
then, 

(45) 

(46) 

From the behavior of the exponential we see that the sines and cosines, 
both trigonometric and hyperbolic, are regular for all finite values of s. 
The singular points of tan s occur when cos s = 0; namely, for an infinite 
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number of real values of s at the points s = (2k— l)π/2 for all integral 
values of k. Similarly, the singular points of tanh s occur when cosh s = 0; 
namely, at an infinite number of imaginary values of s at the points 
s = j(2k — l)π/2 for all integral values of k. 

The trigonometric and hyperbolic functions of a complex variable 
satisfy practically all of the identities satisfied by the corresponding real 
functions. 

A2.5 MULTIVALUED FUNCTIONS 

In real function theory we define a number of "inverse" functions. 
These functions can be extended into the complex plane as analytic 
functions. As we know, most of these functions (the nth root, inverse 
sine, etc.) are multivalued on the real line. We may therefore expect 
similar behavior in the complex plane, 

THE LOGARITHM FUNCTION 

Let us begin by extending the concept of the logarithm. We define 

(47a) 

if and only if 

(47b) 

(In this appendix we shall conform to the mathematical convention of 
writing log for the logarithm to the base e.) Since we know the meaning 
of (47b), we also know the meaning of (47a). Let us first observe that if 
G(s) satisfies (47b), so does G(s) + j2kπ, since 

(48) 

(We are using several results for the exponential function which we have 
not established in the complex plane, but which can be proved very 
easily.) Thus (47a) does not define a unique functional value for G(s). 
However, we can show that any two values satisfying (47b) can differ by 
at most j2kπ. (Do this.) Thus, although the function log F(s) is multi
valued, its values are related by the simple additive constants j 2 k π . 
We shall find a formula for one of these multiple values by writing 

(49) 
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where arg F(s) is the principal value of the argument defined by 

(50) 

Expressing |F(s)| as exp[log| F(s) | ] , (49) becomes 

(51) 

Therefore from the definition of the logarithm one of the values of this 
function is 

(52) 

This particular value, which is unique by virtue of (50) is known as the 
principal value of the logarithm function. We signify this conventionally 
by writing a capital " L " in log F(s); similarly, arg F(s) always means the 
principal value given in (50). Thus we can write, for ail values of the 
log function, 

(53) 

where k is an integer—positive, negative, or zero. 
Thus there are an infinite number of values for the logarithm function, 

one for each value of k. Because of this difficulty, we might try to simplify 
by using only the principal value, Log F(s). Before considering Log F(s), 
let US first consider the behavior of the function Log s in the complex plane. 
Log s is given by 

(54) 

where 

(55) 

We notice that the angle θ is undefined at s = 0. Therefore this equation 
does not define Log s at s = 0. But no matter how we define Log 0, Log s 
will not be continuous at s = 0, since the imaginary part of Log s takes 
on all values from —π to π in any neighborhood of s = 0. Therefore s = 0 
is a singular point of Log s. Even though we restrict ourselves to the 
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principal value, Log s is discontinuous at any point on the negative real axis; 
for, the imaginary part of Log s here is π, but there are points arbitrarily 
close to it at which the imaginary part is very nearly —π. Thus Log s is 
not regular at any point on the negative real axis, including s = 0, ∞ . 
(The behavior at ∞ is identical to the behavior at 0, since Log 1/s = 
— Log s, as you can verify.) 

BRANCH POINTS, CUTS, A N D RIEMANN SURFACES 

However, if we consider the complex plane to be " c u t " along the 
negative real axis, as illustrated in Fig. 9, preventing us from going from 

Fig. 9. The cut s-plane. 

one side of it to the other, Log s is regular in the rest of the complex plane. 
In fact, we have 

(56) 

at all other points of this " c u t " plane. Thus Log s is an antiderivative 
of 1/s. We can show that 

(57) 
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provided the path of integration does not go through the " c u t " negative 
real axis. 

Similar remarks apply to the other values of the logarithm function. 
The restriction to principal values is unnecessary. The only thing we 
need to do is to restrict the imaginary part of log s to some 2π range. 
For (57) to apply, we have to add a suitable multiple of j 2 π to the right 
side. It is not even necessary that the cut be along the negative real axis. 
We may cut the plane along any radius vector by defining 

(58) 

Even this is unnecessary. Any simple path from s = 0 to s = ∞ will do. 
Thus by suitable restrictions we can make the function log s single-

valued and regular in any neighborhood. The only exceptional points 
are s = 0, ∞ . No matter what artifice we employ, we cannot make log s 
regular and single valued in a deleted neighborhood of s = 0, ∞ . (Since 
these points are singular points, we have to delete them from the neighbor
hood if we hope to make the function regular.) Thus these two singular 
points are different in character from the ones we have met so far. 
Therefore we give them a different name. They are called branch points. 
Precisely, a branch point is defined as follows. 

The point s0 is a branch point of the function F(s) if s0 is an isolated 
singular point and there is no deleted neighborhood of s0 in which F(s) 
is defined or is definable as a single-valued regular function. 

We now see that the plane has to be cut along a simple path from one 
branch point of log s to the other branch point. Each value of log s so 
obtained is called a branch of the function. Thus Log s is a branch of log s. 

Riemann introduced an artifice that allows us to consider the complete 
log function and treat it as a single-valued function. This important 
concept is known as the Riemann surface. It is quite difficult to define 
this term precisely, and we shall not attempt it. Instead let us describe 
a few Riemann surfaces. For the function log s the Riemann surface has 
the following structure. We consider the s-plane to consist of an infinite 
number of identical planes. One of these is the plane in which arg s is 
restricted to its principal value. There are an infinite number of sheets 
above this and another infinity below. All of these planes are cut along the 
negative real axis. All of these have the same origin and ∞ , so that the 
sheets are all joined together at these points. Each sheet is also joined to 
the ones immediately above and below, along the negative real axis. The 
upper edge of the negative real axis of each sheet is joined to the lower 
edge of the negative real axis of the sheet immediately above it. The whole 
Riemann surface looks somewhat like an endless spiral ramp. 
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Let us consider log s on such a surface. On each sheet. 

(59) 

where k is a fixed integer. The integer k increases by 1 as we go to the 
sheet immediately above and decreases by 1 as we go to the sheet immed
iately below. On this Riemann surface, therefore, log s is a single-valued 
regular function with two singular points, s = 0, ∞ . 

We can now return to the function log F(s). We are considering log F(s) 
as a function of s. In the F-plane the branch cut goes from F(s) = 0 to 
F(s) = ∞ . Let US consider only the simplest case where F(s) is rational. 
The other cases are somewhat more complicated. The branch points in the 
s-plane are the zeros and poles of F(s). Each branch cut goes from a zero 
to a pole. The number of branch cuts at a zero or a pole is equal to the 
multiplicity. The branch cuts are chosen so as not to intersect except at 
branch points. 

As another example of the concept of the Riemann surface, let us 
consider the inverse of the function 

(60) 

The inverse of this function is called the square root, written 

(61) 

(Formally we define powers of s other than integral powers as 

(62) 

where α may be any complex number.) As in the real case, the square root 
is a double-valued function. The two values G1 and G 2 are related by 

(63) 

We may make this function single-valued by restricting the angle of s as 
before; that is, 

(64) 

and defining the "positive square root" as 

(65) 

where √|s| is a real positive number. 
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Again we find that G1(s) is not continuous on the negative real axis, 
including s = 0, ∞ . The points s = 0, ∞ are seen to be branch points of 
this function G(s). The Riemann-surface concept may be introduced as 
follows. We need two sheets of the Riemann surface, both cut along the 
negative real axis. To make G(s) continuous and regular on this surface, 
we "cross-connect" the two sheets along the negative real axis. The 
upper edge of the negative real axis of each sheet is connected to the lower 
edge of the negative real axis of the other sheet. (Obviously, it is useless 
to attempt to draw a picture of this in three dimensions.) On this Riemann 
surface, G(s) is regular and single valued except at s = 0, ∞ . 

We see that the branch points of the function log s are somewhat 
different from the branch points of s1/2. In one case we have an infinite 
number of branches, and in the other case we have only a finite number. 
Therefore we sometimes distinguish between these by calling the former 
a logarithmic singularity (or a logarithmic branch point) and the other an 
algebraic singularity (or an algebraic branch point). 

For example, we can extend this discussion to other algebraic irrational 
functions, 

(66) 

in an obvious way. 

CLASSIFICATION OF MULTIVALUED FUNCTIONS 

We have seen that the singularities of an analytic function are extremely 
important. In fact, we can classify analytic functions according to the type 
and locations of its singular points. This we shall do in the following 
brief discussion. 

The simplest case is that of an analytic function that possesses no 
singularities at all, either in the finite plane or at ∞ . In this case a theorem 
known as Liouville's theorem tells us that the function is simply a constant. 
The next case we might consider is that of a function that has no finite 
singularities, that is, the only possible singularity is at s = ∞ . The ex
ponential function is an example of this class. A function that has no 
singularities in the finite s-plane is known as an entire (or integral) function. 
If the singularity at ∞ is a pole, we see from the Laurent expansion 
about ∞ that this function is a polynomial (also called entire rational or 
integral rational). If the singularity at ∞ is an essential singularity the 
function is an entire transcendental function. The functions e s , sin s, 
COS s, etc., belong to this category. 
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The quotient of two entire functions is a meromorphic function. The 
only singularities of a meromorphic function in the finite plane are the 
points at which the entire function in the denominator goes to zero. Thus 
a meromorphic function can have only poles in the finite part of the 
s-plane. Again the behavior at infinity divides this class into two sub
classes. If the point ∞ is either a regular point or a pole, then it can be 
shown that the function has only a finite number of poles (by using the 
theorem known as the Bolzano-Weierstrass theorem). Then by using the 
partial-fraction expansion, to be given in Section A2.7, we can show that 
this function is a rational function—that is, a quotient of two polynomials. 
Conversely, every rational function is a meromorphic function with at 
most a pole at s = ∞ . An example of a nonrational meromorphic function 
is tan s or cosec s. 

All of these functions are single-valued functions. The multivalued 
functions can be classified according to the number of branch points and 
the number of branches at each branch point. A function with a finite 
number of branch points and a finite number of branches is an algebraic 
irrational function. We saw examples of these. The logarithm function can 
be used to construct examples for infinite number of branches. The 
function log s has a finite number of branch points but an infinite number 
of branches. The function log sin s has an infinite number of branch 
points and an infinite number of branches, whereas the function √s in s 
has an infinite number of branch points with a finite number of branches 
at each branch point. These three classes have no special names associated 
with them. 

