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Preface 

Electrical Circuit Analysis and Design is intended for use with the early 
years of a first degree course in Electrical, Electronic and Control En­
gineering, and for Higher National Diploma and Certificate courses in 
Electrical and Electronic Engineering. 

The main prerequisite to its use is a knowledge of the basic concepts of 
electricity, magnetism and mathematics; an introduction to calculus is 
more in the nature of a corequisite than aprerequisite. 

The book has primarily been written for the student, and it is intended 
that readers should be able to teach themselves the analytical techniques 
involved. To this end, many fully worked examples are included in the 
body of the text, and a large number of unworked problems (with solu­
tions) are included at the end of chapters. Throughout the book, both 
'power' and 'electronic' circuit examples and problems have been included. 

A 'plus' feature of the book is a chapter on the use of SPICE software 
(Simulated Program with Integrated Circuit Emphasis) for circuit analysis. 
Examples in this chapter range from resistive d.c. networks to a.c. solu­
tions and transient analysis, and illustrate the practical advantages of this 
software, which is pre-eminent in the field of circuit analysis. 

When writing the book, I decided that it should be written from a logical 
teaching viewpoint. That is, as with a conventional course, the more 
understandable parts of circuit theory are treated first, after which the less 
easy but, technically, more interesting topics are covered. 

Chapter 1 covers d.c. circuits and intro duces the concept of basic 
elements and laws, including Kirchhoff's laws together with simple circuit 
analysis, and described dependent and independent sources. 

In chapter 2, we take a first look at network analysis using mesh, nodal 
and loop analysis. In undergraduate and so me HND courses, the latter 
usually involves a knowledge of network topology, which is also in­
troduced. Finally, an introduction to the duality between circuits having 
similar mesh and nodal equations is given. 

xii 
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Preface xiii 

In order to understand circuit analysis fully, the reader should have a 
grasp of a number of circuit theorems and this, for d.c. circuits, is provided 
in chapter 3. 

To move on to alternating current theory, the reader needs to under­
stand the basis of circuits containing energy storage elements, this informa­
tion being provided in chapter 4. Here we deal with capacitors, inductors 
and mutual inductance. Engineers have devised the 'dot' notation to deal 
with the latter, and this is fully explained in this chapter. 

In chapter 5, we look at some of the many interesting aspects of 
alternating current theory, including phasors and phasor diagrams, com­
plex impedance and admittance, together with series and parallel combina­
tions of elements and circuits. Also covered are power and power factor, 
together with complex power. Next, in chapter 6, we apply a range of 
circuit theorems to a.c. networks. 

Power-based electrical engineers have a particular interest in polyphase 
circuits, and this topic is comprehensively covered in chapter 7. This 
chapter describes and analyses many aspects of three-phase systems, 
including power measurement and symmetrical components. 

Two-port networks are of great significance to electronics and tele­
communications engineers and, in chapter 8, the reader is introduced to y, 
Z, hand transmission parameters, together with the relationship between 
them. 

In chapter 9 we meet the transformer , both 'ideal' and 'linear'. A 
knowledge of these is vital to both electrical and electronic engineers 
alike. 

In chapter 10, we deal comprehensively with the transient analysis of 
circuits. A practice in many courses is to deal with this topic using two or 
sometimes three different techniques, each time covering very similar 
ground! In this chapter we look, initially, at the process of solving first- and 
second-order circuits by classical methods. These methods gene rally have a 
number of disadvantages, which are overcome by the use of the Laplace 
transform method; the latter is used throughout the remainder of the 
chapter. 

While the Laplace transform method has the minor drawback that we 
need to spend a little time looking at the development of Laplace trans­
forms before moving on to circuit analysis, it has the great advantage that 
the solution of circuits (both without and with initial conditions) becomes 
relatively straightforward. This chapter covers step function (d.c.) and a.c. 
analysis of first- and se co nd-order circuits, together with transients in 
magnetically coupled circuits. 

A feature of many electrical and electronic courses is the treatment of 
the frequency response of circuits, and this is described in chapter. 11. 
Additionally, an introduction to complex frequency and the s-plane is 
provided and, equally importantly, the transformation of time-domain 
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xiv Preface 

impedance into its equivalent s-domain impedance is covered. Frequency 
response is described in terms of Bode diagrams, and the method of 
drawing the diagrams is outlined in a straigthforward manner for both first­
and second-order circuits. 

Resonance occurs both in electronic and power circuits, and compre­
hensive coverage of series and parallel resonance is provided in chapter 12. 
Additional features in this chapter include frequency scaling, selective 
resonance and tuned coupled circuits. 

In chapter 13 the attention of the reader is directed to harmonics and 
Fourier analysis. A knowledge of Fourier analysis is vital for all engineers, 
and the chapter includes such topics as waveform symmetry, line spectra, 
circuit response and the effect of harmonics in a.c. systems. Also included 
is a section on harmonic analysis. 

In chapter 14 we meet one of the most powerful software packages 
available for analysis of electrical and electronic circuits, namely SPICE 
(Simulated Program with Integrated Circuit Emphasis). This software, 
which is both fast and versatile, is widely available both in full and in 
educational versions, and can be used to solve almost any electrical 
problem. The solution of a wide range of problems is included in this 
chapter. 

Chapter 15 is devoted to a number of mathematical 'tools' needed by 
engineers and technicians, namely complex numbers, matrices, determi­
nants and partial fractions. 

Noel M. Morris 
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1 
Elements and Laws 

1.1 Introduction 

In this chapter the basic relations in electric circuits are reviewed, including 
current, voltage, resistance, Ohm's law, electric power, etc. Additionally, 
other topics including the application of Kirchhoff's laws to circuits are 
described. 

The concepts of independent and dependent voltage and current 
sources, are introduced, some of which may be new to some readers. One 
application of dependent sources is in the operation al amplifier, which is 
used in every sphere of electrical and electronic engineering. So vital is this 
to all engineers it is introduced in this, the first chapter of the book. 

1.2 Electric current 

We are all familiar with electrostatic charge - and its most dramatic effect, 
namely lightning discharge. It is the latter effect, namely the electrical 
charge in motion or electric current which attracts our attention here. 

The current in a circuit is a measure of the rate at which electric charge 
passes through the circuit, and we define the instantaneous value of the 
current, i, as 

. dq 
z=-

dt 

The charge in motion is, gene rally , carried by electrons which move from a 
low (that is, negative) potential to a higher potential (that is, a positive 
potential). In this book, however, we adopt the more usual convention that 
current flows trom a point ot positive potential to a point ot negative 
potential. 

1 
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2 Electrical Circuit Analysis and Design 

4 2 
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(a) (b) 

Figure 1.1 (a) The charge passing a point in a circuit, and (b) the corresponding current in 
the circuit. 

The diagrams in figure 1.1 illustrate the concept of movement of charge 
and current. The waveform of movement of charge is shown in figure 
1.1(a), and the corresponding current waveform is in diagram (b). 

Lower-case symbols (such as i) are used in electrical engineering to 
represent an instantaneous value which varies with time. When steady-state 
operating conditions are reached, we use a capital symbol (such as J) to 
represent the quantity. We also use capital symbols to deal with the 
steady-state (root mean square) value of alternating quantities (see also 
chapter 5). 

In the UK, current is represented by an arrow drawn on the wire in 
which the current flows, as shown in figure 1.2. If it is an instantaneous 
value of current, it is shown either as i(t) or simply as i. Depending on the 
direction in which it is flowing, the current may be assigned either a 
positive or a negative value, as indicated by the 5 A current in figure 1.2. In 
the figure, a current of 5 A flows from left to right along the top wire; 
alternatively, -5 A flows from right to left. Engineers refer to a current as 
flowing either 'in' or 'through' a circuit. 

In many US texts, the current is often shown as an arrow by the side of 
the wire or element in which it flows. 

5A -5A 

Supply Circuit 
source 

i(t) 

Figure 1.2 Representation 01 current on a circuit diagram. 
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Elements and Laws 3 

1.3 Voltage, e.m.f. and p.d. 

The voltage 'between' or 'across' a pair of terminals is a measure of the 
work required to move charge through the element or circuit connected 
between the terminals. The voltage across an element is, in fact, the work 
required to move acharge of 1 C from one terminal to the other. The SI 
unit is the volt (V) - named after the Italian physicist Giuseppe Antonio 
Anastasio Volta. 

The instantaneous voltage is represented by the symbol v, and steady­
state voltage (or r.m.s. voltage if alternating) by V. 

Since voltage represents the potential needed to move acharge between 
a pair of terminals, a voltage can exist even if no current ftows. 

The energy converted per unit charge in an electrical source is known as 
the electromotive force (e.m.f.) of the source, and the electrical potential 
difference (p.d.) between two points in a circuit is a measure of the work 
required to move charge through the element. The general name given to 
both e.m.f. and p.d. is voltage. 

Voltage may be represented on a circuit diagram either by a '+' and '-' 
pair of symbols (see figure 1.3(a» , or by an arrow pointing from one 
terminal to another (see diagram (b». Where + and - symbols are used, 
the + terminal assumes the voltage wntten between the terminals with 
respect to the - terminal. For example, in figure 1.3(a), terminal A is 
+8 V with respect to terminal B, and in diagram (c) terminal B is -8 V 
with respect to terminal A. 

(a) (b) (c) (d) 

Figure 1.3 Representation 0/ voltage. In each case, terminal A is 8 V positive with respect 
to terminal B. 

When an arrow is used, the terminal which the arrowhead points to 
assumes the voltage written by the arrow with respect to the tail of the 
arrow. For example, in figure 1.3(b), terminal A is +8 V with respect to 
terminal B; in diagram (d) terminal B is -8 V with respect to terminal A. 
In some cases both sets of symbols are used. 
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4 Electrical Circuit Analysis and Design 

1.4 Power in d.c. circuits 

Power is the rate of transfer of energy; the unit of power is the watt (W) or 
joule per second (J s -1). Since voltage has the dimensions of joules per 
coulomb, and current has the dimensions of coulombs per second, then 

power, p = vi 

Once again, Iower-case pis reserved for the instantaneous value of power 
in the circuit, and upper-case Pis reserved for average power. That is 

P = VI 

Figure 1.4 illustrates various combinations of electrical source and power 
absorbing element (or load). In general, current ftows out 01 the positive 
terminal 01 apower source, and into the positive terminal 01 a load (see 
figure 1.4( a)). 

In diagram (b), current flows out of the positive terminal of the left­
hand block and into the positive terminal of the right-hand block. Conse­
quently, the left-hand block is the power source and the right-hand block is 
the load. The power transferred from the source to the load is 10 x 5 = 
50W. 

In figure 1. 4( c) the lower line is - 7 V with respect to the upper line, 
and the power transferred from the source (the right-hand block) to 
the load is 7 x 3 = 21 W. In diagram (d) the power absorbed by the load is 
8 x 4 = 32 W. 

+A A 
'"-Gl 

tvs Vs t 'tJ GlU 
(a) :i:'"-

., 
0'" 0 
a..5l ....J 

- B B 

+5A - 3A -4A 
Gl 

t10 V ~- 7 V 

Gl Gl 

ts v ~ 'tJ 'tJ ~ ~ 'tJ 

'" 
., ., 

'" '" 
., 

0 0 0 0 ....J ....J 0 0 ....J (f) (f) (f) 

+ 
(b) (c) (d) 

Figure 1.4 Block diagrams showing apower source and its load. 

1.5 Linear passive circuit elements 

The major part of electric circuits comprises passive elements, which can 
only dissipate or store electrical energy. A linear circuit element is one in 
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Elements and Laws 5 

which the voltage across the element varies linearly with the current 
through it. A number of elements are non-linear, in which case the voltage 
across the element does not vary linearly with the current through it. 

There are two broad categories of passive element, namely those which 
dissipate energy and those which store energy. The former include resist­
ance, which is the subject matter of this chapter, and the latter include 
inductance and capacitance which are described in chapter 4. 