A2.6 THE RESIDUE THEOREM 

Cauchy's theorem tells us about the value of a closed-contour integral 
of a function when the function is regular inside the contour. We now 
have the information required to determine the value of a closed-contour-
integral when the contour includes one or more singular points of the 
function. For this purpose turn to the formula for the coefficients of a 
Laurent series given in (43) and consider the coefficient of the first inverse 
power term, k = — 1 . This is 

(67) 

This is an extremely important result. It states that if a function is 



884 THEORY OF FUNCTIONS OF A COMPLEX VARIABLE [App. 2 

integrated around a closed contour inside which the function has one 
singular point, the value of the integral will be 2πj times the coefficient 
of the first negative power term in the Laurent series. None of the other 
terms in the series contributes anything; they all "wash out." We call 
this coefficient the residue. Note that the function is regular on the 
contour. 

If the contour in question encloses more than one singular point (but a 
finite number), we can enclose each singular point in a smaller contour 
of its own within the boundaries of the main contour. By "digging canals" 
in the usual way, we find the value of the integral around the original 
contour to be equal to the sum of the integrals around the smaller con
tours, all taken counterclockwise. Now we consider a Laurent series 
about each of the singular points such that no other singular points are 
enclosed. According to the preceding paragraph, the value of the integral 
about each small contour is equal to 2πj times the corresponding residue. 
Hence the integral around the original contour is equal to 2πj times the 
sum of the residues at all of the singular points inside the contour ; that is, 

(68) 

This statement is referred to as the residue theorem. To find the value of a 
closed-contour integral, then, all we need to do is to calculate the residues 
at all of the singular points in a manner independent of the formula for the 
coefficients of the Laurent series. 

Consider a function F(s) that has a pole of order n at s0. If the Laurent 
series about s0 is multiplied by (s — s0)n, the result will be 

(69) 

The function on the left is regular at s0, and the series on the right is the 
Taylor series representing it in the neighborhood of s0. Hence, by using 
the formula for the Taylor coefficients, we get 

( 7 0 ) 

For a simple pole this reduces to the following simple form: 

( 7 1 ) 
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In the case of poles, at least, we now have an independent way of finding 
residues. 

There are alternative ways of expressing the residue at a simple pole, 
which are useful in computations. If the given function is expressed as 

( 7 2 ) 

where so is a simple pole of F(s), in the nontrivial case H(s) has a simple 
zero at so and G(s) is regular and nonzero at s0. In this case we may write 

( 7 3 ) 

since G(s) is regular at a0. Thus the limit in the numerator is simply 
G(s0). For the limit in the denominator we subtract H(s0) from H(s), 
which is permissible since H(so) = 0, getting 

( 7 4 ) 

since the limit of the difference quotient is by definition the derivative. 
If, on the other hand, we write 

( 7 5 ) 

and follow through the same argument, we conclude that 

( 7 6 ) 

Thus the residue at a simple pole is the reciprocal of the derivative of the 
reciprocal function. 

One of the important applications of the residue theorem is the following 
identity theorem for Laurent series: 

If the two Laurent series 
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have a common region of convergence R1 < |s — s 0 | < R 2 and represent the 
same function in this region, then 

Since the two series represent the same function, 

(77) 

Since the positive and negative series are power series, they converge 
uniformly for |s — s0| ≤ R2 — ε, (ε > 0) and |s — s0| ≥ R1 + ε, respectively. 
Therefore in the annular region R1 + ε ≤ | s—s 0 | ≤ R2 — ε the Laurent 
series are uniformly convergent. We now multiply both sides of (77) by 
(s — s0)*-1, where k is an integer—positive, negative, or zero—and inte
grate along a circular path C lying in the region of uniform convergence 
and enclosing s0. By the residue theorem we get 

which proves the result. 

EVALUATING D E F I N I T E INTEGRALS 

The residue theorem (which, incidentally, includes Cauchy's theorem) 
provides a means for evaluating many real definite integrals that cannot 
be evaluated by other means. We choose a function of s that reduces to 
the given real integrand when s is real, and we choose a closed contour 
that includes as part of it the desired interval in the definite integral. 
Now if we can find the residues at the singularities of the integrand that 
might lie inside the chosen contour, and if we can independently calculate 
the contribution to the closed-contour integral of the parts of the path 
other than the desired interval, the value of the desired integral can be 
found. 

In evaluating such integrals two circumstances often arise. In the first 
place it may happen that the integrand has a simple pole on the path of 
integration. In order to apply the residue theorem the function must be 
regular on the closed contour. This situation is remedied by distorting, or 
indenting, the contour by a small semicircular arc, as shown in Fig. 10. 
The new contour is, of course, different from the old one. However, we 
eventually let the radius of the semicircle approach zero. It remains to 
calculate the contribution of the semicircle to the closed-contour integral. 
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Fig. 10. Distortion of contour of integration around pole. 

(a) 

Path of 
integration 

Simple 
pole 

(b) 

Consider the semicircular path shown in Fig. 10b around a simple pole 
at s0. The Laurent expansion of F(s) about s0 has the form 

(78) 

Note that the direction of the path is counterclockwise around the pole 
when we are to indent the contour in such a way that the pole is inside. 
We can also indent the contour to exclude the pole. Then the value 
obtained will be the negative of that obtained here. The series in this 
equation can be integrated term by term; let (s — s0) = rejθ and let C 
represent the semicircle. On the semicircle θ varies from 0 to π. The integral 
of F(s) on the semicircle becomes 

(79) 

The first term is seen to be independent of the radius r of the semicircle. 
As we let r approach zero, each term in the summation will vanish. Hence 

(80) 

that is, the integral around half a circle about a simple pole will have one 
half the value of an integral around a complete circle. In fact, by the same 
reasoning, if the contour is a fraction k of a circular arc, the contribution 
will be k(2πja—1). 
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JORDAN'S LEMMA 

The second circumstance that often arises in definite integrals is the 
need to evaluate an integral with infinite limits, such as 

( 8 1 ) 

Such an integral is called an improper integral. The notation means 

( 8 2 ) 

The value obtained by going to negative and positive infinity in a sym
metrical fashion is called the principal value of the integral. 

This type of integral can be evaluated by choosing a contour consisting 
of the imaginary axis from — R0 to R0 and a large semicircle in the right 
or left half-plane, such as the one shown in Fig. 11. The integrand must 

Fig. 11. Contour for evaluating infinite integrals. 

be a function F(s) that reduces to the given integrand on the imaginary 
axis. Use of the residue theorem will now permit the evaluation of the 
desired integral, provided that the integral along the semicircular arc 
tends to a limit as R0 -> ∞ and that this limit can be found. It would be 
best if there were no contribution from this arc. Let F(s) be the integrand 
of the contour integral. It can be shown that if sF(s) on the arc approaches 
zero uniformly* as the radius of the circle approaches infinity, then there 

* That is, the limit is approached at the same rate for all angles of s within this range. 
The range is |arg s\ < π / 2 for a semicircle in the right half-plane and |arg s\ > π/2 for a 
semicircle in the left half-plane. In the e-δ language, the magnitude of the difference 
between sF(s) and the limit (in this case 0), can be made less than e, so long as |s| > N(e), 
where N(e) is independent of arg s in the appropriate range. 
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will be no contribution from the infinite arc; for example, if F(s) is a ratio 
of two polynomials, the degree of the denominator must exceed that of the 
numerator by 2 or more. 

Let t be a real variable and suppose the integrand has the form 

( 8 3 ) 

Then it can be shown that for t > 0 the infinite arc in the left half-plane 
will not contribute to the integral, nor will the arc to the right for t < 0, 
provided that G(s) vanishes uniformly as the radius of the semicircle 
approaches infinity. This result is called Jordan's lemma. The presence of 
the exponential loosens the restriction on the remaining part of the 
integrand. Thus, if G(s) is a ratio of two polynomials, it is enough that the 
degree of the denominator exceed that of the numerator by 1 (or more). 

As an example of the evaluation of integrals consider 

( 8 4 ) 

B y substituting the definition of a sine function in terms of exponentials, 
we get, 

( 8 5 ) 

In the second integral, if we replace ω by —ω, the integrand will become 
identical with that of the first integral, whereas the limits will become 
— ∞ to zero. The two integrals can then be combined to yield, 

( 8 6 ) 

Now consider the integral 

( 8 7 ) 

where the contour C is the closed contour shown in Fig. 12. The inte
grand has a simple pole on the original contour so that we indent the 
contour around the pole as shown. The complete contour consists of two 
portions of the jω-axis and two semicircles, the radius of one of which will 



890 THEORY OF FUNCTIONS OF A COMPLEX VARIABLE [App. 2 

Fig. 12. Path of integration for the evaluation of an integral. 

approach zero while the other will approach infinity. Since the integrand 
is regular everywhere inside the contour, the closed-contour integral will 
vanish. We can write 

(88) 

The integrand satisfies Jordan's lemma, so that the last integral in this 
equation will vanish. The value of the integral on C0 is —jπ times the 
residue of the integrand at s = 0 , according to (80). To calculate the residue 
we use (71) and find it to be unity. Hence 

(89) 

We can now write (88) as 

(90) 

But by the improper integral in (86) we mean precisely the left side of the 
last equation. Hence, finally, 

(91) 
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PRINCIPLE OF THE ARGUMENT 

As another application of the residue theorem we shall now prove a 
very useful theorem called the "argument principle." Let F(s) be an 
analytic function that is regular in a region R except possibly for poles. 
We would like to evaluate the integral. 

(92) 

around a closed contour C in region R in the counterclockwise direction, 
where the prime denotes differentiation. There should be no poles or zeros 
of F(s) on the contour C. 

Suppose F(s) has a zero of order n at a point s1 in R, Then we can 
write 

(93) 

We see that this function has a simple pole at the zero of F(s) with a 
residue n. The function Fi(s) can now be treated in the same way and 
the process repeated until all the zeros of the original function F(s) have 
been put into evidence. Each zero will lead to a term like the first one on 
the right side of (93). 

Now suppose that F(s) has a pole of order m at a point s2 in R. Then 
we can write 

(94) 

The desired function is seen to have a simple pole at the pole of F(s), 
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with a residue that is the negative of its order. Again the same process 
can be repeated and each pole of F(s) will lead to a term like the first one 
on the right side of the last equation. The only singularities of F'(s)/F(s) 
in the region R will lie at the zeros and the poles of F(s). Hence, by the 
residue theorem, the value of the desired contour integral will be 

(95) 

where the nj are the orders of the zeros of F(s) in R and the mj are the 
orders of the poles. 

Note, however, that 

(96) 

Hence we can evaluate the contour integral by means of the antiderivative 
of F'(s)/F(s), which is log F(s). In going around the contour C we mean 
to start at a point and return to the same point. Note that the multi
valued function log F(s) will have the same real part after returning to the 
starting point. Hence the value of the integral will be j times the increase 
in angle of F(s) as s traverses the contour C in the counterclockwise 
direction. This should equal the right side of (95). If we now divide by 2π, 
the result should be the number of times the locus of the contour C in the 
F-plane goes around its origin counterclockwise (increase in angle divided 
by 2π is the number of counterclockwise encirclements of the origin). 

Let us now state the principle of the argument. If a function F(s) has 
no singular points within a contour C except for poles, and it has neither 
zeros nor poles on C, then the number of times the locus of the curve C in the 
F-plane encircles its origin in the counterclockwise direction is equal to the 
number of zeros minus the number of poles of F(s) inside C. Each zero and 
pole is to be counted according to its multiplicity. 