An ideal circuit element is one which is both linear and either dissipates 
energy or stores it. U nfortunately, most practical circuit elements have 
some degree non-linearity. 

1.6 Resistance, conductance and Ohm's law 

The outer electrons in the atoms of metallic conductors are loosely bound 
to the parent atom, and are relatively 'free' to move around the lattice 
structure at normal room temperature. When a p.d. is applied to the 
conductor, free electrons drift towards the positive pole of the supply, 
resulting in current flow in the conductor. 

As the electrons move through the crystallattice, they collide with other 
electrons and lose so me of their energy. That is, there is some 'resistance' 
to current flow, and the resulting loss of energy is usually converted to 
heat. The resistance of the element enables us to broadly classify materials 
as folIows: 

Conductors: these have a low resistance, and include met als such as 
copper , brass, manganin, etc. 
Insulators: these have a high resistance to current flow, and include 
wood, plastic and glass. 
Semiconductors: these have resistance between that of conductors and 
insulators but, as students of electronics will know, it is not quite that 
simple! These include germanium, silicon, cadmium sulphide, etc. 
Superconductors: when the temperature is within a few degrees of 
absolute zero, the resistance of these materials falls to zero (or nearly 
so). These m&terials include tin, lead, thallium, etc. 

In 1827 George Simon Ohm published a pamphlet describing the result of 
experiments in electrical circuits, one relationship in the pamphlet being 
what we know as Ohm's law, and is 

v = iR or V = IR 

where v is the p.d. in volts across the linear element, i is the current in 
amperes through the element and R is a constant of proportionality called 
the resistance. The unit of resistance is the ohm (symbol Q). An alternative 
form of Ohm's law is 
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Figure 1.5 Ohm's law. 

i = vG or 1= VG 

where G is the conductance of the element or circuit, and has the unit of 
the siemens (symbol S). 

A resistance (or a conductance) is represented in a circuit by means of a 
rectangular box as shown in figure 1.5. 

1. 7 Power in a resistive circuit 

In a linear resistive circuit the voltage is given by v = iR, and the power 
consumed is 

or, alternatively 

p = vi = vZG = iZ/G W 

In many installations the power is measured in kilowatts (1 kW = 1000 W), 
and in large systems it is measured in megawatts (1 MW = 10 6 W = 1000 
kW). In electronic circuits the power may be measured in milliwatts (1 mW 
= 10-3 W) or in microwatts (1 I-lW = 10-6 W). 

Worked example 1.7.1 

If v = 10 V and i = -15 mA, calculate the power consumed. 

Solution 

p = 10 X (-15 X 10-3) = -0.15 W 

that is, the element can either be regarded as consuming -0.15 W, or as 
supplying or generating 0.15 W. 

Worked example 1.7.2 

If P = 200 m Wand I = 10 mA, calculate the resistance of the circuit. 
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Solution 

R = P/J2 = 200 x 10-3/(10 X 10-3)2 = 2000 Q 

Worked example 1.7.3 

A current of 0.1 A produces 5 W of power in a circuit. Calculate the 
conductance of the circuit. 

Solution 

G = P/P = 0.1 2/5 = 0.002 S 

1.8 Energy consumed in a resistive circuit 

Power is the rate of energy transfer, that is 

dw 
p=-

dt 

and energy is given by 

f'2 

W= pdt 

'1 

where W is the energy transferred in the interval t 1 to t2 • If the power 
supply is constant for time t, then 

W= Pt 

In a d.c. circuit where steady-state conditions exist 

P = VI 

hence 

W= VIt 

and since V = IR in a d.c. circuit, then 

W = J2Rt = V 2t/R 

In most systems, energy is measured in kilowatt-hours (1 kWh = 
10 3 X 60 x 60 = 3.6 X 106 J), and in large systems it is measured in 
megawatt-hours (1 MWh = 103 kWh). 
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1.9 Independent and dependent supply sources 

A source is an active element, that is, it can deliver energy to an external 
device; sources include batteries, alternators, oscillators, etc. Sources can 
be classified into 'ideal' or 'practical' as folIows. 

An ideal source is one wh ich does not represent a 'real' device (other 
than special electronic circuits which have been engineered to provide an 
'ideal' characteristic over a limited operating range); such sources can, 
theoretically, deliver an infinite amount of power. A practical source is one 
having limitations on its output voltage, current and power. 

There are two types of source (ideal or otherwise), namely voltage 
sources and current sources . An ideal voltage source could, theoretically, 
maintain a constant voltage across a load of any resistance. An ideal 
current source could, also theoretically, maintain a constant current in a 
load of any resistance. An independent source is one whose source quantity 
(voltage or current) is independent of the remainder of the circuit. 

The symbols in figure 1.6 depict typical independent sources. In diagram 
(a), the 6 V source supplies a current of 1.5 A to its load while, in diagram 
(b), the independent source (a battery) receives a current of 3 A, that is, it 
is being charged. Diagram (c) shows an independent current source, the 
voltage across its terminals depending on the resistance of the connected 
load. 

(a) 

3A 

12vtC -L 
(b) (c) 

Figure 1.6 An ideal or independent voltage souree (a) delivering apower of 9 W, 
(b) absorbing 36 W. (e) An ideal or independent 4 A eurrent souree. 

There is another group of voltage and current sources, namely depen­
dent sources or controlled sources , which are characterised by the 
diamond-shaped symbols in figure 1.7. The output voltage or current 
produced by the controlled source is dependent on a voltage or current at 
some other point in the circuit. 

The dependent source in figure 1.7(a) produces a voltage which is 
dependent on the voltage VI existing at some other point in the circuit. We 
would describe this source as a voltage-controlled voltage source. The 
dependent voltage source in diagram (b) is controlled by a current 12 which 
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(a) (b) (c) (d) 

Figure 1.7 Diagrams (a) and (b) represent dependent or eontrolled voltage sourees, (e) 
and (d) represent dependent eurrent sourees. 

9 

exists at another point in the eireuit. Diagrams (e) and (d) respeetively 
show a voltage-controlled current source and a current-controlled current 
source. 

The reader should note, onee again, that dependent sourees are ideal 
sourees. 

1.9.1 The operational amplijier 

The operational amplifier (often abbreviated to op-amp) is of fundamental 
importanee in praetieally all forms of eleetrieal eircüit. The elements whieh 
eomprise an ideal operational amplifier are shown in figure 1.8(a). 

The amplifier has two input terminals marked VI and v 2' and one output 
terminal, Vo' We refer to the terminal marked '+' (to whieh V 2 is eon­
neeted) as the non-inverting input, and to the terminal marked '-' as the 
inverting input; this is beeause the output voltage, vo, is in phase wirh V 2 

I' 
I " 

v, I " 

I ", v, 

v, IR , V o V o = Kv" 
v, 

- v"""" 
(a) (b) 

Figure 1.8 (a) Idealised operational amplijier, (b) cireuit representation. 
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10 Electrical Circuit Analysis and Design 

and anti phase with VI' We can, in fact, connect a signal of any potential 
(either positive or negative) to either input terminal. 

The voltage gain of the amplifier is K, and the output voltage is V o = 
K(v 2 - VI) = Kvx . The value of K approaches infinity in an ideal op-amp 
and, if V 0 is to be finite then the value of V x = V 2 - V I must approach zero. 
That is, in an ideal op-amp, v 2 = V I which implies that the input current 
must be practically zero! Also, in an ideal op-amp, the input resistance R is 
infinite, so that the input current can be regarded as being zero (this also 
confirms that v x must be zero!). The reader will also observe that the 
output from the op-amp is provided by a voltage-controlled voltage source, 
whose output resistance is zero (or nearly so!). 

Worked example 1.9.1 

Deduce an expression for the voltage gain of the operational amplifier 
circuit in figure 1.9. The op-amp is ideal. 

v, 

v, 

i, 

Figure 1.9 Circuit Jor worked example 1.9.1. 

Solution 

Since the op-amp is ideal, we can make the simplifying assumptions that 
v x = 0 and i = 0, hence 

and 

that is 
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that is 

R1 + R2 [ R2] 
V o = R

1 
v 2 = 1 +/i; V 2 

and the overall voltage gain is 

~=1+~ 
V 2 R 1 

1.10 Kirchhotf's laws 

At about the same time as Ohm was carrying out his experimental work, 
Gustav Robert Kirchhoffwas born in Germany; he was to revolutionise the 
work on electric circuit theory. 

It is a simple fact that the rate of ftow of charge into any point or node 
(a formal definition of anode is given in section 2.2) in a circuit is equal to 
the rate of ftow of charge out of it. That is, charge cannot accumulate at a 
given point in the circuit. This is not a mathematical proof, but is the basis 
of Kirchhoff's current law, or KCL. That is 

the algebraic sum of currents entering any node is zero 

At the node in figure 1.10, KCL states that 

A simple way of expressing this is ~i = 0 or, more precisely 

N 

L in = 0 
n = 1 

where N is the number of wires meeting at the node. Alternatively, we can 
re-write KCL as follows 

i2 

i3 

Figure 1.10 Kirchhoff's current law (KeL). 
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the algebraic sum 01 the current entering any node is equal to the 
algebraic sum 01 the current leaving the node 

which, in figure 1.10 gives 

Also, if we proceed around the complete circuit, and return to the starting 
point, there is no change in electrical potential. This is the basis of Kirch­
hoff's voltage law or KVL, and can be stated in the form 

the algebraic sum 01 the e.m.fs. and p.d.s around any closed 
circuit is zero 

If, for example, we proceed around the closed path ABCA in figure 1.11 
we get 

or, if we take the path ACBA we get 

which, effectively, gives the same equation. A simple way of writing this is 
~v = 0 or, expressed in mathematical form, KVL says 

N 

~ V n = 0 
n = 1 

r---.C 

+ 

A 

Figure 1.11 Kirchhaff's valtage law (KVL). 

where N is the number of elements in the closed loop. Alternatively, KVL 
may be written in the following form 

in any closed path the algebraic sum 01 the e.m.f.s is equal to the 
algebraic sum 01 the p.d.s 
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--
12 A 

12 A 12 A 
R, @ 10 Q I. R, @ 100 

@ G) @l 
I. --

120 V t VA BA BA 

R, R, 

0.5A 

(a) (b) 

10 Q @ le --® BA 
1 Oie 

Figure 1.12 Figure for worked example 1.10.1. 

Worked example 1.10.1 

Calculate VA' 1 B' R 1 and R 2 in the circuit in figure 1.12( a). 

Solution 

The relevant section of the drawing is shown in diagram (b). Applying 
KCL to node 3 gives 

or 

hence, from Ohm's law 

12 = JA + 8 

l A = 4 A 

VA = 10JA = 40 V 

Applying KCL to node 2 yields 

or 

At node 0, KCL shows that 

or 

JA + 0.5 = JB 

I B = 4.5 A 

8 = 0.5 + Je 

Je = 7.5 A 

Applying KVL to the closed-Ioop on the left of figure 1. 12(b ) shows that 
the voltage at node 2 with respect to node 1 is 10J e + 120, which is equal to 
VB' That is 

VB = (10 x 7.5) + 120 = 195 V 

Hence, from Ohm's law 
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VB 195 
R 1 = - = - = 43.33 Q 

JB 4.5 

Also, the voltage at node 3 with respect to node 0 is 

120 + VA = 160 V 

Hence R 2 = 160/8 = 20 Q 

1.11 The double-suffix voltage notation 

Either when specifying or calculating the voltage of one node in a circuit 
with respect to another node, a double-suffix voltage notation is very 
useful. 

Referring to the circuit diagram in figure 1.13, the voltage V AN is read as 
'the voltage of node A with respect to node N', and may be written in the 
form 

c 
---VNC 

Figure 1.13 The double-suffix voltage notation. 