Before concluding this section, let us consider another contour integra
tion problem. This is the problem of integrating a function partway 
around a logarithmic singularity. 

Let us therefore consider the integral 

where the path P is an arc of a circle around a zero or a pole of F(s), as 
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shown in Fig. 10b. Let F(s) have a zero (or a pole) of order k at s0. Then 
we may write 

(97a) 

(97b) 

If so is a pole, we let k be a negative integer in these expressions, thus 
including a zero of order k and a pole of order —k simultaneously in the 
discussion. As we let the radius of the circle approach zero, log Fi(s) will 
not contribute anything to the integral, since it is regular at s0. Thus it 
is sufficient to consider 

if we wish to take the limit, as we do. 
On the arc of radius r, we may estimate 

(98) 

where θ is the angle subtended by the arc at the center. Now it is a well-
known result that 

(99) 

Hence 

(100) 

which is the result we wish to establish. We have shown that a logarithmic 
singularity lying on a path of integration does not contribute anything 
to the integral. 

A2.7 PARTIAL-FRACTION EXPANSIONS 

The Laurent expansion of a function about a singular point describes 
a function in an annular region about that singular point. The fact that 
the function may have other singular points is completely submerged and 



894 THEORY OF FUNCTIONS OF A COMPLEX VARIABLE [App. 2 

there is no evidence as to any other singular points. It would be useful 
to have a representation of the function that would put into evidence all 
of its singular points. 

Suppose a function F(s) has isolated singularities at a finite number n of 
points in the finite plane. It may also have a singularity at infinity. Let us 
consider expanding F(s) in a Laurent expansion about one of the singular 
points say s1. The result will be 

(101) 

where the subscripts refer to the principal part and the regular part. 
Now consider Fr1(s), which is simply the original function F(s) from 

which has been subtracted the principal part of the Laurent series about 
one of its singularities. This function is regular at s1 but has all the other 
singularities of F(s). Let us expand it in a Laurent series about one of the 
other singularities, s2 : 

(102) 

The function Fp1(s) is regular at the singularity s2; hence it will not 
contribute anything to the principal part Fp2(s). This means that the 
principal part Fp2(s) will be the same whether we expand Fr1(s) or the 
original function F(s). 

We now repeat this process with Fr2(s) and keep repeating with each 
singularity. At each step we subtract the principal part of the Laurent 
expansion until ail the singular points are exhausted. The regular part of 
the last Laurent expansion will have no other singularities in the finite 
plane. Hence it must be an entire function. In this fashion we have 
succeeded in obtaining a representation of F(s) that has the form 

(103) 

Each of the terms in the summation is the principal part of the Laurent 
series of F(s) expanded about one of its singularities. The last term is an 
entire function. If F(s) is regular at infinity, this term will be a constant. 
If F(s) has a pole of order n at infinity, this term will be a polynomial of 
degree n. Finally, if F(s) has an essential singularity at infinity, this term 
will be an infinite power series. The representation of an analytic function 
given in (103) is called a partial-fraction expansion. 

Suppose a function has an infinite number of poles and no essential 
singularities in the finite plane (this makes it a meromorphic function). 
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In such cases also a partial-fraction expansion can be found. However, 
the summation of principal parts in (104) will be an infinite series and may 
not converge in general. Nevertheless, it is always possible to so modify 
the terms that the series converges. But now the form of the expansion is 
changed. Of course, in some cases such a modification is not necessary, 
but the statement of the conditions when this is true is not a simple one, 
and we will not pursue the subject any further. (This expansion is known 
as the Mittag-Leffler expansion.) 

A2.8 ANALYTIC CONTINUATION 

Near the beginning of this appendix we defined an analytic function as 
one that is differentiable everywhere in a neighborhood, however small, of 
a point. Later, from the Taylor expansion of an analytic function about 
a point so at which the function is regular, we saw that knowledge of all 
the derivatives of an analytic function at a point permits us to represent 
the function everywhere in a circle about the point, a circle that extends 
up to the closest singularity of the function. We stated that once a power-
series representation of a function about a point is obtained, no matter by 
what procedure, this series is unique. We can state this result in a different 
way as follows. If two functions are regular in a region R and if they coincide 
in some neighborhood, no matter how small, of a point s 0 in R, then the two 
functions are equal everywhere in R. This theorem is called the identity 
theorem for analytic functions. (In fact, the two functions need coincide 
only on a segment of path no matter how small; or even only on an infinite 
number of distinct points with a limit point at s0.) 

Now let US consider two functions F1(s) and F2(s), which are respec
tively regular in overlapping regions R1 and R2, the common region being 
R0, as shown in Fig. 13. (The regions need not be circular as shown here.) 
The two functions Fi(s) and F2(s) determine each other uniquely. This 
follows from the identity theorem since only one function can be regular 
in R1 (or R2) and have the same values in R0. 

Suppose we were starting with the function Fi(s) in R1 and could find 
a function F2(s) in R2 with the property just described. We would say 
that Fi(s) has been analytically coninued beyond its original region into 
region R2. But we might just as well consider F2(s) to be the original one 
and Fi(s) its analytic continuation into region R1. For this reason we say 
that each of them is but a partial representation, or an element, of a single 
function F(s) that is regular in both R1 and R2. 

Consider now the problem of starting with one element Fi(s) of a 
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Fig. 13. Common region of definition of two functions. 

function, which is in the form of a power series, and determining its 
analytic continuation outside its original circle of convergence. Figure 13 
can again be used. Suppose we choose a point s0 in region R1. From the 
given element Fi(s) we can evaluate all the derivatives at so and form a 
new power series about s0. This series will certainly converge in Ri, the 
original region of convergence of F1(s), and may also converge in a circle 
that extends beyond the original circle, as the illustration in Fig. 13 
shows. The series then defines another element F2(s) of the function of 
which F1(s) is also an element. We can now choose another point within 
the new region R2, but not common with Ri, and again calculate a new 
series that may converge in a circle extending beyond the boundaries 
of R2. 

This procedure can now be repeated. The only circumstance that will 
prevent any one circle from extending beyond the preceding one is the 
existence of a singular point on the circumference of the first circle that 
lies on the radius of the first circle drawn through the center chosen for 
the second one. But this can be rectified by choosing a different point for 
the center of the second circle, unless every point on the first circle happens 
to be a singular point. This is a possible occurrence, but it is not common. 
If such is the case, the original function is said to have a natural boundary 
beyond which it cannot be analytically continued. 

Barring a natural boundary, then, an element can be analytically 
continued into the whole plane by this process of overlapping circles. 
The only points that will be excluded from the interiors of any of the circles 
will be the singular points. The sequence of functions defined in the circles 
will all be elements of a single function. It is now clear why an analytic 
function was defined as it was. 

The process we have described has very little practical value, since we 
would not ever contemplate the actual construction of all the elements 
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of a function in this manner. However, it has very great significance in 
providing insight into the fundamental behavior of functions. 

In the process of constructing (in imagination, at least) the overlapping 
circles, suppose one of them overlaps one of the earlier ones (thus forming 
a closed chain). The question will arise whether the functional values given 
by the latest function will be the same as those given by the previous 
one in the common region of the two circles. If these values are not the 
same, then the function defined by this set of elements will be multi
valued. 

Let us now consider another aspect of analytic continuation. Suppose 
a function is defined along a simple arc which lies in a region R. It may 
be possible to find a function that is regular in R and coincides with this 
one on the simple arc. This function is also called the analytic continua
tion of the original one. The simple arc may be, for example, part or all 
of the jω-axis. If we define, as an example, a function to have the value 
1 + j ω for the interval 1 ≤ ω ≤ 2 , its analytic continuation is 1 + s. 
There is no other function that is regular in the region containing the 
given interval on the jω-axis and that coincides with the given function 
in that interval. 



Appendix 3 

THEORY OF LAPLACE 
TRANSFORMS 

As for the appendix on functions of a complex variable, this appendix 
on Laplace transforms will serve as a reference for those already familiar 
with the subject. It will also provide an instructor with an outline that 
he can augment by filling in discussions, illustrations, etc. 

The concept of transforming a function can be approached from the 
idea of making a change of variable in order to simplify the solution of a 
problem. Thus if we have a problem involving the variable x, we substitute 
some other expression for x in terms of a new variable (e.g., x = sin θ), 
with the anticipation that the problem has a simpler formulation and 
solution in terms of the new variable θ. After obtaining the solution in 
terms of the new variable, we use the opposite of the previous change 
and thus have the solution of the original problem. 

A more complicated "change of variable," or transformation, is often 
necessary. If we have a function f(t) of the variable t, we define an integral 
transform of f(t) as 

integral transform of f(t) ( i ) 

The function K(t, s), which is a function of two variables, is called the 
kernal of the transformation. Note that the integral transform no longer 
depends on t; it is a function of the variable s on which the kernel depends. 

A 3 . 1 LAPLACE TRANSFORMS: DEFINITION AND CONVERGENCE 
PROPERTIES 

The type of transform that is obtained and the types of problem in 
which it is useful depend on two things: the kernel and the limits of 
integration. For the particular choice of the kernel K(s, t) = e - s t and the 

898 
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limits 0 and infinity, the transform is called a Laplace transform and is 
denoted by £{f(t)}. Thus 

( 2 ) 

The Laplace transform of f(t) is thus a function of the complex variable s. 
We denote the Laplace transform of f(t) by F(s). 

Because it is defined as an integral, the Laplace transform is a linear 
functional; that is, if f1(t) and f2(t) have Laplace transforms Fi(s) and 
F2(s), and k1, k2 are constants, 

(3) 

Since the defining equation contains an integral with infinite limits, 
one of the first questions to be answered concerns the existence of Laplace 
transforms. A simple example of a function that does not have a Laplace 
transform is e e t . Let us therefore state a few theorems (a few of which we 
shall also prove) concerning the convergence of the Laplace integral. 
Since s appears as a significant parameter in (2) we may expect the con
vergence to depend on the particular value of s. In general, the integral 
converges for some values of s and diverges for others. 

In all of the theorems to follow we shall consider only integrable 
functions f(t) without specifically saying so each time. As a first theorem, 
consider the following: 

If the function f(t) is bounded for all t ≥ 0, then the Laplace integral 
converges absolutely for Re(s) > 0. 