VAN=VA-VN 

If node N is the reference node (whose potential may be regarded as zero), 
we can define V AN simply as VA. Thus 

V AS = V AN - V SN = (VA - V N) - (V S - V N) = VA - V S 

also 

V SA = V SN - V AN = (V S - V N) - (VA - V N) = - V AS 

If in figure 1.13 V AN = 10 V, V BN = 20 V, V CN = 30 V and V AS = -10 V, 
then 
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V SN = V AN - V AS = 10 - (-10) = 20 V 

Alternatively, we may say V SA = - V AS = 10 V, and 

V SN = V AN + V SA = 10 + 10 = 20V 

15 

If we need to calculate the voltage between two nodes, say node A and 
node B, then 

or 

that is 

Also 

V AB = voltage of node A with respect to node B 

= V AN - VBN = 10-20= -lOV 

V BA = V BN - V AN = 20 - 10 = 10 V 

V AB = -VBA 

V AB = V AS - V BS = V AS - (V BN - V SN) 

=-10 - (20 - 20) = -10 V 

Worked example 1.11.1 

Calculate the volta ge V AB in figure 1.14. 

Solution 

In this case there are two closed meshes (a formal definition of a mesh 
is given in section 2.2) linked by a 4 Q resistor. Since there is no return 
path for the current through the 4 Q resistor, no current can ftow in it, and 
V 2 = O. The current 11 circulating around the left-hand mesh is 

A --v, -­v, 

Figure 1.14 Figure for worked example 1.11.1. 

5Q 
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hence 
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__ 10 __ = 1 A 
2+3+5 

VI = 2/ 1 = 2 V 

The current /2 in the right-hand mesh is 

and 

__ 40 __ =2A 
5 + 6 + 9 

V 3 = 6/2 = 12 V 

To evaluate V AB, we start at node Band proceed to node A (using any 
path), and we simply add (or subtract) voltages as we meet them. Selecting 
one of the available paths we get 

VAB =-V3 + 40 - V 2 - VI = -12 + 40 - 0 - 2 

=26 V 

1.12 Practical (non-ideal) sources 

An ideal voltage source can, theoretically, supply any current to a load, 
giving the ftat v-i characteristic (shown dotted) in figure 1.15(a). However, 
a practical voltage source cannot do this, and the current it can deliver is 
limited. We account for this fact by introducing an internal resistance, or 
source resistance, or output resistance, R, in series with the ideal voltage 
source, es, as shown in figure 1.15(b). 

The terminal voltage of the source is equal to es only when i = 0, that is, 
when the terminals of the practical source are open-circuited. 

An ideal current source can, theoretically, supply any load with a 
constant current; the corresponding v-i characteristic is shown by the 
dotted line in figure 1.16(a). A practical current source cannot do this; the 

u 
Idea I sou rce 

~r ____ -=-:- - - - --

o 

(al 

r-------. 
I 
I 
I 
I 
I 
I 
I L _____ ...l 

(bl 

Figure 1.15 (a) v-i characteristic of ideal and practical voltage sources, (b) an equivalent 
circuit of a practical voltage source. 
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I 
I L ______ -l 

(b) 
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Figure 1.16 (a) v-i characteristic of ideal and practical current sourees, (b) an equivalent 
circuit of a practical current source. 

v-i characteristic of a practical current source is shown in full line in 
diagram (a), and an equivalent circuit for this type of source is shown in 
diagram (b). The change in characteristic is accounted for by the internal 
conductance, G s , which is also known as the source conductance, or the 
output conductance. 

1.13 Transformation of practical sources 

When analysing circuits, it is often convenient to convert all the sources in 
the network either to voltage sources or to current sources. In the follow­
ing we will consider the process of source trans!fJrmation. 

To simplify the process of analysis, let the internal conductance G s of 
the practical current source be replaced by its equivalent resistance r s, 

where r s = 1/G s. Consider the practical voltage and current sources in 
figure 1.17(a) and (b), respectively, which are connected to an identical 
load resistor. 

The current i u in the load connected to the voltage source is (figure 
1. 17(a)) 

(a) (b) 

Figure 1.17 Source transformation. 
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Rs = l/Gs 

es = islGst 

(a) 

Figure 1.18 Equivalent sourees. 

or 

The current flowing in the load connected to the current source is (figure 
1. 17(b)) 

. . . . V L isrs - V L 
lL = ls - l = ls - - = 

r s r s 

or 

Since the two sources are identical, we can equate the voltage across the 
load in the two cases as follows 

Equating terms in i L shows that 

R s = r s = lIG s 

Also, for equality, it follows that 

That is, the voltage source and the current source in diagrams (a) and (b) 
are equivalentas far as measurements of voltage and current at the 
terminals are concerned. 

When converting sources, the reader should be careful to ensure that 
the polarity of the voltage source acts in the correct direction to produce 
the correct current in the current source, and vice versa. 

Worked example 1.13.1 

Calculate the value of 1 in figure 1.19(a). 
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Solution 

Initially, we will convert the 3 A practical current source into its equivalent 
voltage source. The result is shown in diagram (b). The equivalent voltage 
source has an intern al resistance of 1/0.2 = 5 Q, and a source voltage of 
[slG s = 310.2 = 15 V. 

The net voltage in figure 1.19(b) acting in the direction of [is 10 - 15 = 
-5 V, so that 

[ = -5/(10 + 5) = -0.333 A 

that is, its value is 0.333 A flowing in the opposite direction to that shown in 
figure 1. 19(a). 

10 Q 10 Q , 5 Q 

3A1ovtf · 3 
(a) (b) 

Figure 1.19 Figure for worked example 1.13.1. 

1.14 Resistance of aseries circuit 

Elements which carry the same current are connected in series; the three 
resistors in figure 1.20 are connected in series. 

Since the current, [, is common to each resistor, then 

Applying KVL to the circuit gives 

v, V, V3 ,----
R, R, R3 

Figure 1.20 Series-connected resistors. 
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where 
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Es = V l + V 2 + V 3 = I(R l + R 2 + R 3) = IRE 

RE = R l + R 2 + R 3 

and is the equivalent resistance of the series circuit. If there are n resistors 
in series, the equivalent resistance of the circuit is 

RE = R l + R 2 + ... + Rn 

To summarise, the equivalent resistance 01 a series-connected circuit is 
always greater than the largest value 01 individual resistance in the circuit. 

Resistors in series are often described as a string of resistors. 

1.15 Voltage division in series-connected resistors 

If there are n resistors in series, the voltage across the nth resistor is 
Vn = IRn> where I is the current flowing through the resistors. If the voltage 
across the series circuit is V s, then V s = IRE, where RE is the equivalent 
resistance of the circuit. That is 

V n IR n Rn 
-=--=-
V s IRE RE 

or 

Worked example 1.15.1 

Calculate the equivalent resistance of the series circuit in figure 1.21, and 
determine I, V l1 V 2 and V 3 • 

Solution 

The equivalent resistance of the circuit is 

100 200 700 

2OV' T'--__ -----IT 
Figure 1.21 Figure Jor worked example 1.15.1. 
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RE = R I + R 2 + R 3 = 10 + 20 + 70 = 100 Q 

Applying KVL to the circuit shows that 

V s = 20 - 10 = 10 V 

where V s produces I in the direction shown in the figure, hence 

1= VS/R E = 10/100 = 0.1 A 

hence 

VI = IR I = 0.1 X 10 = 1 V 

V 2 = IR 2 = 0.1 x 20 = 2 V 

V 3 = IR 3 = 0.1 x 70 = 7 V 

21 

and from KVL, V s = VI + V 2 + V 3 = 1 + 2 + 7 = 10 Vor, alternatively, 
from the theory developed above we can say 

VI = VsR/R E = 10 x 10/100 = 1 V 

V 2 = VsRiR E = 10 x 20/100 = 2 V 

V 3 = VsR/R E = 10 x 70/100 = 7 V 

It can be seen from the above results that the value of the voltage across any 
resistance in aseries circuit is proportional to the value of the resistance. 

1.16 Resistance and conductance of a paraDei circuit 

Elements are said to be connected in parallel with one another when they 
are connected between the same pair of terminals in a circuit. The resistors 
in figure 1.22 are connected in parallel. 

The solution of parallel circuits can be approached either by considering 
resistances in parallel or conductances in parallel. Since the former is the 
most popular approach, we will adopt it here. 

By definition, each branch in a parallel circuit supports the same 
voltage, and the current in the nth branch is 

" " 
R, R, R3 

Figure 1.22 Parallel-connected resistors. 
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In = VrJR n 

that is 11 = V rJR}> V 2 = V rJR 2 , etc. Applying KCL to the circuit gives 

V p V p V p 
I = I + I + I =- + - + -

1 2 3 R R R 
1 2 3 

= V [1... + 1... + 1...] 
P R 1 R 2 R 3 

but I = V rJR E, where RE is the equivalent resistance of the circuit. 
That is 

1 1 1 1 
-=-+-+­
RE R 1 R 2 R 3 

If there are n resistors in parallel then 

1 1 1 1 -=-+-+ ... +­
RE R 1 R 2 Rn 

In the special case of two resistors in parallel 

R _ R 1R 2 
E-

R 1 + R 2 

Rad we considered the case of parallel-connected conductances, and 
allowed G n = lIR n and GE = liRE, then for the general case of n 
parallel-connected conductances 

GE = GI + G 2 + ... + G n 

1.17 Current division in a parallel circuit 

Possibly the simplest method of calculating the way in which current 
divides in a parallel circuit is to consider the case of a parallel circuit 
containing conductances. The current in branch n is 

In = VpG n 

where V p is the voltage applied to the parallel circuit. The total current 
drawn by the circuit is 

1= VpG E 

where GE is the equivalent conductance of the parallel circuit, hence 

In VpG n G n 
-=---=-

I VpGE GE 
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or 

1 = 1 G n 

n GE 

Alternatively, considering parallel-connected resistors, it can be shown 
that 

where REis the equivalent resistance of the parallel circuit. In the special 
case of a two-branch parallel circuit 

GI R 2 I I = 1 = I---=--
GI + G 2 R I + R 2 

Worked example 1.17.1 

Calculate the value of 11> 12 , 13 and V p in figure 1.23. 

Solution 

The total current entering the top node of the parallel circuit is (14 - 4) = 
10 A, and this divides between the three branches. The total conductance 
of the parallel circuit is 

1 1 1 1 1 1 
G=G+G+G=-+-+-=-+-+-

E I 2 3 R I R 2 R 3 2 4 5 

= 0.5 + 0.25 + 0.2 = 0.95 S 

hence 

'3 
5Q 

Figure 1.23 Figure for worked example 1.17.1. 
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/1 = / G/G E = 10 x 0.5/0.95 = 5.263 A 

/2 = / GiG E = 10 x 0.25/0.95 = 2.632 A 

/3 = / GiG E = 10 x 0.2/0.95 = 2.105 A 

It can be seen from the result that the current in each branch is proportional 
to the conductance 01 the branch (or is inversely proportional to the 
resistance of the branch). 
Also 

v p = (14 - 4)/G E = 10/0.95 = 10.562 V 

Unworked problems 

1.1. The repetitive waveform of current entering a circuit is shown in 
figure 1.24. (a) Wh at is the value of the current at t = 0.01 s? (b) 
Wh at charge enters the circuit between t = 80 ms and t = 150 ms? (c) 
What total charge has entered the circuit at t = 210 ms? 
[Ca) 0.05 A; (b) 15.25 mC; (c) 0.05025 C] 

05AZVl 
t (ms) 

o 100 200 

Figure 1.24 

1.2. The electrical charge ente ring a terminal in a circuit is 10 sin 100:n:t 
mC. (a) What charge has ente red between -3 ms and 3 ms? (b) 
Calculate the current at t = 2 ms. 
[Ca) 16.18 mC; (b) 2.54 A] 

1.3. In figure 1.25 calculate VBC ' VCA ' VBD , VEB and VDC • 

[30.93 V; -20.93 V; -20 V; -110 V; -9.07 V] 

1.4. Calculate the power consumed by each resistor in figure 1.25. 
[10 0 resistor 95.7 W; 200 resistor 4.11 W; 25 0 resistor 250 W; 40 
o resistor 10.95 W] 