To prove the theorem, note that the condition on f(t) means |f(t)| < M 
for all t ≥ 0, where M is a positive number. Then for σ > 0 we shall get 

(4) 

In the limit, as T approaches infinity, the right-hand side approaches 
M/σ. Hence 

(5) 

The familiar sine and cosine functions, and other periodic functions 
such as the square wave, satisfy the conditions of the theorem. Before 
commenting on this theorem, let us consider one more theorem. 
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If the Laplace integral converges for some s 0 = σ 0 + j ω 0 , then it converges 
for all s with σ > σ 0 . 
Let 

( 6 ) 

where k0 is a constant, since s0 is a fixed complex number. Let us define 
the auxiliary function 

( 7 ) 

Then g(τ) has a limit as τ goes to ∞ ; namely, k0. Hence g(τ) is bounded 
for all T. Next, we shall write the Laplace integral as below and integrate 
by parts to get 

( 8 ) 

or 

(9) 

Now g(0) = 0, g(∞) = k0, and if σ > σ 0 , e - ( s - s 0 ) T g ( T ) approaches 0 as T 
approaches ∞ . Also, by the preceding theroem, the last integral in (9) 
converges absolutely for σ > σ 0 as T approaches ∞ . Thus the result is 
proved. In fact 

(10) 

This result can be strengthened to show that the Laplace integral 
converges absolutely for σ > σ 0 if it converges for σ 0 . However, we shall 
not need this result in the general case. For functions of exponential 
order (to be defined shortly) we can prove this result with greater ease. 

Thus the region of convergence of the Laplace integral is a half-plane, 
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since by this theorem, whenever the integral converges for some point in 
the s-plane, it converges at all points to the right. Thus we can define 
an abscissa of convergence σc such that the Laplace integral converges for 
all s with σ > σc and diverges for all s with σ < σc. The stronger result, 
which we have not proved, is that the region of convergence is also the 
region of absolute convergence. The behavior of the Laplace integral is thus 
somewhat analogous to the behavior of power series. The function f(t) 
plays the role of the coefficients of the power series, and the function e - s t 

plays the part of (s — s0)n. Just as a power series may have any behavior 
on the circle of convergence, the Laplace integral may also have any 
behavior on the abscissa of convergence. The only difference concerns the 
existence of a singular point on the circle of convergence, which we shall 
examine a little later. 

With infinite series, we have many tests for convergence. All of these 
have analogues in Laplace transforms. We shall be content to state just 
two of these. The analogue of the ratio test is the following: 

If | f(t) | ≤ M e c t for some constant M and some number c, for all t (or 
only for t greater than some T 0 ) , then the Laplace integral converges absolutely 
for σ > c. 

We see this result immediately since 

(11) 

We thus have a sufficient criterion for the existence of the Laplace 
integral. Functions satisfying the inequality 

(12) 

are called functions of exponential order. The order of the function is the 
smallest number σ 0 such that the inequality (12) is satisfied by any 

(13) 

and by no c = σ 0 — δ. In this case we have established that the Laplace 
integral converges absolutely for σ > σ 0 and diverges for σ < σ 0 . 

Many functions that are not of exponential order have Laplace trans
forms. However, we can state the following necessary and sufficient 
condition, which shows that the integral of a transformable function is of 
exponential order. 



902 THEORY OF LAPLACE TRANSFORMS [App. 3 

The function f (t) is transformable, with the abscissa of convergence 
σ0 > 0 if and only if the function. 

(14) 

satisfies 

(15) 

for any c = σ 0 + δ. 
The proof of this result depends on the Stieltjes integral, and so we 

cannot give it here. We can use this theorem to get an analogue for the 
Cauchy root test for power series. 

Let g(t) be the function defined in (14). If 

(16) 

then the abscissa of convergence of the Laplace integral of f(t) is c. The 
integral converges for σ > c and diverges for σ < c. If c = 0, the test is 
inconclusive. 

In the case of power series the regions of convergence, absolute con
vergence, and uniform convergence coincide. We have stated that in the 
case of the Laplace integral the regions of convergence and absolute 
convergence coincide, both of them being half-planes. Therefore we may 
ask whether the region of uniform convergence also coincides with the 
region of convergence. The answer to this question is in the negative in 
the general case. The region of uniform convergence is described in the 
following theorem, which we shall not prove: 

If the Laplace integral converges for s = σ 0 , then it converges uniformly 
in the sector. 

(17) 

for every δ > 0. 
This region is shown in Fig. 1. We may take σ 0 to be the abscissa of 

convergence σc if the integral converges at this point. Otherwise, σ 0 is a 
point arbitrarily close to σc and to the right. 

In the case of functions of exponential order, however, the region of 
uniform convergence coincides with the region of convergence; that is, 
we may take δ = 0 in the theorem above. 
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Fig. 1. Regions of convergence and uniform convergence of Laplace integral. 

Axis of 
convergence 

For functions of exponential order the region of uniform convergence is 
the half-plane 

where σc is the abscissa of convergence. 
The proof of this result is quite similar to the proof given earlier for 

absolute convergence and so is omitted. 
Thus the convergence behavior of the Laplace integral for functions of 

exponential order is identical with the behavior of power series. 

A3.2 ANALYTIC PROPERTIES OF THE LAPLACE TRANSFORM 

Using the power-series analogy again, a power series defines an analytic 
function within the circle of convergence. We may therefore wonder 
whether the analogy extends this far. The answer to this question is in the 
affirmative, as stated by the following theorem: 

If the integral 

( 1 8 ) 

converges for σ > σc, then the function F(s) defined by the integral is regular 
in the half-plane σ > σc. In fact, the derivative of F(s) is given by 

(19a) 
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and in general 

(19b) 

Given any point s with σ > σc, we can surround this point with a circle 
that is entirely within the region of uniform convergence, since ε in (17) 
is arbitrary. Now, because of the uniform convergence, the limit operations 
of integration and differentiation can be interchanged. Hence 

(20) 

This leads to (19a). The convergence of (19a) is easily established for 
functions of exponential order. For the general case we integrate by parts. 

Thus the Laplace integral defines a regular function within the half-
plane of convergence. However, although the function F(s) is defined 
by the integral only in the half-plane of convergence, we can use the 
technique of analytic continuation to extend the function across the 
abscissa of convergence whenever it may be continuable. [In practice this 
is merely a formality, the "analytic continuation" being merely an 
extension of the formula for F(s).] It is this more general analytic function 
that is referred to as the Laplace transform. If F(s) is the Laplace trans
form of f(t), we refer to f(t) as the determining function and F(s) as the 
generatingfunction. 

In this more general concept of a Laplace transform the generating 
funtion will, in general, have singularities. They will have to lie in the 
half-plane σ ≤ σc or at ∞ . Here we may revert to the power-series 
analogy again. The function defined by a power series always has a 
singular point on the circle of convergence. We may ask whether F(s) 
has a finite singular point on the abscissa of convergence σc. Here the 
analogy breaks down. In general, there may be no singular point on 
σ = σc. The following example has been given by Doetsch: 

(21) 

For this function the abscissa of convergence is zero. However, its trans
form satisfies the difference equation 

(22) 

so that F(s) is an entire function. 
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However, in certain special cases, the transform has a singular point on 
s = - c + j ω . For instance, if f(t) is ultimately non-negative, then it can 
be shown that the real point on the abscissa of convergence is a singular 
point. This result is too specialized to be of interest to us and so we omit 
its proof. The important result as far as we are concerned is that the 
Laplace transform is an analytic function that is regular in the half-plane 
of convergence of the defining integral. The general Laplace transform 
is the function obtained by analytically continuing the original function. 

One of the important analytic properties of the Laplace transform is 
its behavior at ∞ . Concerning this we have the following theorem: 

If the determining function f (t) is a real or complex valued function of t 
and the Laplace integral converges at s 0 , then as s approaches ∞ from within 
the sector 

the generating function F(s) approaches 0. 
The proof of this result proceeds as follows. We begin with a given 

ε > 0. Since f(t) is an integrable function and therefore bounded for all t, 
we can find a Ti so small that for σ > 0 

( 2 3 ) 

Since the Laplace integral is uniformly convergent in this sector, we can 
find T2 so large that T2 > T1 and 

( 2 4 ) 

for all s in this sector. These two conditions fix T1 and T2 and therefore 
the value of the integral 

( 2 5 ) 

Finally, we find σ1 so large that 
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so that 

(26) 

Since s approaches ∞ in the sector |arg(s — s0)| ≤ π / 2 — δ , its real part 
has to exceed σ1 eventually. If we put together the three conditions 
(23), (24), and (26) and restrict s by 

we get 

(27) 

so that 

(28) 

Thus the behavior at ∞ is quite restricted; for example, the point 
s = ∞ cannot be a pole. If F(s) is regular at ∞ , then it must have a zero 
there; F(∞) cannot be a nonzero constant. Thus, for example, if F(s) is a 
rational function, the degree of the denominator polynomial must be strictly 
greater than the degree of the numerator polynomial. However, F(s) may 
have an essential singularity or a branch point at ∞ . (These conditions 
apply only to real or complex-valued determining functions, and not to 
generalized functions such as the impulses of various orders. The Laplace 
transform of a generalized function is treated in Appendix 1.) 

While we are talking about the general behavior we may ask one more 
general question about the Laplace transform namely; its uniqueness. 
This question is of particular importance as we would like, eventually, 
to find the determining function from its Laplace transform. In order to 
state the answer to this question without getting involved in concepts of 
null functions, "zero measure" and "almost everywhere," we shall agree 
to normalize the function f (t) by defining 

(29a) 

(29b) 
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where the + and — indicate, as usual, the right- and left-hand limits. 
Implicit here is the assumption that these limits exist, which we shall 
assume. 

There cannot exist two different normalized determining functions f1(t) 
and f 2(t) with the same Laplace transform F(s). 

The proof of this result is too complicated to be given here. If we do not 
normalize the functions, we can only conclude that the two functions 
f1(t) and f2(t) differ at most by a null function. 

A 3 . 3 OPERATIONS ON THE DETERMINING AND GENERATING 
FUNCTIONS 

In the application to network theory we are interested in the results of 
performing various algebraic and analytic operations in both the t- and s-
domains. In this section we shall summarize these results. 

The simplest of these operations is the algebraic operation of linear 
combination, which we have dealt with already. The generating function 
corresponding to a linear combination of determining functions is the same 
linear combination of the corrresponding generating functions; that is, 

(30) 

This linearity is quite useful in both direct and inverse Laplace trans
formations. 

REAL A N D COMPLEX CONVOLUTION 

The other algebraic operation, multiplication in either domain, leads 
to quite complicated results. The results obtained are quite similar to 
those in infinite series; for example, if we have two power series with a 
common region of convergence, 

(31a) 

(31b) 
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and then the product of the two is again a power series: 

(32a) 

where 

(32b) 

The product series converges in the common region of convergence of the 
two individual series. The sums in (32b) are known as convolution sums. 
We get a similar result in Laplace transforms. 

If 

and (33) 

have finite abscissae of convergence σ1 and σ 2 , then the product F1(s) F 2 (s) 
is also a Laplace transform 

(34a) 

where 

(34b) 

with an abscissa of convergence equal to the larger of σ 1 , σ 2 . 
If F1(s) and F 2 (s) are Laplace transforms of f1(t) and f 2 (t), with abscissae 

of convergence σ1 and σ 2 , the Laplace transform of the product f1(t)f 2(t) 
is given by 

(35) 
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where σ1 < c < σ — σ 2 and σ = Re (s) is greater than the abscissa of 
convergence σ1 + σ 2 . 

The first of these two results is of considerable interest in network 
theory and is proved in Chapter 5. The second result is not of particular 
interest to us; we shall omit its proof. The integrals in (34b) and (35) are 
known as convolution integrals, the first being a real convolution and the 
second a complex convolution. 

DIFFERENTIATION A N D INTEGRATION 

Next we shall consider the analytic operations of differentiation and 
integration in both domains. These correspond, as we shall see, to multi
plication or division by s or t. Differentiation in the s-domain has already 
been considered; let us repeat the result here. 

If 

(36a) 

then 

(36b) 

the abscissae of convergence being the same. 
As might be expected, the inverse operations, division by t and integra

tion in s, correspond. The negative sign is missing, however. 
if 

(37a) 

then 

(37b) 

where the abscissae of convergence are the same and the path of integration is 
restricted to the sector of uniform convergence. 

This result is proved by integrating by parts in the s-domain, noting 
that F(s) approaches 0 as s approaches ∞ . More important operations 
than the proceding ones, as far as the application to network theory is 
concerned, are differentiation and integration in the t-domain. These 
operations are found to resemble duals of the ones above. 

Let f (t) be differentiable (and therefore continuous) for t > 0, and let the 
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derivative f'(t) be transformable. Then f (t) is also transformable and with the 
same abscissa of convergence. Further 

(38a) 
where 

(38b) 
and 

(38c) 

Since f'(t) is transformable, it follows that f(t) is of exponential order 
and therefore transformable. The rest follows on integrating 

by parts and taking the limit as T goes to ∞ . 
Let f (t) be an integrable and transformable function. Let 

(39) 

Then g(t) is also transformable and with the same abscissa of convergence. 
Further 

(40) 

where G(s) and F(s) are Laplace transforms of g(t) and f (t) respectively. 
The first part follows as before. Equation 40 follows from (38b) on 

observing that g(0+) = 0 by (39). 
These results can easily be extended to higher order derivatives and 

integrals of f(t) by repeated applications of these theorems. 

INITIAL-VALUE A N D FINAL-VALUE THEOREMS 

Two other limit operations are of considerable interest in estimating 
the behavior of the transient response of linear systems. In the first one 
we seek to relate the value of f(t) at t = 0 to a specific value of F(s). 
The definition of the Laplace transform gives us only a relationship 
between the values of f (t) on the whole of the real positive t-axis and the 
behavior of F(s) in a complex half-plane. The desired relationship is the 
following: 
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If £{f (t)} = F(s) with a finite abscissa of convergence σc < σ 0 , and if 
f'(t) is transformable, then 

(41) 

where the limit on the right is to be taken in the sector 

This is called the initial-value theorem. 
To prove this result we start with the derivative formula 

(42) 

and take the limit as s goes to ∞ in the sector specified. Since £{f'(t)} 
is a Laplace transform, it goes to zero as s goes to ∞ in this sector. The 
result is (41). 

We might analogously expect to get the final value f(∞) by taking 
the limit of (42) as s approaches 0. We run into difficulties here, since 

(43) 

where the limits are to be taken with |arg s| ≤ (π-/2) — δ. 
It is first of all not clear that the last limit exists. If it does, we do not 

see what it might be. If we can interchange the limit and the integral, 
however, we shall get 

(44) 

If we assume uniform convergence of the Laplace integral for f'(t) in 
a region including s = 0, then this interchange can be made. In such a 
case, however, the abscissae of convergence of both f'(t) and f(t) must be 
negative. This is possible only if f(t) approaches 0 as t approaches ∞ ; 
that is, 

(45) 

But in this instance the whole theorem will be devoid of content. Hence, 
in order to establish the theorem, the interchange of the limit and the 
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integral must be justified by finer criteria than uniform convergence. 
This need takes the proof of the theorem outside the scope of this text. 
The desired theorem can be stated as follows: 

If f(t) and f'(t) are Laplace transformable, and if sF(s) is regular on the 
jω-axis and in the right half-plane, then 

(46) 

where the limit on the right is to be taken along the positive real axis. This 
result is known as the final-value theorem. 

SHIFTING 

The last two operations that we shall consider are multiplication of 
f(t) or F(s) by an exponential function. Let us first consider multiplication 
of F(s) by e - a s , where a is a real number. We have 

(47) 

If we make the substitution x = t + a, and then change the dummy 
variable of integration back to t, we shall get 

(48) 

If we assume that f (t) vanishes for t < 0, then f(t — a) will vanish for 
t < a and the lower limit of the integral can be replaced by zero. To 
indicate that f(t — a) is zero for t < a we can write it in the form 
f(t—a)u(t—a). The function u(x) is the unit step, defined as zero for 
negative x and unity for positive x. This leads to the following result: 

If £[f (t)] = F(s) and a is nonnegative real, then 

(49) 

with the same abscissa of convergence. 
This result is called the real shifting or translation theorem, since f(t — a) 

is obtained by shifting f(t) to the right by a units. 
The operation of multiplying f(t) by eat leads to a similar result. This 

is called the complex shifting theorem. 
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If £[f(t)] = F(s) with abscissa of convergence σc; then 

(50) 

with the abscissa of convergence σc + Re(a). 
This theorem follows directly from the definition of the Laplace trans

form. 

A 3 . 4 THE COMPLEX INVERSION INTEGRAL 

We now consider the problem of finding the determining function f (t) 
from a knowledge of the generating function F(s). Since the uniqueness 
theorem tells us that two essentially different functions f (t) cannot lead 
to the same function F(s), we can expect to find an inverse transformation 
that will give us f(t). We might intuitively expect that the inverse 
transformation would also be an integral, this time a complex integral in 
the s-domain. It must involve some kernel function of s and t, since we 
must end up with a function of t. Such is indeed the case, as stated by the 
following theorem: 

Let £{f(t)} = F(s), with an abscissa of convergence σc. Then 

(51) 

where c ≥ 0, c > σ c . This is known as the inversion integral. 
The proof of this important theorem involves a knowledge of the 

Fourier integral theorem and several results from the theory of Lebesgue 
integration. Usually we understand the normalization implied and write 

(52) 

or simply 

(53) 

the assumption f(t) = 0 for t < 0 being understood. 
When the function F(s) alone is given we do not generally know σc. 
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However we do know that F(s) is regular for σ > σ c . Hence, in such a case, 
we take the path of integration to be a vertical line to the right of all the 
singular points of F(s). Such a path is known as a Bromwich path after the 
famous mathematician T. J. I'A. Bromwich, who made many significant 
contributions to the theory of Laplace transformation. The abbreviation 
" B r " is sometimes used on the integral sign, instead of the limits, to 
signify this contour. 

We saw in Section 6 of Appendix 2 that the residue theorem can often be 
used to evaluate integrals of this type. In order to use the residue theorem 
we have to close the contour. Let us consider the two closed paths shown 
in Fig. 2. If the integrand F(s)est satisfies Jordan's Lemma on either of 
the semicircular arcs, we can evaluate the integral by the residue theorem. 
If Jordan's lemma is satisfied on the arc to the right; that is, if 

(which will be true, for instance, if t < 0), the integral on C1 of Fig. 2 is 

Fig. 2. Evaluation of inversion integral. 

zero. Since, in addition, the closed-contour integral is zero because no 
singularities are enclosed, the inversion integral yields zero. 

If Jordan's lemma is satisfied on the semicircular arc to the left, which 
is much more often the case, the integral on the closed contour C2 is 2πj 
times the sum of the residues of F(s)est at the enclosed singular points. 
Including also the l /2πj in (52), we get the following result: 

If F(s) -> 0 as s -> ∞ , uniformly in the sector \arg (s — σ 0 ) | ≥ π/2 — δ, 
then 

f(t) = Σ residues of F(s)est at finite singularities of F(s). 
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This is an extremely useful result. For simple functions, for example, 
rational functions, we can evaluate f (t) very easily by this theorem. For a 
rational function to be a Laplace transform, the degree of the denominator 
polynomial must exceed the degree of the numerator polynomial by the 
condition of (28). Thus this inversion by residues is always applicable to 
rational functions. 

In our brief discussion of the Laplace transform we have had to omit 
many of the proofs and several results that are of considerable importance. 
However, we have at least stated all the results that have been used in the 
main text. Those who would like a more thorough treatment are referred 
to the standard texts listed in the bibliography. We shall conclude our 
discussion with a very short table of transform pairs, which will be ade
quate for the present application. 

Table of Transform Pairs 

f(t) F(s) = L{f(t)} 
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Table of Transform Pairs—Continued 

f(t) F(s) = L{f(t)} 



BIBLIOGRAPHY 

This bibliography is not intended to be exhaustive; the entries listed consti
tute some major and alternate references for the subjects treated in this text 

1. MATHEMATICAL BACKGROUND 

Complex Variable Theory 
Churchill, R. V., Introduction to Complex Variables and Applications, McGraw-Hill Book Co., 
New York, 1948. 
Hille, E., Analytic Function Theory, Guin and Co., New York, vol. I, 1959. 
Knopp, K., Theory of Functions, Dover Publications, New York, vol. I, 1945, vol. II, 1947. 
LePage, W. R., Complex Variables and the Laplace Transform for Engineers, McGraw-Hül Book 
Co., New York, 1961. 

Spiegel, M. R., Theory and Problems of Complex Variables, McGraw-Hill Book Co., New York, 
1964. 

Computer Programming 
Healy, J. J., and Debruzzi, D. J., Basic FORTRAN IV Programming, Addison-Wesley Publish
ing Co., Reading, Mass., 1968. 
McCalla, T. R., Introduction to Numerical Methods and FORTRAN Programming, John Wiley 
& Sons, New York, 1967. 
McCracken, D. D., A Guide to ALGOL Programming, John Wiley & Sons, New York, 1962. 
McCracken, D. D., A Guide to FORTRAN IV Programming, John Wiley & Sons, New York, 
1965. 
McCracken, D. D., FORTRAN with Engineering Applications, John Wiley & Sons, New York, 
1967. 

917 



918 BIBLIOGRAPHY 

McCracken, D. D., and Dom, W. S., Numerical Methods and FORTRAN Programming, John 
Wiley & Sons, New York, 1964. 
Organick, E. I., A FORTRAN IV Primer, Addison-Wesley Publishing Co., Reading, Mass., 
1966. 

Differential Equations 
Ayres, F., Jr., Theory and Problems of Differential Equations, McGraw-Hill Book Co., New York, 
1952. 
Bellman, R., Stability Theory of Differential Equations. McGraw-Hül Book Co., New York, 
1953. 
Coddington, E. A., and Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hül 
Book Co., New York, 1955. 
Coppel, W. A., Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., 
Boston, 1965. 
Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York, 1964. 
Lefschetz, S., Differential Equations: Geometrical Theory, 2nd edition, John Wiley & Sons, 
New York. 
Sansone, G., and Conti, R., Nonlinear Differential Equations, revised edition, The Macπ_1lan Co., 
New York, 1964. 
Stmble, R. A., Nonlinear Differential Equations, McGraw-Hill Book Co., New York, 1962. 