1.5. Calculate the power absorbed by each of the circuit elements in 
figure 1.26. 
[Ca) 2.4 W; (b) -180e-St ; (c) -20 W; (d) 30 W] 
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10 V --- B 10 Q 

-30V --- D 20 Q 
A C 

-100 V --- 25 Q E 

40 Q 

Figure 1.25 

12 V -o----c:::J-----
0.2 A 

20 V tQA 6V 
+ ---
-10V ~ 
_ 5A 

---
Figure 1.26 

1.6. The resistanee, R, of a eonduetor in ohms is given by the equation 
R =pLlA, where pis the resistivity (or volume resistivity) of the 
conduetor in n m, L is the length of the eonduetor in m, and A is the 
eross-seetional area of the eonduetor in m2 • If a eonduetor of resistiv­
ity 0.027 fln m, wh ich is 100 km long and of diameter 1 em earries a 
eurrent of 20 A, ealculate the p.d. aeross the length of the wire, the 
power eonsumed in the wire and the energy eonsumed in 20 mins. 
[687.5 V; 13.75 kW; 4.58 kWh] 

1.7. For the eireuit in figure 1.27. ealculate (a) I, (b) Vand (e) the power 
absorbed by eaeh element. The ealculation should verify the prinei­
pIe of eonservation of energy. 
[Ca) 0.75 A; (b) 3.75 V; (e) 5 n resistor 90.31 W, 10 n resistor 5.625 
W, resistor R 2.8125 W, 20 V souree 85 W, 30 V souree 22.5 W, 5 A 
souree -206.25 W] 

1.8. Calculate I in figure 1.28, and determine the power supplied by the 
10 V independent souree. 
[-0.4 A; -4 W] 

www.Technicalbookspdf.com



26 Electrical Circuit Analysis and Design 

R 

Figure 1.27 

t 10V 

-v 

Figure 1.28 

2 kQ 

Figure 1.29 

2Q 
Ao-"'-C=:J'--4~C::J-""-QB 

7Q 

Figure 1.30 
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1.9. In figure 1.29, calculate V and the power supplied by the 50 mA 
source. 
[20 V; 1 W] 

1.10. Calculate the resistance between A and B in figure 1.30. 
[5.95 n] 

1.11. IF 10 V is applied between A and B in figure 1.30, calculate the 
voltage across and the current in each element. 
[2 n resistor 2.617 V, 1.308 A; 3 n resistor 1.121 V, 0.374 A; 4 n 
resistor 1.495 V, 0.374 A; 5 n resistor 2.07 V, 0.414 A; 6 n resistor 
2.07 V, 0.345 A; 7 n resistor 5.313 V, 0.76 A; 8 n resistor 7.384 V, 
0.923 A] 
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2 
Circuit Analysis 

2.1 Introduction 

By now the reader is familiar with the use of Ohm's and Kirchhoff's laws in 
the analysis of simple d.c. circuits. One of the primary goals of circuit 
theory is the attainment of knowledge and experience of analysing more 
practical systems. Among the methods adopted are mesh analysis, nodal 
analysis and loop analysis. 

Any one of these methods can be applied to almost any circuit and, in 
many cases there is no simple way of saying which is the 'best' method of 
solution; we cannot lay down simple roles to determine the 'best' 
approach. A knowledge of each method can only by gained by acquiring a 
sound understanding of the features of each type of solution. 

2.2 Definitions and terminology 

An electrical network is a system of interconnected circuit elements contain­
ing, for example, resistors, inductors, capacitors, voltage and current 
sources, transformers, amplifiers, etc. If the network contains at least one 
closed path or mesh it is an electrical circuit; every circuit is a network, but 
not a11 networks are circuits (see figure 2.1). Despite this academic differ­
ence, engineers use the term network and circuit without differentiating 
between them. 

Terminals A and Bin figure 2.1(a) are not electrica11y connected, and an 
open-circuit is said to exist between them. Terminals C and D in figure 
2.1(b) are connected (idea11y) by a resistanceless piece of wire, so that 
current can pass from C to D without power loss; a short-circuit is said to 
exist between C and D. Strictly speaking, figure 2.1(a) is a network, and 
figure 2.1(b) is a circuit. 

An ideal circuit element is one which does not, strictly speaking, rep-

28 
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c 

B D 

(a) (b) 

Figure 2.1 (a) A network and (b) a circuit. 

resent a practical element. For example, a practical resistor has an ideal 
resistance element as part of its make-up, but it also has so me inductance 
because the current passing through it pro duces a magnetic field, and it has 
some capacitance because it is insulated from, say, earth (the insulation 
acting as a dielectric). Fortunately it is usually possible either to neglect 
subsidiary effects or to compensate for them, but not in every case. 

It is fortunate that the major feature of an element (such as the resist­
ance of a resistor, or the capacitance of a capacitor) can be thought of as 
being at one point within the element; if this is the case, then we say we are 
dealing with a lumped-constant element. In other cases, such as a transmis­
sion line, we need to think of the element as an infinite number of infinitely 
sm all interconnected elements; in this case we say that we are dealing with 
a distributed-constant element. This latter type of network is dealt with in 
more advanced texts. 

Anode is a point in a circuit which is common to two or more circuit 
elements; the circuit in figure 2.2 has four nodes (numbered 0, 1,2 and 3). 
A junction or principal node is a point in the circuit where three or more 
elements are connected together; nodes 0 and 2 in figure 2.2 are principal 
nodes. In many cases we drop the term 'principal', and refer to them as 
'nodes' . In the majority of cases of circuit analysis, we choose one node 
(usually a principal node) to be a reference node or datum node, so that the 
voltage of other nodes can be defined with respect to it. 

For example if, in figure 2.2, we define node 0 as the reference node, 
then the voltage at node 3 with respect to node 0 is V30 ; however, since 
node 0 is the reference node, we simply say that the voltage of node 3 with 
respect to node 0 is V3 • 

A branch in a circuit is a path containing one circuit element, and which 
connects one node to another. Thus R1 in figure 2.2 is the element in the 
branch connecting node 1 to node 2. A path in a network is a set of 
connected elements that may be traversed without passing through the 
same node twice. For example, elements R2 and R4 in figure 2.2 are in the 
path which commences at node 0 and, after passing through node 2, arrives 
at node 3. A loop in a circuit is a closed path within the network; the closed 
path containing the current source Is , and the resistors RH R4 and R3 in 
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(j) .... --{==t---....... 

@ 

Figure 2.2 A circuit with tour nodes and jive branches. 

figure 2.2 is a loop (that is, the loop passing through nodes 0, 1, 2, 3 and 
back to node 0) 

An element which can be connected in a circuit in either direction (this 
assumes that it is a two-terminal element) without changing the electrical 
performance of the circuit is known as a bilateral element. Examples, 
include resistors, inductors and capacitors. The majority of networks are 
bilateral networks, that is, they contain only bilateral elements. Certain 
network theorems, such as the reciprocity theorem (see chapter 3 for 
details), are only applicable to bilateral networks. 

A planar network is one which may be drawn on a ftat surface, so that 
none of the branches passes over or under any other branch. When this 
cannot be done, the network is non-planar. The circuit drawn in fullline in 
figure 2.3 is a planar network but, if the branch containing R6 is introduced 
(shown broken), it becomes a non-planar circuit. 

A mesh is a loop wh ich does not contain any other loops within it. For 
example, the circuit in fulliine in figure 2.3 contains the meshes ABCDA 
(R 1 , R2 , R3 , Vs ), BCDB (R2 , R3 , R4 ) and ABDA (RH R4 , Vs). The loop 
containing, for example, R 1 R2 R3 Vs in figure 2.3 is not a mesh because it 
contains two loops. However, the reader should note that, in some cases 

R. 
/,-----0--------, 

.... -~j_~._-~J_-.© I 
I 
I 

R3 I 
I 
I L-__ ...... _____ .... ____ --J __ J 

@ 

Figure 2.3 The circuit drawn in tulliine is a planar network. 

www.Technicalbookspdf.com



Circuit Analysis 31 

(referring to figure 2.3), it is possible to re-draw the eireuit so that a loop 
whieh is not a mesh in one version of the cireuit ean beeome a mesh in 
another version. 

2.3 Mesh analysis 

Mesh analysis involves the eoneept of mesh current, whieh is introdueed 
via the two-mesh, four-node, five-braneh planar eireuit in figure 2.4; the 
reader should note that the four nodes eomprise two 'nodes' and two 
'principal nodes'. The eireuit is shown with a mesh eurrent cireulating 
around the periphery of eaeh mesh in a clockwise direction (11 and 12 in the 
figure). The relationship between the mesh eurrent and the branch currents 
(1A' 1B and 1d are 

Let us apply KVL to eaeh mesh in turn. For mesh 1 (the left-hand mesh), 
the equation is (proeeeding in the direetion of 11) 

20 - 101\ - 3011 + 3012 = 0 

or 

20 = 1011 + 3011 - 3012 = 4011 - 3017 

and for mesh 2 the equation is (proeeeding in the direetion of 12) 

-10 + 3011 - 3012 - 2012 = 0 

or 

-10 = - 3011 + 3012 + 2012 = -3011 + 5012 

The equations to be solved are, therefore 

20 = 4011 3012 

-10 = -3011 + 5012 

Node 2 
Node 1 10 Q IA 18 

20 Q Node 3 

20 V t :0 
le 

30Q ::0 
Node 4 

Figure 2.4 Mesh analysis. 
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R2 

R. 

Figure 2.5 A three-mesh, jive-node, seven-branch circuit. 

Solving the two simultaneous equations is fairly straightforward, and the 
answers are 11 = 0.636 A and 12 = 0.182 A. While the above problem is 
useful in illustrating a simple application, it does not help us to 'look' and 
simply write down the mesh equations. 

Before we can do this, we need to determine the equations of a more 
complex circuit, such as that shown in figure 2.5. The equations of this 
circuit will enable us to draw some general conclusions, which allow us to 
write down the mesh current equations by observation. The reader should 
carefully study the following passages. 

Applying KVL to mesh 1 (in which 11 circulates), the mesh equation is 
seen to be 

or 

V1 + V2 = (R1 + R4)11 - R112 - R413 

Similarly for mesh 2 (in wh ich 12 circulates), the equation is 

- V2 + l1R1 -:- 12R1 - 12R2 - 12R3 + 13R3 = 0 

or 

- V2 = -RJ1 + (R1 + R2 + R3)12 - Ri3 

and for mesh 3 the equation is 

l 1R4 - 13R4 + 12R3 - 13R3 - 13Rs = 0 

that is 

(2.1) 

(2.2) 

(2.3) 

The equations (2.1) to (2.3), inclusive, allow us to solve the circuit, and 
are grouped below 
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V1 + V2 = (R1 + R4 )/1 - Ri2 R4/ 3 

- V2 - Ri1 + (R1 + R2 + R3)/2 - R3/3 

o - R4/ 1 R3/2 + (R3 + R4 + R5 )/3 

The equations can be written in the following generalised form 

E1 Rn / 1 + R 12/ 2 + R 13/ 3 

E2 R21/ 1 + R22/ 2 + R2i3 

E3 R3i1 + R32/2 + R33/3 

where E1 is the sum of the source voltages driving 11 in a clockwise 
direction, that is, E1 = V1 + V2 ; E2 is the sum of the source voltages driving 
12 in a clockwise direction, that is, E2 = - V2 (that is, V2 tries to drive 12 in a 
counterclockwise direction); E3 is the sum of the source voltages driving 13 

in a clockwise direction, that is, E 3 = O. 
Rw R22 and R33 are, respectively, the self-resistances of the mesh in 

which 11 , 12 and 13 ftow. That is, Rn is the sum of all the resistances around 
the perimeter of mesh 1, that is Rn = R1 + R4 ; R22 is the sum of the 
resistances around the perimeter of mesh 2, that is R22 = R1 + R2 + R3, etc. 

If we write down R ij as the resistance in row i and column j of the matrix 
containing the resistance elements, we see that R ij is (for =F j) 

( -1) x the resistance in the branch 
which is mutual to the meshes in 

which li and I j ftow 

that is, R13 = - R4 , R23 = - R3, etc. 
We can write down the resistance values in the above equation in wh at is 

known as matrix form as follows; the square brackets around the symbols 
tell us that we are dealing with a matrix (see chapter 15 for details). 

R13] R23 
R33 

The resistance matrix is a square matrix, that is it has as many rows as it 
has columns. For a bilateral network it is symmetrical about the major 
diagonal, that is R ij = Rji , for example R23 = R32 , R 13 = R31> etc. In the case 
of abilateral network, that is, a resistive network, all elements on the 
major diagonal of the resistance matrix are positive; elements not on the 
major diagonal are either zero or negative. 

These comments do not always apply to a non-bilateral network or to 
networks containing sources other than independent voltage sources, for 
example, current sources (see worked example 2.6.2). 
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2.4 General rules for writing mesh equations 

Depending on the circuit, there are either three or four general rules which 
need to be followed: 

1. Draw a carefully labe lIed circuit diagram. 
2. Assign mesh currents II> 12 , ••• , Im to each mesh flowing in a clockwise 

direction in the circuit. 
3. If the circuit contains only voltage sources, apply KVL to each mesh 

and solve the resulting simultaneous equations for the unknown mesh 
currents (if there are m meshes, there are m equations). If the circuit 
contains dependent voltage sources, relate the dependent source volt­
ages to the unknown mesh currents. 

4. If the circuit contains one or more current sources, we cannot deal with 
it in the normal way because the internal resistance of these sources is 
infinity. The following rule explains how to deal with it. However, since 
it is fairly technical, the reader should study worked example 2.6.2 in 
association with the following. 

It is first necessary to replace each such source by an open-circuit (note: the 
mesh currents assigned in step 2 must not be changed). Each source 
current should then be related to the mesh currents assigned in step 2. The 
resulting simultaneous equations should then be solved 

Where a circuit contains practical current sources (see the work on 
Thevenin's and Norton's theorems in chapter 3), each can be converted 
into its equivalent practical voltage source, and the problem solved as 
outlined in step 3 above. 

2.5 Solution of three simultaneous equations 

Solution of circuits containing two unknowns is relatively simple because 
we are dealing with only two simultaneous equations. Unfortunately, many 
practical circuits contain three or more unknowns. We look here at the 
principles involved in solving for three unknowns. Let us suppose that the 
three simultaneous equations representing the circuit are of the form 

VI = AX + BY + CZ 

V2 DX + EY + FZ 

V3 GX + HY + JZ 

where VI> V2 and V3 are three numerical values, A to Hand J ('I' is omitted 
for the reason that it may be confused with current) are coefficients, and X, 
Y and Z are the unknown variables. 

The solution of three simultaneous equations is no more difficult than 
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solving two simultaneous equations, but it simply involves a few more steps 
and takes a little longer. We will list the general procedure here, and then 
solve a set of three simultaneous equations. 

1. Eliminate one of the variables (say X) from, say, the 1st and 2nd 
equations. 

2. Eliminate the same variable (X) from two other equations (say the 1st 
and the 3rd). This leaves two simultaneous equations with two un­
knowns (Y and Z). 

3. Solve for Yand Z from these two equations. 
4. Insert the values of Y and Z into one of the original equations to 

determine the value of X. 

Consider the equations 

-20 = 3X + 2Y - 4Z 

32 = 1.5X - 3Y + 4Z 

-11 = X + Y - 2Z 

(2.4) 

(2.5) 

(2.6) 

Step 1: Eliminate X from equations (2.4) and (2.5) by multiplying equation 
(2.5) by 2 and subtracting it from equation (2.4). 

-20 = 3X + 2Y - 4Z «2.4) re-written) 

64 = 3X - 6Y + 8Z «2.5) x 2) 

SUBTRACT -84 = 8Y -12Z (2.7) 

Step 2: Eliminate X from equations (2.4) and (2.6) by multiplying equation 
(2.6) by 3 and subtracting it from equation (2.4). 

-20 = 3X + 2Y - 4Z «2.4) re-written) 

-33 = 3X + 3Y - 6Z «2.6) x 3) 

SUBTRACT 13= Y +2Z (2.8) 

Step 3: Solving between equations (2.7) and (2.8) for Yand Z gives Y = -3 
and Z = 5. 
Step 4: Re-writing equation (2.4) in terms of X gives 

X = (-20 - 2Y + 4Z)/3 = (-20 -2(-3) + 4(5))/3 
=2 

Alternatively, we can solve the simultaneous equations by determinants 
(which are fully described in chapter 15). 

Yet another method is to solve three simultaneous equations by means 
ofthe BASIC language program given in listing 2.1. This also uses determi­
nants to solve the equations. Some versions of BASIC do not use line 
numbers but, generally speaking, they are advanced forms of the language 
and will accept this program directly (including the line numbers) .. 
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Listing 2.1 
BASIC program for the solution of three simultaneous equations. 

10 CLS 
20 PRINT TAB(3); "Solution of three simultaneous equations" 
30 PRINT TAB (15) ; "of the form": PRINT 
40 PRINT TAB (11); "V1 A*X + B*Y + C*Z" 
45 PRINT TAB (11) ; "V2 D*X + E*Y + F*Z" 
50 PRINT TAB(11); "V3 G*X + H*Y + J*Z": PRINT 
60 PRINT TAB(3); "Where V1, V2 and V3 are numerical values, " 
70 PRINT TAB (3) ; "A to H and J are numerical coefficients," 
80 PRINT TAB(3); "and X, Y and Z are the variables." 
90 PRINT 
100 INPUT "Vl = ", V1 
110 INPUT "A = " A , 
120 INPUT "B " B , 
130 INPUT "C = " C , 
140 PRINT 
150 INPUT "V2 = ", V2 
160 INPUT "D " D , 
170 INPUT "E " E , 
180 INPUT "F " F , 
190 PRINT 
200 INPUT "V3 = ", V3 
210 INPUT "G " G , 
220 INPUT "H = ", H 
230 INPUT "J = ", J: PRINT 
240 D1 = (A * E * J) + (B * F * G) + (C * D * H) 
250 D2 = (G * E * C) + (H * F * A) + (J * D * B) 
260 Det = D1 - D2 
270 REM ** There is no solution if Det = 0 ** 
280 IF Det = 0 'IHEN PRINr TAB(3); '''lbe equatioos cannJt be solved.": E2ID 
290 REM ** Calculate Det X, Det Y and Det Z ** 
300 D1 = (V1 * E * J) + (B * F * V3) + (C * V2 * H) 
310 D2 = (V3 * E * C) + (H * F * V1) + (J * V2 * B) 
320 DetX = D1 - D2 
330 D1 = (A * V2 * J) + (V1 * F * G) + (C * D * V3) 
340 D2 = (G * V2 * C) + (V3 * F * A) + (J * D * V1) 
350 DetY = D1 - D2 
360 D1 = (A * E * V3) + (B * V2 * G) + (V1 * D * H) 
370 D2 = (G * E * V1) + (H * V2 * A) + (V3 * D * B) 
380 DetZ = D1 - D2 
390 REM ** Calculate the value of the variables ** 
400 PRINT TAB(3); "X ". DetX / Det , 
410 PRINT TAB (3) ; "Y "; DetY / Det 
420 PRINT TAB(3); "z "; DetZ / Det 
430 END 
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2.6 Worked examples using mesh analysis 

In this section we look at four examples - three of them using the same 
basic network - respectively involving independent voltage sources only, 
mixed voltage and current sources, and independent and dependent volt­
age sources. The fourth involves an operational amplifier circuit. 

Worked example 2.6.1 

Using mesh analysis, analyse the circuit in figure 2.6. 

Solution 

Since the circuit contains independent voltage sources only, a solution can 
be obtained using the first three steps outlined in section 2.4. The first two 
steps are already performed in figure 2.6. Next, we need to write down the 
three mesh equations, which we may do by observation in the manner 
outlined in section 2.3. The three equations are 

10 

-8 

13/1 - 6/2 

-6/1 + 16/2 

o -5/1 - 7/2 + 16/3 

We can solve for the three unknown mesh currents by any of the methods 
outlined in section 2.5, and the answers are 

/1 0.789 A 

/2 -0.119A 

/3 0.195 A 

3Q 

Figure 2.6 Circuit tor worked example 2.6.1. 
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tsv 

5Q 

(a) (b) 

Figure 2.7 Mesh analysis 0/ a circuit containing an independent current source. 

The reader will note that 12 is negative. This merely means that the current 
in mesh 2 circulates in a counterclockwise direction. 

Worked example 2.6.2 

In this case we use the basic circuit in figure 2.6, but have inserted a 0.5 A 
independent source in the branch containing the 6 ohm resistor, as shown 
in figure 2.7(a). The mesh currents can be evaluated as shown in the 
solution. 

Solution 

Since we employ KVL in mesh analysis, it is necessary to remove the 
current source from the network and use the method outlined in step 4 in 
section 2.4. That is, the independent current is replaced by its internal 
resistance, namely an open-circuit, as shown in figure 2.7(b). This has the 
effect of reducing the circuit to two meshes, one carrying 13 , and the other 
(which is called a supermesh) carrying 11 and 12 , However, the reader 
should note that since 11 and 12 both exist, we must maintain their indepen­
dent identities in the analysis. 

Applying KVL to the supermesh in figure 2.7(b), we get 

10 - 8 = 211 + 312 + 7(12 - 13) + 5(11 - 13) 

or 

2 = 711 + 1012 - 1213 

A second equation is obtained in the usual way by applying KVL to the 
mesh in which 13 ftows as follows 
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o = -511 - 712 + 1613 

Finally, the third equation is obtained by relating the current in the 0.5 A 
independent current source to the unknown mesh currents as follows 

0.5 = 11 - 12 

The three mesh current equations for the circuit in figure 2.7(a) are, 
therefore 

2 711 + 1012 1213 

o = -511 - 712 + 1613 

0.5 11 - 12 

Solving these equations by any of the methods described earlier gives 

11 = 0.547 A 

12 = 0.047 A 

13 = 0.191 A 

Worked example 2.6.3 

This example illustrates a method of solving a circuit which includes both 
independent and dependent voltage sources. In this case, the current 
source in figure 2.7 is replaced by a voltage-controlled voltage source. The 
circuit is shown in figure 2.8. 

Solution 

The dependent voltage source, 3Vx is regarded as anormal voltage source, 
with the exception that the voltage V x across the 5 ohm resistor must be 

Figure 2.8 Mesh analysis 01 a circuit containing independent and dependent voltage 
sources. 
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related to the unknown mesh currents. By inspection, the voltage Vx is 

Vx = 5(11 - 13) 

Applying KVL to the mesh in which 11 ftows gives 

10 + 3Vx = 1311 - 612 - 513 

or 

10 = -211 - 612 + 1013 

Applying KVL to mesh 2 gives 

-3Vx - 8 = -611 + 1612 - 713 

that is 

-8 = 911 + 1612 - 2213 

and the equation for mesh 3 is 

o = -511 - 712 + 1613 

That is, the three simultaneous equations are 

10 = --':211 - 612 + 1013 

-8 = 9/1 + 16/2 - 22/3 

Solving gives the results 

Worked example 2.6.4 

11 = 4.776 A 

12 = - 2.847 A 

13 0.247 A 

The operation al amplifier in the circuit in figure 2.9(a) has infinite input 
resistance, a voltage gain of -100, and an output resistance of 20 kilohms. 
Calculate the voltage gain (ViVI) of the circuit. 