Laplace Transform Theory 
Churchül, R. V., Operational Mathematics, McGraw-Hül Book Co., New York, 1958. 
Doetsch, G, Handbuch der Laplace Transformation, Birkhauser, Basel, vol. 1, 1950. 
LePage, W. R., Complex Variables and the Laplace Transform for Engineers, McGraw-Hül Book 
Co., New York, 1961. 
Spiegel, M. R., Theory and Problems of Laplace Transforms, McGraw-Hül Book Co., New York, 
1965. 

Matrix Algebra 
Ayres, R., Jr., Theory and Problems of Matrices, McGraw-Hül Book Co., New York, 1962. 
Bellman, R., Introduction to Matrix Analysis, McGraw-Hül Book Co., New York, 1960. 
Gantmacher, F. R., The Theory of Matrices, Chelsea Publishing Co., New York, vol. I, 1959, vol. 
II, 1959. 
Hohn, F. E., Elementary Matrix Algebra, The Macmülan Co., New York, 1958. 
Pease, M. C, III, Methods of Matrix Algebra, Academic Press, New York, 1965. 
Perlis, S., Theory of Matrices, Addison-Wesley Publishing Co., Cambridge, Mass., 1952. 

Numerical Analysis 
Beckett, R., and Hurt, J., Numerical Calculations and Algorithms, McGraw-Hül Book Co., New 
York, 1967. 
Hanmiing, R. W., Numerical Methods for Scientists and Engineers, McGraw-Hül Book Co., New 
York, 1962. 
Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, John Wüey & Sons, 
New York, 1962 
Henrici, P., Elements of Numerical Analysis, John Wüey & Sons, New York, 1.964. 



BIBLIOGRAPHY 919 

Householder, A. S., Principles of Numerical Analysis, McGraw-Hill Book Co., New York, 1953. 
Kelly, L. G., Handbook of Numerical Methods and Applications, Addison-Wesley Publishing Co., 
Reading, Mass., 1967. 
Macon, N., Numerical Analysis, John Wiley & Sons, New York, 1963. 
Scheid, F., Theory and Problems of Numerical Analysis, McGraw-Hill Book Co., New York, 1968. 
Wilkinson, J. H., Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, N.J., 
1963. 

2 . NETWORK TOPOLOGY A N D TOPOLOGICAL FORMULAS 

Kim, W. H., and Chien, R. T-W., Topological Analysis and Synthesis of Communication Networks, 
Columbia University Press, New York, 1962. 
Seshu, S. and Balabanian, N., Linear Network Analysis, John Wiley & Sons, New York, 1959. 
Seshu, S., and Reed, M. B., Linear Graphs amd Electrical Networks, Addison-Wesley Publishing 
Co., Reading, Mass., 1961. 

3 . LOOP, NODE-PAIR, MIXED-VARIABLE EQUATIONS 

Desoer, C. A., and Kuh, E. S., Basic Circuit Theory, McGraw-Hül Book Co., New York, 1966. 
Guillemin, E. A., Theory of Linear Physical Systems, John Wiley & Sons, New York, 1963. 
Seshu, S., and Balabanian, N., Linear Network Analysis, John Wiley & Sons, New York, 1959. 

4 . NETWORK FUNCTIONS A N D THEIR PROPERTIES 

Balabanian, N., Network Synthesis, Prentice-HaU, Englewood Cliffs, N.J., 1958. 
Bode, H. W., Network Analysis and Feedback Amplifier Design, D. Van Nostrand Co., New York, 
1945. 
Cauer, W., Synthesis of Communications Networks, McGraw-Hül Book Co., New York, translation 
second German edition, 1958. 
Guillemin, E. A., Synthesis of Passive Networks, John Wiley & Sons, New York, 1957. 
Kuh, E. S. and Rohrer, R. A., Theory of Linear Active Networks, Holden-Day, San Francisco, 1967. 
Newcomb, R. W., Linear Multiport Synthesis, McGraw-Hül Book Co., New York, 1966. 
Seshu, S., and Balabanian, N., Linear Network Analysis, John Wiley & Sons, New York, 1959. 
Van Valkenburg, M. E., Introduction to Modern Network Synthesis, John Wiley& Sons, New York, 
1960. 

5. STATE EQUATIONS 

Calahan, D. A., Computer-Aided Network Design, McGraw-Hill Book Co., New York, 1968. 
DeRusso, P. M., Roy, R. J., and Close, C. M., State Variables for Engineers, John Wiley & Sons, 
New York, 1965. 
Desoer, C. A., and Kuh, E. E., Basic Circuit Theory, McGraw-Hül Book Co., New York, 1966. 
Gupta, S. C, Transform and State Variable Methods in Linear Systems, John Wiley & Sons, New 
York, 1966. 
Koenig, H. E., Tokad, Y., and Kesavan, H. K., Analysis of Discrete Physical Systems, McGraw-
Hill Book Co., New York, 1967. 



920 BIBLIOGRAPHY 

Roe, P. H. O'N., Networks and Systems, Addison-Wesley Publishing Co., Reading, Mass., 1966. 
Zadeh, L. A. and Desoer, C. A., Linear System Theory, McGraw-Hill Hill Book Co., New York, 
1963. 

6. NETWORK RESPONSE A N D TIME-FREQUENCY RELATIONSHIPS 

Cheng, D. K., Analysis of Linear Systems, Addison-Wesley Publishing Co., Reading, Mass., 1959. 
Guillemin, E. A., The Mathematics of Circuit Analysis, John Wiley & Sons, New York, 1949. 
Kuo, F. F., Network Analysis and Synthesis, 2nd edition, John Wiley & Sons, New York, 1966. 

7. NETWORK SYNTHESIS 

Balabanian, N., Network Synthesis, Prentice-Hall, Englewood Cliffs, N.J., 1958. 
Chirlian, P. M., Integrated and Active Network Analysis and Synthesis, Prentice-Hall, Englewood 
Cliffs, N.J., 1967 
Ghausi, M. S., and Kelly, J. J., Introduction to Distributed-Parameter Networks, Holt, Rinehart 
and Winston, New York, 1968. 
Guillemin, E. A., Synthesis of Passive Networks, John Wiley & Sons, New York, 1957. 
Kami, S., Network Theory: Analysis and Synthesis, Allyn and Bacon, Boston, 1966. 
Newcomb, Robert W., Active Integrated Circuit Synthesis, Prentice-Hall, Englewood Cliffs, N.J., 
1968. 
Su, K. L., Active Network Synthesis, McGraw-Hill Book Co., New York, 1965. 
Van Valkenburg, M. E., Introduction to Modern Network Synthesis, John Wiley & Sons, New York, 
1960. 
Wemberg, L., Network Analysis and Synthesis, McGraw-Hill Book Co., New York, 1962. 

8. SCATTERING PARAMETERS 

Carlin, H. J., and Giordano, A. B., Network Theory, Prentice-Hall, Englewood Cliffs, N.J., 1964. 
Kuh, E. S. and Rohrer, R. A., Theory of Linear Active Networks, Holden-Day, San Francisco, 1967. 

9. SIGNAL-FLOW GRAPHS 

Horowitz, I. M., Synthesis of Feedback Systems, Academic Press, New York, 1963. 
Huggins, W. H., and Entwisle, D. R., Introductory Systems and Design, Blaisdell Publishing Co., 
Waltham, Mass., 1968. 
Lorens, C. S., Flowgraphs for the Modeling and Analysis of Linear Systems, McGraw-Hill Book 
Co., New York, 1964. 
Mason, S. J., and Zimmerman, H. J., Electronic Circuits, Signals, and Systems, John Wiley & 
Sons, New York, 1960. 
Robichaud, L. P. A., Boisvert, M., and Robert, J., Signal Flow Graphs and Applications, 
Prentice-Hall, Englewood Cliffs, N.J., 1962. 
Truxal, J. G., Control System Synthesis, McGraw-Hill Book Co., New York, 1955. 
Ward, J. R. and Strum, R. D., The Signal Flow Graph in Linear Systems Analysis, Prentice-Hall, 
Englewood Cliffs, N.J., 1968. 



B I B L I O G R A P H Y 9 2 1 

1 0 . S E N S I T I V I T Y 

Bode, H. W., Network Analysis and Feedback Amplifier Design, D. Van Nostrand Co., New York, 
1945. 
Horowitz, I. M.,Synthesis of Feedback Systems, Academic Press, New York, 1963. 
Kuh, E. S., and Rohrer, R. A., Theory of Linear Active Networks, Holden-Day, San Francisco, 
1967. 
Truxal, J. G., Automatic Feedback Control System Synthesis, McGraw-Hül Book, Co., New York, 
1955. 

1 1 . S T A B I L I T Y 

Routh, Hurwitz, Lienard-Chipart, and Nyquist Criteria 
Ogata, K., State Space Analysis of Control Systems, Prentice Hall, Englewood Cliffs, N.J., 1967. 
Schwarz, R. J., and Friedland, B., Linear Systems, McGraw-Hül Book Co., New York, 1965. 
Zadeh, L. A., and Desoer, C. A., Linear System Theory, McGraw-Hül Book Co., New York, 1963. 

Liapunov's Method 
Hahn, W., Theory and Application of Liapunov's Direct Method, Prentice-Hali, Englewood 
Cliffs, N.J., 1963. 
LaSalle, J., and Lefschetz, S., Stability by Liapunov's Direct Method, Academic Press, New York, 
1961. 
Liapunov, A. M., Stability of Motion, Academic Press, New York, 1966. 
Ogata, K., State Space Analysis of Control Systems, Prentice-Hali, Englewood Cliffs, N.J., 1967. 
Zubov, V. I., Methods of A. M. Liapunov and Their Application, P. Noordhoff, Groningen, The 
Netherlands, 1964. 

1 2 . T I M E - V A R Y I N G A N D N O N L I N E A R N E T W O R K A N A L Y S I S 

Blaquiere, A., Nonlinear System Analysis, Academic Press, New York, 1966. 
Butenin, N. V., Elements of the Theory of Nonlinear Oscillations, Blaisdeli Publishing Co., New 
York, 1965. 
Cunningham, W. J., Introduction to Nonlinear Analysis, McGraw-Hül Book Co., New York, 1958. 
d'Angelo, H., Time-varying Networks, Aliyn and Bacon, Boston, 1969. 
Desoer, C. A. and Kuh, E. S., Basic Circuit Theory, McGraw-Hül Book Co., New York, 1966. 
Minorsky, N., Nonlinear Oscillations, D. Van Nostrand Co., Princeton, N.J., 1962. 
Stern, T. E., Theory of Nonlinear Networks and Systems, Addison-Wesley Publishing Co., Reading, 
Mass., 1965. 