Solution 

Since the voltage gain and the output resistance of the operational ampli­
fier differ from that of an 'ideal' op-amp, we need to solve the circuit 
completely. The equivalent circuit is shown in diagram 2.9(b); since there 
is only one mesh, its solution is 

1 + 100Vx = (1000 + 10 000 + 20000)1 



Cireuit Analysis 41 

10 kQ 10 kQ 

I v, 

~----------e-----------~ 
(a) (b) 

Figure2.9 Diagram tor worked example 2.6.4. 

but V x = 1 - 1000/, that is 

1 + 100(1 - 10001) = 31 0001 

or I = 7.71 X 1O-4A 

The output voltage is 

V2 = -l00Vx + 20 0001 = -100(1 - 10001) + 20 0001 
= -100 + 1200001 = -7.48 V 

and the overall voltage gain is 

ViV l = -7.48/1 = -7.48 

This value contrasts with the gain of -10, which would prevail if an ideal 
operational amplifier was used. Note: if a load resistance of 10 kilohms is 
connected to the output of the circuit in figure 2.9(a), the overall gain falls 
to -6.4! The reader would find it an interesting exercise to verify this using 
mesh analysis. 

2.7 Nodal analysis 

Nodal analysis uses KCL to evaluate the voltage at each principal node in 
the circuit, and is valid for all circuits, both planar and non-planar. In this 
case we write down and solve a set of simultaneous equations in terms of 
the unknown voltage at each node. We will illustrate this initially by means 
of the simple three-node example in figure 2.10. 

Of the three principal nodes in the circuit, we must choose one to be a 
reference or datum node; we select node O. Generally speaking, if the 
circuit has n principal nodes, we need (n - 1) simultaneous equations to 
solve the circuit. Applying KCL to each non-reference node in turn, 
starting with node 1, we get 

2 = 2Vl + 3V12 = 2Vl + 3(Vl - V2 ) = 5Vl - 3V2 
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v12
------------1 .. _ V21 

NOdeW NOdeW 

Reference 'ri' 
node ~ 

Figure 2.10 Simple example o[ nodal analysis. 

Figure 2.11 Nodal analysis. 

Reference 
node 

In the above equation, the current entering the node appears on the 
left-hand side of the equals sign, and the current leaving the node appears 
on the right-hand side. For node 2 we have 

-3 = 3V2I + 4V2 = 3(V2 - VI) + 4V2 = -3VI + 7V2 

Solving the resulting pair of simultaneous equations gives VI and V2, 
enabling other data to be calculated. We merely quote the solutions VI = 
0.192 V and V2 = -0.346 V here, and will proceed to a more useful circuit 
which enables us to write down the circuit equations by observation. 

Consider the circuit in figure 2.11. When applying KCL to node 1, we 
see that JA ftows towards it and a current of (GE (VI - Vo) + GA (VI - V2)) 
ftows away from it. Since Vo = 0, the node equation is 
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IA = (GA + GE)VI - GA V2 

At node 2, a current of (ID - IA - le) enters the node and (GA (V2 - VI) 
+ GD(V2 - Vo) + Ge(V2 - V3» leaves it. As before, Vo = 0, hence the 
equation at this node is 

I D - I A - le = -GAVI + (GA + GD + Ge)V2 - GeV3 

The current entering node 3 is le, and the current leaving it is (G e(V3 - V2 ) 

+ GD(V3 - Vo». The equation for node 3 is, therefore 

le = -GeV2 + (Ge + GD )V3 

The three node voltage equations describing the circuit are therefore 

IA = (GA + GE)VI - GA V2 

I D - I A - le = -GAVI + (GA + GD + Ge)V2 - GeV3 

le - GeV2 + (Ge + GD )V3 

These can, conveniently, be written in the following generalised form 

I 1 G ll VI + G12 V2 + G13 V3 

12 G21 VI + G22 V2 + G23 V3 

13 = G31 VI + G32V2 + G33V3 

where I1 (= IA ) is the current entering node 1, 12 (= ID - IA - Ie) is the 
current entering node 2, and 13 (= Je) is the current entering node 3. 

We may write the conductance elements in matrix form (see chapter 15 
for details) as folIows. 

[ 
Gu G12 G13] 
G21 G22 G23 

G31 G32 G33 

Each of the terms on the major diagonal of the conductance matrix 
(which is a square matrix) is the sum of the conductances terminating on 
node 1, 2 and 3, respeetively. That is Gll (= GA + GE) is the total 
eonduetanee terminating on node 1, G22 (= GA + GD + Ge) is the total 
eonduetanee terminating on node 2, etc. 

The voltages VI> V2 and V3 are, respeetively, the unknown voltage at 
node 1, 2 and 3. 

If Gij is the eonductance in row i and column j of the matrix eontaining 
the conductanee elements, we see that Gij (for i -:1= j) is 

(- 1) x the eonduetanee linking node i 
to node j 

That is, G 12 = -GA' G32 = - Ge, ete. 
The conductance matrix is a square matrix, and is symmetrical about the 
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major diagonal, that is for all ij (i =1= j), G;j = Gj;, that is, G 12 = Gw G23 = 
G32 , etc. 

In the case of abilateral network, all the elements on the major diagonal 
of the conductance matrix are positive: elements not on the major diagonal 
are negative or zero. 

2.8 General roles for writing nodal equations 

Depending on the circuit, there are either three or four steps to be carried 
out: 

1. Draw a carefully labelIed circuit diagram. 
2. Mark the principal nodes on the circuit, and select a reference node. If 

there are n principal nodes, (n - 1) simultaneous equations are needed 
to solve the circuit. 

3. If the circuit contains only independent current sources, apply KCL to 
each non-reference node. If the circuit contains dependent current 
sources, relate the source current to the unknown node voltages. 

4. If the circuit contains voltage sources, we cannot deal with it in the 
normal way because its internal resistance is zero. The following rule 
explains how to handle it, and is fairly technical; the reader should study 
worked example 2.9.2 in association with the following. 

Replace each voltage source by a short-circuit; the voltages assigned in step 
2 should not be changed. Each source voltage should then be related to the 
unknown node voltages. If the circuit contains a practical voltage source, it 
can be converted to its equivalent practical current source (see chapter 3) 
and dealt with as anormal current source 

2.9 Worked examples using nodal analysis 

In the following we analyse a circuit and illustrate its solution firstly when it 
contains only independent current sources, secondly when it contains 
independent current and voltage sources and, thirdly, when it contains 
independent and dependent current sources. Finally we will analyse an 
operation al amplifier circuit. 

Worked example 2.9.1 

Determine the node voltages in figure 2.12. 
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2A 

Figure 2.12 Circuit for worked example 2.9.1. 

Solution 

This circuit is relatively straightforward, as it contains only independent 
current sourees. We nominate node 0 as the reference node (as we do for 
the other circuits of this kind). The first two steps outlined in section 2.8 
have already been carried out, and are shown in figure 2.12. Next we will 
write down by inspection (see section 2.7) the node voltage equations. For 
node 1 the equation is 

o = 12VI - 2V2 - 4V3 

and for node 2 the equation is 

-1 = -2VI + 5V2 - 3V3 

For node 3 the equation is 

3 = -4VI - 3V2 + 12V3 

The equations are 

o 12VI - 2V2 4V3 

-1 = -2VI + 5V2 3V3 

3 -4VI - 3V2 + 12V3 

Solving by any of the methods described earlier yields 

VI = 0.0963 V 

V2 = 0.0092 V 

V3 = 0.2844 V 

Note: all voltages are relative to node O. 
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Worked example 2.9.2 

In the second worked example in this section, an independent 4 V voltage 
source is connected in parallel with the 4 S conductance in figure 2.12 (see 
also figure 2.13). One method of solving this type of circuit is described 
below. 

Solution 

Since the nodal analysis deals with current sources, it is not possible to 
handle voltage sources directly. In order to deal with this type of circuit 
element, the notion of a supernode is introduced. What we do in this case is 
to regard nodes which are connected by the voltage source as though they 
were connected by the internal resistance of the voltage source, namely 
zero ohms. That is, nodes 1 and 3 in figure 2.13 become a supernode 
(which is enclosed by a broken line). The total current flowing towards the 
supernode is 3 A, and the total current leaving it is 

2(V! - Vz) + 6(V! - Vo) + 3(V3 - Vz) + 5(V3 - Vo) 

The reader should note that although nodes 1 and 3 are combined in the 
supernode, the voltage of both nodes is maintained in the above equation. 
The nodal equation (remember, node 0 is the reference node, so that 
Vo = 0) for the supernode is therefore 

3 = 2(V! - Vz) + 6V! + 3(V3 - Vz) + 5V3 

= 8V! - 5Vz + 8V3 

2A t 

Figure 2.13 The concept 01 a supernode. 

, 
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I 
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I 
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Applying KCL to node 2 gives (see also worked example 2.9.1) 

-1 = -2VI + 5V2 - 3V3 

The process of combining two no des into one supern ode means that we 
have lost one of the nodes to which we could apply KCL! However all is 
not lost because, at the supernode, nodes 1 and 3 are actually separated by 
a potential of 4 V, that is 

4 = VI - V3 

which leaves us with three equations which are written below 

3 = 8Vl - 5V2 8V3 

-1 = -2VI + 5V2 - 3V3 

Solving by one of the methods outlined earlier gives 

VI = 2 V V2 = -0.6 V V3 = -2 V 

The 'supernode' is a convenient fiction which allows us to get out of some 
difficult situations. However, study of the circuit shows that if node 1 is 
chosen as the reference node, the analysis follows the normal pattern. Not 
all lecturers are convinced of the usefulness of the supernode concept. 

Worked example 2.9.3 

In this case, the 4 S conductance in figure 2.12 is shunted by a voltage­
dependent current source, as shown in figure 2.14. The analysis is as 
folIows. 

Solution 

Since all sources in the circuit are current sources, we can apply KLC 
directly to each node. At node 1 we have 

-1.5V32 = 12Vl - 2V2 - 4V3 

However V32 = V3 - V2 • Inserting this into the above equation gives, for 
node 1 

o = 12Vl - 3.5V2 - 2.5V3 

Applying KCL to node 2 gives 

-1 = -2Vl + 5V2 - 3V3 

Finally, at node 3 
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2A t 

Figure 2.14 Nodal analysis of a circuit containing adependent current source. 

or 

3 = -4Vj - 1.5V2 + 1O.5V3 

and the circuit equations are 

and the solution is 

o = 12VI - 3.5V2 - 2.5V3 

-1 = -2VI + 5V2 - 3V3 

3 = -4VI - 1.5V2 + 1O.5V3 

VI = 0.0707 V 

V2 = 0.0174 V 

V3 = 0.3151 V 

Worked example 2.9.4 

The operation al amplifier in the circuit in figure 2.15(a) has the following 
parameters 

input resistance = 50 kilohms 

voltage gain = -1000 

output resistance = 1.5 kilohms 

Calculate the overall gain (V/VI) of the circuit. 



Circuit Analysis 49 

v, = 0.3 V, 

(a) (b) 

Figure 2.15 Figure tor worked example 2.9.4. 

Solution 

The equivalent circuit of the amplifier is shown in figure 2.15(b); since the 
values differ from those of an ideal operation al amplifier, we will analyse 
the circuit using nodal analysis. 

In this case, we place the 0.3 V independent source and the 1000Vx 

dependent source (corresponding to the amplifier gain) in the supernode in 
diagram (b), thereby reducing the number of nodes by two. Applying KCL 
to node 2 yields 

Now at the supernode VI = 0.3 V, and 

V3 = 1000Vx = 1000(VI - V2 ) = 1000(0.3 - V2 ) 

That is 

V2 - 0.3 V2 - 1000(0.3 - V2 ) V2 0 ---"---+ +--= 
50 000 1500 1000 

giving V2 = 0.299 V. The voltage gain therefore is 

ViV I = 0.299/0.3 = 0.997 

2.10 Network topology 

It was stated earlier that mesh current analysis is applicable only to planar 
networks. However there is a similar approach - known as loop analysis 
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Figure 2.16 The circuit in (a) has the graph in (b). 

(see also seetion 2.11) - whieh allows us to solve non-planar networks. In 
order to understand some of the teehniques involved we need to have a 
brief introduetion to the subjeet of network topology. 