INDEX 

ABCD parameters, 165 
Active RC synthesis, 543 

with amplifiers, 549 
with negative converter, in cascade con

nection, 543, 568 
in parallel connection, 546 

Adams method, 779 
Algebraic singularity, 882 
All-capacitor loop, 231 
All-inductor cut-set, 231 
All-pass function, 402 
Analytic continuation, 895 
Analytic function, 855 
Angle function, 399, 459 
Antiderivative, 865 
Antimetric two-port, 586, 624 
Argument principle, 891 
Asymptotic properties, of time-varying state 

equation, solution, 729 
Attenuation-integral theorem, 441 
Auxiliary polynomial, 542 

Backward differences, 771 
Bartlett's bisection theorem, 227 
Binet-Cauchy theorem, 14, 192 
Bode formulas, 434 
Bode method, 428 
Bounded real function, 501, 579 

bilinear transformation of, 502 
Branch, general, 100 
Branch-admittance matrix, 103 
Branch cut, 879 
Branch-impedance matrix, 103 
Branch-parameter matrices, 103 
Branch point, 880 
Branch relations, 99, 122, 123 
Bridged-tee, 408, 410 
Bromwich path, 914 
Butterworth polynomial, 418 

Butterworth response, 415 

Canonical matrix, 473 
Capacitor, 39 
Carson integrals, 355 
Cascade connected two-ports, 169 
Cauchy-Riemann equations, 857 
Cauchy's integral formula, 866 
Cauchy's integral theorem, 863 
Cauer ladder synthesis, of RC networks, 517, 

523 
Cayley-Hamilton theorem, 260 
Chain parameters, 165 
Characteristic exponents, 726 
Chebyshev filter, 415, 422 
Chebyshev polynomials, 422 
Circulator, 593 

in negative resistance amplifier, 620, 628 
Coforest, 72 
Common-terminal multiport network, 159 
Compact pole, 530 
Complementary networks, 570 
Conformal transformation, 85 8 
Congruent transformation, 472 
Conservation of charge, principle of, 233 
Conservation of flux linkages, principle of, 

232 
Constant-resistance networks, 407 
Constituent matrices, 268 

evaluation of, 270, 277 
Controlled response, 348 

numerical evaluation of, 367 
Contour integral, 863 
Converter, general, 214 

negative, see Negative converter 
Convolution, 337 
Convolution quotient, of continuous func

tions, 831 
of generalized function, 835 

923 
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Corrector, 781 
Cotree, 71 

impedance products, 200 
Current, basis set, 92 

gain, 157 
link, 91 
loop, 93 
mesh, 95 
reference, 35 
shift, 100 
standard reference, 36 
twig, 91 

Cut-set, 83 
fundamental, 86 
orthogonality relations, 87 
rank, 87 
relation to incidence matrix, 87, 88 
relation to loop matrix, 87, 88 

Darlington theorem, 538, 599 
Datum node, 63 
Definite integral evaluation, 886 
Delay function, 399, 459 
Determinant, 11 

Binet-Cauchy theorem, 14, 192 
cofactor expansion, 12 
derivative of, 14 
major, 14, 191 
of matrix product, 14 
pivotal condensation, 17 
principal cofactor, 13 

ascending, 566 
principal minor, 13 
of signal flow graph, 656 

Determining function, 904 
Differential equations, solution by varia

tion of parameter, 246 
Divided differences, 769 
Driving-point admittance, 154, 162 
Driving-point functions, topological formu

las, 196, 202 
Driving-point impedance, 154, 162 

angle condition, 490 
properties, 489 

Dual networks, 119 
Duhamel integrals, 355 
Dynamicaliy independent variables, 230 
Dynamic equations, 230 

Eigenvalue, distinct, 262 

of a matrix, 26 
multiple, 265 

Eigenvector, 26 
Electric network, 58, 90 

topology of, 69 
Elementary transformations, 468, 553 
Ell networks, constant-resistance, 410 
Embedding, 837 
Energy functions, 485, 487 
Equal ripple approximation, 415, 422 
Equicofactor matrix, 184 
Equivalent matrices, 470 
Essential graph, 654 
Essential node, 645 
Euler's method, 776 
Even part, of rational function, 396 
Exponential order, 901 

Feedback, 664 
Fialkow condition, 225 
Filter, Butterworth, 415 
Final-value theorem, 910 
Focus, singular point, 818 
Forest, 72 
Foster forms, 510, 522 
Foster reactance theorem, 509 
Free response, 348 

numerical evaluation of, 367 
Frequency response, 398 
Function, algebraic irrational, 883 

analytic, 855 
branch of, 880 
complex valued, 853 
continuous, 853 
defined by a series, 875 

exponential, 876 
hyperbolic, 876 
trigonometric, 876 

differentiable, 854 
entire, 882 
of exponential order, 901 
generalized, see Generalized functions 
integral, 882 
logarithm, 877 

principal value of, 878 
of a matrix, 258 
meromorphic, 883 
multivalued, 853, 877 
polynomial, 882 
rational, 392, 883 
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regular at a point, 855 
single-valued, 853 
singular point of, 855 

Fundamental cut-set, 85 
loop, 79 

Gain-bandwidth product, 444 
Generalized functions, 833 

algebra of, 833 
Laplace transform of, 850 
as operators, 842 
table of, 845 

Generating function, 904 
Gewertz method, 429 
Graph, see Linear graph 
Gronwall lemma, 727 
Grounded multiport network, 159 
Gyrator, 45, 211 

scattering parameters of, 588, 632 

Half-trajectory, 785 
Harmonic functions, 857 
Hermitian form, 474, 481 
Hilbert transform, 434 
Hinged graph, 85 
Hinged node, 85 
Homogeneous reference equation, 728 
Horowitz decomposition, 565 
Hurwitz criterion, 674 
Hurwitz polynomial, 404, 499, 515 
Hybrid, coü, 625, 627 
Hybrid parameters, 163 

Imaginary part, of frequency response, 398 
Impulse function, as generalized function, 

846 
properties of, 342 

Impulse response, 341, 455 
Incidence matrix, 73 

complete, 73 
orthogonality relations, 80 
rank, 74 
reduced, 73 
relation to cut-set matrix, 87, 88 
relation to loop matrix, 81 
relation to path matrix, 142 

Incident variables, 572 
Indefinite admittance matrix, 178 

equicofactor property, 184 
suppressing terminals, 183 

Indefinite impedance matrix, 187 
equicofactor property, 189 
relation to Z Q C , 190 

Index, of a matrix, 474 
Inductor, 39 
Infinity, point at, 861 
Initial-value theorem, 910 
Input vector, 240 
Integral relations (between real and imaginary 

parts), 433 
attenuation-integral theorem, 441 
phase-area theorem, 440 
reactance-integral theorem, 439 
resistance integral theorem, 439 

Inverse Nyquist criterion, 701 
Inversion integral, 913 
Isolated singularity, of analytic function, 855, 

875 

Jordan's lemma, 888 

Kirchhoffs laws, 58 
current, 58, 90 
voltage, 59, 95 

Kronecker delta, 13 

Ladder network, 406 
Lagrange interpolation formula, 264 
Lagrange reduction, 477 
Laplace transform, 898 

abscissa of convergence, 901 
analytic properties of, 903 
convergence properties, 899 
determining function, 904 
of generalized function, 850 
generating function, 904 
inversion integral, 913 
region of convergence, 900 
table of transform pairs, 915 
uniqueness of determining function, 906 

Lattice, 408 
constant resistance, 410 

Laurent series, 873 
principal part of, 875 
regular part of, 875 

Liapunov function, 787 
Liapunov stability, 783 
Liénard-Chipart criterion, 675 
Linear equations, 20 

consistency, 20, 22 
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Linear graph, 70 
branch, 70 
closed path, 71 
coforest, 72 
connected, 71 
cotree, 71 
co-two-tree, 202 
cut-set, 83 
dual graphs, 119 
forest, 72 
fundamental cut-set, 85 
fundamental loops, 79 
hinged, 84 
hinged node, 85 
internal nodes, 71 
isomorphic, 77 
link, 71 
loop, 71 
mesh, 88 
node, 70 
oriented, 70 
path, 71 
planar, 88 
three-tree, 205 
tree, 71 
twig, 71 
two-tree, 194 

Link, 71 
Lipschitz condition, 750 
Local integrability, 719 
Locally integrable function, 840 
Log-node, singular point, 818 
Loop equations, 61, 105 
Loop-impedance matrix, 105 

cofactors, 20, 202 
determinant, 200 

Loop matrix, complete, 77 
fundamental, 79 
orthogonality relations, 80, 87 
rank of, 81 
relation to cut-set matrix, 87, 88 
relation to incidence matrix, 81 

Loop parameter matrices, 106 
of passive, reciprocal network, 486 

Loop transformation, 92 
Lossless network, 504 

in pr function synthesis, 531 
transmission zeros, 537 
two-port cascade structure, 537 

Magnitude function, 398 

Mapping, 858 
Mason's formula, 655 
Matrix, adjoint, 16 

ascending principal cofactors, 556 
bounded, 32, 726 
canonical, 473 
characteristic equation, 27 
characteristic polynomial, 27 
characteristic value, 26 
characteristic vector, 26 
congruent, 472 
conjugate of, 9 
conjugate transpose of, 9 
constituent matrices of, 268 
definite, 478, 557 
derivative of, 8 
differential equation, 247 
eigenvalue of, 26 
eigenvector of, 26 
elementary, 553 
equivalent, 470 
index of, 474 
integral of, 8 
inverse, 15 
nonsingular, 16 
norm of, 32 
nullity of, 24 
order of, 3 
partitioning, 6 
semidefinite, 278 
similar, 28 
singular, 16 
trace of, 9 
transformation of, 468 
transpose of, 9 
types of, column, 4 

diagonal, 10 
Hermitian, 11 
identity, 10 
nuli, 9 
orthogonal, 472 
row, 4 
skew symmetric, 11 
symmetric, 11 

Matrix exponential, 248 
inverse of, 249 
Laplace transform evaluation of, 258 
numerical evaluation of, 373 

Maximally flat approximation, 415 
Maximum modulus theorem, 867 
Mesh transformation, 95 
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Milne method, 781 
Minimal polynomial, 262 
Minimum modulus theorem, 868 
Minimum-phase functions, 399 
Minimum-phase networks, 406 
Minimum-reactance function, 428 
Minimum-susceptance function, 428 
Mittag-Leffler expansion, 895 
Mixed-variable equations, 131 
Miyata method, 431 
Modified Adams method, 780 
Modified Euler method, 777 
Morera's theorem, 867 
Multiport networks, 159, 176 
Multiport parameters, positive real property, 

526 
Multiterminal networks, 158 

Natural frequencies, 68, 394 
number of, 231 
number of nonzero, 233 

Negative converter, 50, 216 
active RC synthesis with, 543, 568 
compensating a, 228 

Negative-resistance amplifier, 617 
Network classification, 36 

active, 38, 122 
linear, 36 
nonreciprocal, 39, 122 
passive, 37, 484 
reciprocal, 38, 484 
time invariant, 37 