Network topology is eoneerned with a mathematieal diseipline known as 
graph theory with special referenee to eleetrieal cireuits. Tbe 'graph' refer­
red to here is not a eonventional graph, but is a eolleetion of points (nodes) 
and eonneeting lines (branehes). When drawing the 'graph' of a network, 
the nature of the element in the braneh between a pair of nodes is 
suppressed, and is replaced by a line or 'edge'. 

The eireuit in figure 2.16(a) has four nodes and six branehes; the 
eorresponding graph (or connected graph) is shown in diagram (b). 

Given a graph, we define a tree (or spanning tree) as any set of branehes 
in the graph whieh eonneet every node to all other nodes in the graph, but 
not neeessarily direetly. Moreover, the tree does not contain a loop 01 any 
kind. 

If the graph has N nodes, eaeh tree has (N-1) branehes in it. Tbe 
four-node graph in figure 2.16(b) eontains sixteen trees, four of which are 
shown in fulliine figure 2.17. In loop eurrent analysis, we seleet anormal 
tree, that is one containing all the voltage sources in the network, together 
with the maximum number of voltage-controlled dependent sources. 

A cotree is a set of branehes whieh do not belong to a tree; the eotrees 
corresponding to eaeh of the four trees in figure 2.17 are shown in broken 
lines. A braneh in a eotree is known as a link. A eotree is the eomplement 
of a tree, and a tree and its cotree form the complete graph of a network. 
An N-node network eontains a number of trees, eaeh with (N-1) 
branehes; if B is the number of branehes in the network, and L is the 
number of links in the eotree, the relationship between them is 

B = L + (N - 1) 
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Figure 2.17 Examples oftrees and cotrees within the graph offigure 2.16(b). 

For example, in a four-node (N = 4), six-branch (B = 6) network, there 
are a number of trees each containing (N - 1) = 3 branches, and the 
number of links in each cotree is 

L = B - (N - 1) = 6 - (4 - 1) = 3 

If we re-position any one of the links from the cotree in the tree, we will 
form a loop in the tree. Consider for the moment the left-hand tree in 
figure 2.17. If we add the link connecting d to ewe get the independent loop 
bcdb. This process is repeated throughout the tree as folIows. If we add 
link ad we get the independent loop adbca; adding link ab gives the 
independent loop abca. 

Figure 2.18 The graph of a six-node non-planor network. 

Since adding a link to the tree forms a loop, the number of links is equal 
to the number of independent voltage equations we need to form the loop 
equations of the network. For example, the six-node nonplanar network in 
figure 2.18 contains a number of trees, each having five branches, and we 
need L = 9 - (6 - 1) = 4 independent equations to solve the network. In 
some cases, however, the situation is not always that difficult because (as 
we shall see from an example in section 2.11) the number of equations 
needed to solve the circuit is reduced when there are current sources in the 
links. 
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2.11 Loop analysis 

The following steps allow us to write a set of loop current equations for a 
circuit: 

1. Draw a graph of the network and identify anormal tree. 
2. Ensure that all voltage sources and, if possible, all control-voltage 

branches for voltage-controUed dependent sources are in the tree. 
3. Ensure that all current sources and, if possible, aU control-current 

branches for current-controUed dependent sources are in the cotree. 
4. Reposition in the tree, one at a time, each link in the cotree. Using 

KVL, write down for each loop the associated loop current equation; 
solve the equations. 

To illustrate the general principles involved we will solve, using loop 
analysis, the non-plan ar circuit in figure 2.19. The circuit has six nodes and 
nine branches, and requires a set of four loop current equations for its 
solution. Since the circuit is non-planar, it cannot be solved by mesh 
analysis. The selected normal tree is shown in fuUline in diagram (b). 

Since the voltage source must be included in the tree, the branch be 
must be included in the tree. Thereafter we can select any four other 
connected nodes (provided that they do not include the current source) to 
complete the tree. 

Next we insert the links (shown broken in figure 2.19(b», one at a time, 
from the cotree into the tree in order to produce four fundamentalloops in 
the graph; these will provide us with the required equations. These loops 
are shown in figure 2.20 for loop currents IA , IB , Ie. and 10 • We have 
decided that each current shaU ftow in a clockwise direction; we need not 
choose this direction for loop analysis and can, alternatively, be counter­
clockwise, or in either direction. The currents are also shown on the 
branches of the circuit in figure 2.19(a). We now write down the loop 
current equations. 
For loop IB (the loop abcda) 
It will be seen that, in figure 2.19(a), each branch ofthe normal tree carries 
more than one loop current, and that each link of the cotree carries only 
one loop current. Since the 3 A current source is in link da, we can simply 
say that 

I A = 3 A 

This has the effect of reducing by unity the number of equations required 
to solve the circuit. 
For loop IB (the loop abcfa) 
The equation is 

0= 7IB + 5(IA + I B - 10 ) + 4(IA + I B + Ie ) + 3(IB + Ie ) 
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Figure 2.19 The solution of a non-planar circuit using loop analysis. 

(a) (b) (e) 

Figure 2.20 The fundamentalloops for figure 2.19. 

or 

91A = -27 = 191B + 71e - 51D 

For loop 1e (the loop abefa) 

(b) 

0=5 + 4(IA + 1B + 1e) + 3(IB + 1e) + 2Ie 

53 

W 

(d) 
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or 

-5 - 4/A = -17 = 7/B + 9/e 

For loop 10 (the loop bedca) 

o = 5 - 5(/A + IB - 10 ) - 6(/A - 10 ) + 8/0 

or 

-5 + 11IA = 28 = -5/B + 19/0 

The equations are regrouped below 

Solving gives 

2.12 Duality 

-27 = 19/B + 7/e - 5/0 

-17 = 7/B + 9/e 

28 = -5/B 

I B = -0.5236 A 

le = -1.4816 A 

10 = 1.336 A 

+ 19/0 

Two eireuits are duals if the mesh equations of one eireuit have the same 
mathematieal form as the nodal equations of the other. They are exact 
duals if the mesh equations of one cireuit are numerieally identical to the 
nodal equations of the other. A limitation of duality is that it is only 
possible to produee the dual of a network if it is a planar network. 

Consider the cireuit in figure 2.21; the equations for the two cireuits are 

Circuit 2.21(a) 

d· 
= Ri + L....!:.. 

dt 

Circuit 2.21(b) 

dv 
= Gv + C­

dt 

where R is a resistanee, G is a eonduetance, L is an induetanee* , and Cis a 
eapaeitanee. 

The cireuits are duals of one another beeause the mesh eurrent equation 
of cireuit (a) has the same form as the node voltage equation of cireuit (b). 

• A tull deseription of induetance and capacitance is given in chapter 4. 
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Figure 2.21 Introduction to dual circuits. 

The two would be exact duals if the voltage of v in volts in circuit (a) was 
equal to the current i in circuit (b), and if the value of R in ohms in (a) was 
equal to the value of G in siemens in (b), and if the value of L in henrys in 
(a) was the same as the capacitance of C in farads. 

Clearly, once the (say) mesh equations of one circuit have been solved, 
then the nodal equations of the exact dual have also been solved. 

The relationship between a circuit and its dual are summarised in table 
2.1. Multiples and submultiples are also exchanged between the cireuit and 
its dual; for example, mV in a eireuit beeome mA in the dual, !J,F in the 
eireuit beeome !J,H in the dual, ete. 

Table 2.1 

Circuit element 

Series connection 
Parallel connection 
Voltage source 
Current source 
Voltage of n volts 
Current of n amperes 
Resistance of n ohms 
Conductance of n siemens 
Inductance of n henrys 
Capacitance of n farads 

Dual circuit element 

Parallel connection 
Se ries connection 
Current source 
Voltage source 
Current of n amperes 
Voltage of n volts 
Conductance of n siemens 
Resistance of n ohms 
Capacitance of n farads 
Inductance of n henrys 

The reader should note that the dual is not the equivalent 0/ the original 
circuit. That is, if a eurrent of 5 A in an element in the original eireuit produees 
a voltage of 2 V aeross that element then, in the dual eireuit, a voltage of 5 V 
aeross the dual of the element produces a eurrent of 2 A in it. 

We will now study how a planar eircuit in figure 2.22(a) is eonverted into 
its dual. The steps followed are: 

1. Plaee anode (we use node 0) in the spaee outside the eireuit. 
2. Place anode (no des 1-4) inside eaeh mesh of the cireuit. 
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Figure 2.22 (a) An electrical network and (b) its dual. 
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3. Draw a broken line joining adjacent pairs of nodes, each li ne passing 
through one circuit element on the perimeter of each mesh. 

4. Draw the dual circuit by inserting the dual of each element in the 
original circuit on the broken line linking a pair of nodes. 

5. Assign directions to current and voltage sources in the dual using the 
method outlined below. This method can also be used to assign initial 
values of current and voltage in the dual. 

Taking a look at the broken links between nodes 2 and 3 in the original 
circuit we see that, in the dual, the circuit comprises a conductance of 4 S in 
parallel with a capacitor of capacitance 6 F. This process is repeated until 
all the elements have been replaced by their dual. Finally, it only remains 
to assign voltage and current direction in the dual, as follows. 

Rotate the voltage (or current) arrow in the original circuit in a clock­
wise direction until it lies in the broken line linking the nodes in the meshes 
on the original circuit. The new direction of the arrow indicates the 
direction of the corresponding current (or voltage) arrow on the dual. 

Unworked problems 

2.1. Calculate the currents 11 and 12 in figure 2.4, and determine the total 
power consumed. 
[11 = 0.636 A; 12 = 0.182 A; 10.9 W] 

2.2. If, in figure 2.5, VI = 10 V, V2 = 20 V, R 1 = 1 ohm, R2 = 2 ohm, R3 

= 3 ohm, R4 = 4 ohm and R5 = 5 ohm, calculate the mesh currents. 
[11 = 7.7 A; 12 = -0.875 A; 13 = 2.35 A] 

2.3. Calculate VI and V2 in figure 2.10, and compute the total power 
consumed. 
[VI = 0.192 V; V2 = - 0.346 V; 1.42 W] 

2.4. Using mesh analysis, calculate 11 and 12 in figure 2.23. 
[11 = 0.555 A; 12 = - 0.803 A] 

v, 6Q v, 4Q 

5Q :0 

Figure 2.23 
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Figure 2.24 

Figure 2.25 
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2.5. Using nodal analysis, calculate V1 and V2 in figure 2.23. 
[V1 = 10.12 V; V2 = 6.79 V] 

2.6. Construct the dual of the circuit in figure 2.23. 

2.7. The mesh equations of a network are as folIows: 

-10.7 = 1111 - 412 - 213 

14.9 = -411 + 1412 

-5.3 = -211 

-1.1 = 
Draw the corresponding circuit diagram and construct its dual. 

2.8. Using mesh analysis, calculate v in figure 2.24. 
[0.27 V] 

2.9. Use nodal analysis to calculate v in figure 2.25. 
[0.36 V] 

2.10. In figure 2.24, the 3 ohm, 5 ohm and 6 ohm resistors forin a tree. 
Use loop analysis with respect to this tree to calculate v. 
[0.27 V] 
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Figure 2.27 

2.11. Use mesh analysis to calculate v in figure 2.25. 
[0.36 V] 

59 

10 kQ 

2.12. For the circuit in figure 2.26, use mesh analysis to calculate (a) the 
voltage gain ViV I and (b) the input resistance (= V/II ) of the 
circuit. 
[Gain = -0.32; input resistance = 4.61 ohms] 

2.13. For the simplified emitter folIower equivalent circuit in figure 2.27, 
use mesh analysis to calculate (a) the voltage gain of the circuit 
(= ViVI) and (b) the input resistance (= VI/lI). 
[(a) 0.823; (b) 10.9 kilohm] 

2.14. Use nodal analysis to solve problem 2.12. 
[gain = -0.32; input resistance = 4.61 ohm] 

2.15. Solve problem 2.13 using nodal analysis. 
[(a) 0.823; (b) 10.9 kilohm] 
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Figure 2.29 

2.16. Use nodal analysis to calculate 1}> 12 and 13 in the circuit in figure 
2.28. 
[11 = -0.87 A; 12 = -1.128 A; 13 = 0.071 A] 

2.17. Use nodal analysis to determine the node voltages VI and V 2 in 
figure 2.29. 
[VI = 6.154 V; V2 = -21.54 V] 



3 
Circuit Theorems 

3.1 Introduction 

All electrical and electronic circuits can be solved by the application of 
basic circuit laws such as Ohm's law, Kirchhoff's laws, etc. However, it is 
useful to have a collection of theorems which, for a particular application, 
encapsulate appropriate laws; this allows us to obtain a speedy solution to 
these problems. We look at the more important theorems in this chapter. 