Network components, 39 
Network function, 153, 392 

topological formulas for, 191 
Network response, complementary func

tion, 68 
complete, 69 
forced, 68 
free, 68 
natural, 68 
particular integral, 68 
steady state, 68 
transient, 68 

Newton's backward difference formula, 768 
Node, singular point, 818 
Node-admittance matrix, 111 

cofactors of, 192, 197 
determinant of, 192 

Node equations, 62, 110 

Node-pair admittance matrix, 115 
Node-pair equations, 115 
Node-pair parameter matrices, 116 
Node-parameter matrices, 111 

of passive, reciprocal network, 487 
Nonlinear networks, 705 

solution, 756 
state equation, interconnected multiport 

formulation, 811 
state vector, components, 748 
topological formulation of, 744 

Nonlinear state equation, extended sense 
solution, 758 

numerical solution, 768 
ordinary sense solution, 758 
properties (asymptotic) of solution, 761, 

815 
solution, existence, 757 

uniqueness, 757 
Nonminimum-phase function, 400 
Nonminimum-phase networks, 406 
Norator, 624 
Norm, of a matrix, 32 

of a vector, 31 
Normal forest, 236 

branch categories, 282 
Normal form, of a matrix, 471 

of state equations, 241 
Normalization of scattering parameters, com

plex, 605, 609 
real, 587 

Normalizing number, 576 
Normal tree, 235 

branch categories, 282 
Nuliator, 624 
Numerical integration, errors, 370 

of superposition integrals, 362 
Numerical integration formulas, Adams 

method, 779 
closed, 774, 821 
correctors solved directly, 822 
errors, 783 
Euler's method, 776 
Milne method, 781 
modified Adams method, 780 
modified Euler method, 777 
open, 772, 821 
predictor-corrector methods, 781 
Runge-Kutta method, 782 
variable step size criterion, 824 
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Nyquist criterion, 677 
Nyquist diagram, 678, 681 

Odd part, of rational function, 415 
Open-circuit impedance matrix, 162 

topological formulas for, 206 
Open-circuit impedance parameters, 162 

Fialkow condition, 225 
Open-circuit stable, 702 
Open-circuit voltage gain, 164 
Order of complexity, 230, 232 
Orthogonal matrix, 472 
Output equation, 245, 281 
Output vector, 241 

Parameter matrices, 103 
in state equations for RLC networks, 294 

Partial-fraction expansions, 893 
Partial return difference of a node, 696 
Partial return ratio of a node, 696 
Path matrix, 141 

relation to incidence matrix, 142 
Periodic networks, 723 
Phase-area theorem, 440 
Phase plane, 816, 818 
Phase portrait, 818 
Piecewise continuous function, 840 
Pivotal condensation, 17 
Pole, 395, 875 
Pole-zero configuration, 395 
Polynomial, decomposition, 565 

Hurwitz, 499, 515 
test for, 514 

Port, 159 
Positive definite function, 786 
Positive half-trajectory, 785 
Positive real function, 492 

angle property, 500 
bilinear transformation of, 502 
complementary, 570 
Darlington realization, 531 
necessary and sufficient conditions, 497 
necessary conditions, 493, 499 
realization, 531 
real part of, 503 

Power series, 871 
circle of convergence, 871 

Predictor, 781 
Predictor-corrector methods, 781 
Principal value of integral, 437 

Principle of the argument, 891 
Propagating errors, 370 

Quadrantal symmetry, 398 
Quadratic form, 474 

definite, 478 
Lagrange reduction, 477 
semidefinite, 478 
transformation of, 476 

Radiaüy unbounded function, 790 
Rational convolution quotient, 849 
Rational function, determined from real 

part, Bode method, 428 
Gewertz method, 429 
Miyata method, 431 

even part, 396 
odd part, 396 

RC networks, with active components, 543 
cascaded two-ports, 541 
Cauer form realization, 523 
Foster form realization, 522 
ladder form realizations, 523 
necessary and sufficient conditions, 520 
relation to reactance function, 517 

Reactance function, 505 
continued-fraction expansion of, 513 
Foster form realization, 510 
ladder form realization, 512 
necessary and sufficient conditions, 508 
partial-fraction expansion of, 509 
properties of, 505 
test for Hurwitz polynomial, 514 

Reactance-integral theorem, 439 
Reactance network, 504 
Real part, of frequency response, 398 
Real part function, necessary and sufficient 

conditions, 504 
necessary conditions, 503 

Reference resistance, 576 
Reflected variables, 572 
Reflection coefficient, 591 

current, 573 
of terminated two-port, 599 
voltage, 573 

Region, closed, 860 
connected, 860 
open, 860 

Region of regularity, 855 
Residue, 884 
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Residue condition, 528 
Residue theorem, 883 
Resistance-integral theorem, 439 
Resistor, 39 
Resolvent matrix, 269 

algorithm, 271 
Resolving equation, 277 
Resolving polynomials, 276 
Return difference, 665 

of a node, 696 
Return loss, 602 
Return ratio, 665 

of a node, 696 
Riemann sphere, 861 
Riemann surface, 880 
RL network function, 525 
Routh criterion, 673 
Runge-Kutta method, 782 

Scattering matrix, 585, 608, 613 
bound on elements, 595 
Hermitian, 595 
positive semidefinite, 595 
properties, 594 
unitary, 596 

Scattering parameters, 571, 585 
interpretation, 589 
match-terminated, 589 
reflection coefficients, 591 
transducer power gain, 590 
transducer voltage ratio, 590 
transmission coefficients, 591 

Scattering relations, of augmented multi
port, 583, 586 

of augmented one-port, 576 
for equalizing network, 598 
incident variables, 572 
of matched terminated one-port, 574 
for matching network, 598, 600 
of multiport, 580 
of one-port, 572 
reflected variables, 572 
of symmetric two-port, 586, 624 

Schwartz's lemma, 869 
Sensitivity, 668 
Separatrices, 817 
Sequence, 869 
Series, infinite, absolute convergence of, 

870 
convergence of, 870 

Laurent, 873 
partial sum of, 869 
power, 871 
Taylor, 871 
uniform convergence of, 870 

Short-circuit admittance parameters, 162 
Fialkow condition, 225 
topological formula for, 206 

Short-circuit current gain, 164 
Short-circuit stable, 702 
Sifting property, of impulse function, 846 
Signal-flow graph, 636, 642 

branch transmittance, 643 
cascade branch, 645 
determinant, 656 
equivalent graphs, 648 
essential graph, 654 
essential nodes, 645 
feedback branch, 644 
feedback loop, 644 
feedback node, 645 
gain, 651 
gain formula, 655 
index of, 645 
inversion, of a branch, 646 

of a loop, 647 
of a path, 646 

Mason's formula, 655 
node-pulling algorithm, 651 
node splitting, 645 
nontouching loops, 565 
reduction, 647 

to essential graph, 654 
self-loop, 645 
sink node, 644 
source node, 644 

Similarity transformation, 28, 472 
Similar matrices, 472 
Simple closed curve, 860 
Singular point (of analytic function), 855 

algebraic, 882 
essential (nonisolated), 856 

compact, 530 
isolated, 855, 875 
logorithmic, 882 
pole, 875 
saddle point, 818 

Singular point (of state equation), 784 
Source, controüed, 49 

dependent, 49 
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independent, 47 
accompanied, 99 

Stability, 668 
asymptotic, 786 
BIBO, 670 
bounded-input, bounded-output, 670 
Hurwitz criterion, 674 
in-the-large, 790 
inverse Nyquist criterion, 701 
Krasovskü's theorem, 796 
Liapunov theory, 783 
Liénard-Chipart criterion, 675 
Nyquist criterion, 677 
open-circuit, 702 
Routh criterion, 673 
short-circuit, 702 
variable-gradient method, 799 

State equations, 63, 229, 240, 245, 281 
of linear, time-invariant networks, 291 

with controlied sources, 302 
multiport formulation, 306 
normal form, 241 
output equation, 245, 281, 314 
of RLC networks, 292 
topological formulation, linear networks, 

280 
State-transition matrix, 247, 249 

of time-varying network, 714 
State variables, 240 
Step response, 351, 451 
Stop band, 415 
Superposition integrals, 355 

numerical evaluation of, 362 
Superposition principle, 341, 353, 357, 360 
Surplus factor, 412 
Sylvester's inequality (law of nullity), 30, 

81 
Synthesis, active RC structures, 543 

cascaded RC two-ports, 541 
Cauer forms, 523 
Darlington form, 531, 538 
Foster forms, 510, 522 
ladder forms, 512, 523 
lossless three-port, 563 
lossless two-port, 538 
reactance function, 509 

Tangent function, 424 
Taylor series, 871 
Taylor's theorem, 872 

Tellegen's theorem, 144 
Time sequence, 364 

series, 364 
Time-varying (linear) networks, 705 

output equation, 710 
state equation, formulation, 706 

solution, 712 
state-transition matrix, 714 
state vector, components of, 709 

Time-varying state equation, asymptotic 
properties of solution, 729 

existence and uniqueness of solution, 718, 
721 

extended sense solution, 719, 722 
homogeneous equation solution, 715 
ordinary sense solution, 718, 721 
periodic networks, 723 
solution of, 712 
state-transition matrix, 714 

Titchmarsh's theorem, 832 
Topological formulas, 191 

for driving-point functions, 196 
for loop impedance matrix cofactors, 201, 

202 
for loop impedance matrix determinant, 200 
for node admittance matrix cofactors, 193, 

197 
for node admittance matrix determinant, 192 
for transfer functions, 198 
for two-port parameters, 203 

Topology of network, 69 
Trajectory, 785 
Transducer power gain, 590 
Transfer current ratio, 157 
Transfer function, 150 

determined from angle, 423 
determined from magnitude, 414 
topological formulas for, 198, 203 

Transfer impedance, 157, 162 
Transfer matrix, 337 
Transfer voltage ratio, 157 
Transformer, 43 

ideal, 42 
perfect, 44 

Transmission zeros, 165 
of lossless networks, 537 

Transmittance, branch, of signal flow graph, 
643 

Tree, 71 
admittance products, 192 
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linear, 72 
normal, 235 
star, 72 
two-, 194 
three-, 205 

Twig, 71 
Twin-tee, 408 
Two-port networks, 160 

compact pole, 530 
parallel-connected, 171 
parallel-series connected, 219 
series-connected, 171 
series-parallel connected, 218 

Two-port parameters, 525 
positive real property, 526 
real-part condition, 529 
residue condition, 528 

Uniform convergence, 869, 870 

Variable-gradient method, 799 

Variation of parameter method, 246 
Vector, 21 

bounded, 726 
column, 21 
linear dependence of, 21 
norm of, 31 
row, 21 

Voltage gain, 157 
Voltage shift, 100 
Voltages, link, 96 

node, 97 
node-pair, 95 
twig, 96 

Weighting function, 344, 447 
Weighting matrix, 344 

Zeros, 395 
of ladder network, 407 
of minimum-phase function, 400 
of nonminimum-phase function, 400 
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