3.2 Linearity 

Many network theorems are based on the concept of linearity; an element, 
or system is said to be linear if the effect (such as the output voltage from a 
circuit) is directly proportional to the stimulus (such as the input voltage). 

3.3 Principle of superposition 

The principle 0/ superposition states that in a linear system, having more 
than one independent source, the response (either a voltage or a current) 
can be obtained from the sum of the responses produced by each source 
acting alone. 

While it is not possible here to provide a formal proof of the principle of 
superposition, a simple demonstration of the principle is given. 

Consider the linear resistor R connected to the independent voltage 
source VI in figure 3.1(a). The resulting current is 11 = V/R. When VI is 
removed and replaced by its internal resistance (a short-circuit), and a 
second independent source V2 is connected in the circuit (see diagram (b), 
the resulting current in the circuit is 12 = Vi R. Finally, when VI is 

61 
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Figure 3.1 The principle 0/ superposition. 

re-connected in the circuit (diagram (c», the current in the circuit is (V} + 
V2)!R = I} + 12 , and 

Vs = R(I} + 12) = V} + V2 

That is, the response is the sum of the stimulating signals. 
Moreover, if the stimulus is scaled by a factor K, then the response is 

also scaled by the same factor. That is, if the applied voltage is KV, then 
the response is KI, where KV = R(Kl). The principle of superposition can 
be stated as folIows: 

In any linear bilateral network containing several independent sources, the 
voltage across (or the current in) any element or source is the sum 0/ the 

individual voltages (ar currents) produced by each individual source 
acting alone (other sources in the network meanwhile being replaced by 

their internal resistance) 

While the principle of superposition can be applied to many d.c. circuits, it 
is particularly useful in its application to a.c. circuits where, for example, 
sources of differing frequencies are involved. 

Worked example 3.3.1 

Calculate I in figure 3.2 using the superposition theorem. 

Solution 

We need to calculate the current in the 10 Q resistor produced by the 
individual resources. 
Current I} produced by the IO V source: Initially the 5 A current source is 
removed and replaced by its internal resistance, namely an open-circuit; 
this is illustrated in figure 3.3. The current I} (ftowing downwards) is 

I} = 10/(5 + 10) = 0.6667 A 
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Figure 3.2 Figure for worked example 3.3.1. 

Figure 3.3 Curren! 11 produced in the 10 Q resistor by the 10 V source acting alone. 

Current /2 produced by the 5 A source: In this case the 10 V independent 
voltage source is replaced by its internal resistance, namely a short-circuit 
(see figure 3.4). Using the work developed in chapter 1 on the current 
division in parallel circuits we get 

/2 = 5 x 5/(10 + 5) = 1.6667 A 

which flows upwards through the 10 Q resistor. 
Complete solution: The superposition theorem states that the current i 
flowing downwards through the 10 Q resistor in figure 3.2 is 

/ = /1 + (-/2) = 0.6667 - 1.6667 = -1 A 

5Q 

5A 

Figure 3.4 Curren! 12 produced by the 5 A source acting alone. 

3.4 Thevenin's theorem 

This theorem states that any two-terminal active network, no matter how 
complex, can be replaced by a practical voltage source of the type de­
scribed in section 1.12 (see figure 3.5). Thevenin's theorem may be summa­
rised as folIows: 
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Figure 3.5 Thevenin's equivalent circuit. 
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Figure 3.6 Diagram for worked example 3.4.1. 
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An active network, having two terminals A and B to which a load may be 
connected, behaves as though it contains a single source 0/ e.m.f. Er. 0/ 

internal resistance R T • The e.m.f. E T is the voltage between A and B 
when the load is disconnected, and R T is the resistance measured between 
A and B when the load is disconnected and each internal source within 

the original network is replaced by its internal resistance 

Worked example 3.4.1. 

Using Thevenin's theorem, calculate the current l L in the 5 Q load resistor 
in figure 3.6(a). 
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Solution 

Initially we will calculate ET when the load is disconnected from the circuit 
(see figure 3.6(b». Applying KCL to the bottom node in figure 3.6(b), by 
observation we note that 1 = 3 A, hence 

ET = -41 + 5 = -(3 X 4) + 5 = -7 V 

Next, with the load disconnected, we replace each source in the circuit by 
its internal resistance, leaving the circuit in diagram (c). Hence 

RT = 4 Q 

That is, Tbevenin's equivalent circuit for this problem consists of a 
ET = V AB = -7 V source in se ries with a 4 Q resistor, so that the circuit in 
diagram (d) is equivalent to the original circuit in diagram (a). Hence 

3.5 Norton's theorem 

IL = EART + 5) = -7/(4 + 5) 

= -0.7778 A 

This theorem states that any two-terminal active network, no matter how 
complex, can be replaced by a practical current source of the type 
described in section 1.12 and illustrated in figure 3.7. Norton's theorem 
may be summarised as folIows: 

Any active network, having terminals A and B to which a load may be 
connected, behaves as though it contains a current source, IN, of internal 

conductance GN • The current IN is the current which would flow from 
terminal A to B when they are short-circuited, and G N is the conductance 
measured between A and B with the load disconnected and each source 

within the network replaced by its internal conductance 

...---.... ---oA 

L..--..... ---oB 

Figure 3.7 Norton's theorem equivalent circuit. 

Worked example 3.5.1 

Using Norton's theorem, calculate the current I L in the 2 Q load in figure 
3.8. 
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20 V ~ 2Q ~ load 

B 
(a) 

,.---o--c=-.J--o A 

~-~---e-~~--~B 

(c) 

Figure 3.8 Circuit diagram for worked example 3.5.1. 

Solution 

" 

(b) 

(d) 

'L 
2Q 
or 

0.5 S 

A 

'N 

B 

We will first evaluate IN by short-circuiting the load, as shown in diagram 
(b). Now IN = 12 - 11 ; we will calculate 11 and 12 separately. Since ter­
minals A and Bare short -circuited together, then 

11 = 20/4 = 5 A 

and 12 = 10 x 5/(5 + 3) = 6.25 A 

hence IN = 12 - 11 = 6.25 - 5 = 1.25 A 

which leaves terminal A. 
The internal conductance is evaluated when the externaiload is discon­

nected, and each source within the circuit is replaced by its internal 
conductance. The circuit is therefore modified as shown in diagram (c). 
The internal circuit comprises a 4 Q resistance (0.25 S) in parallel with a 
(3 + 5) = 8 Q resistance (0.125 S). That is 

GN = 0.25 + 0.125 = 0.375 S 

When the original network is replaced by the Norton equivalent circuit, we 
arrive at the circuit in diagram (d). Using the work covered in chapter 1 we 
calculate 

IL = IN X GL/(GN + GL) = 1.25 X 0.5/(0.375 X 0.5) 

= 0.714 A 



Circuit Theorems 67 

3.6 Relationship between Thevenin's and Norton's circuits 

We showed in section 1.13 that a practical voltage source and a practical 
current source were interrelated. Using the relationships deduced in that 
section, we may say that 

RT = lIGN 

and ET = IN/GN = INRT 

3.7 Reciprocity theorem 

Up to this point we have discussed two-terminal or one-port networks. 
There is a range of four-terminal or two-port networks (see chapter 8 for 
details), which includes filters, transformers, semiconductor devices, etc.; 
these require more than a single relationship between the terminal voltage 
and current to specify their operation. The reciprocity theorem can be 
applied to these networks or, more specifically, to linear bilateral single­
source networks, and may be stated in two ways as follows: 

1. If the single voltage source V x in branch X produces the current Iy in 
branch Y then, when the voltage source is removed from branch X and 
inserted in branch Y, it produces current Iy in branch X. 
2. If the single current source Ix connected between nodes X and X' 
produces the voltage Vy between nodes Y and Y' then, when the current 
source is removed from between nodes X and X' and inserted between 
nodes Y and Y ', it produces voltage V y between nodes X and X'. 

The reader should note that the current and voltage at other points in the 
network change when the single voltage (or current) source changes posi­
tion. 

Worked example 3.7.1. 

Calculate I y in the single-source linear bilateral network in figure 3.9(a). 
Remove the source Vx and replace it in the branch in which I y ftows, and 
verify the prediction of the reciprocity theorem. 

Solution 

The mesh currents 11> 12 and Iyare shown in diagram (a), and the corre­
sponding mesh equations are 
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20 30 40 

(al 

20 30 40 

(bI 

Figure 3.9 Diagram for worked example 3. 7.1. 

10 = 8/1 - 6/2 

o = -6/1 + 16/2 - 71y 

o = - 7/2 + 161y 

Solving for I y by one of the methods outlined earlier gives 

I y = 0.389 A 

We now demonstrate the reciprocity theorem by interchanging the excita­
tion voltage and the response current, as shown in figure 3.9(b). The 
reader should note that V x is connected so that it acts in the same direction 
as I y in figure 3.9(a). The mesh equations for the latter circuit are 

o = 81y - 6/3 

o = -61y + 16/3 - 714 

10= -7/3 +16/4 

and solving for I y (see section 2.5) yields 

I y = 0.389 A 

Since the value of I y is the same in both cases, the reciprocity theorem is 
demonstrated to be correct. 



Circuit Theorems 69 

3.8 The maximum power transfer theorem 

A practical source of electricity has internal resistance, and when a load is 
connected to its terminals, the p.d. in its internal resistance causes the 
terminal voltage to fall. Clearly, if the load resistance is zero, no power is 
dissipated in the load (even though there may be a large current ftowing in 
it). If the load resistance is very high, very little current ftows in the load, 
and very little power is consumed by the load. Between these two extreme 
values of load resistance, there will be a particular value of load resistance 
which consumed maximum power from the supply source. It is this we look 
at here. 

The maximum power transfer theorem states that, if the supply source 
can be described in terms of a Thevenin or of a Norton equivalent circuit, 
maximum power is absorbed by a resistive load, Ru when the resistance of 
the load is equal to the internal resistance of the source. 

Consider the circuit in figure 3.10. The current in the load is IL = Vs/(Rs 
+ RL ), and the power absorbed by the load is 

P = PRL = v;,RL/(Rs + RL)2 

When the conditions for maximum power are investigated, that is, when 
dP/dRL = 0, we find that maximum power transfer occurs when RL = Rs . 

The reader will note that when RL = Rs, the same amount of power is 
absorbed in the load as in the source. That is, the efficiency of power 
transfer (when maximum power transfer occurs) is only 50 per cent. 

Figure 3.10 Maximum power transfer theorem (d.c. circuits). 

The conditions for maximum power in an a.c. circuit are somewhat 
more complex, and are described in chapter 6. 

Worked example 3.8.1. 

If, in figure 3.8(a), the 2 Q load resistor (see also worked example 3.5.1) is 
replaced by a variable resistor Ru wh at value of RL absorbs maximum 
power, and wh at is the value of this power? 
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Solution 

In worked example 3.5.1 we showed that the equivalent circuit of the 
source was a 1.25 A current source shunted by a 0.375 S conductance (or 
2.667 Q resistance). 

Maximum power is delivered to the load when the resistance of the load 
is 

RL = 1/GN = 1/0.375 = 2.667 Q 

and the current in the load at this time is 

1.25/2 = 0.625 A 

The maximum power absorbed by the load therefore is 

(0.625)2 x 2.667 = 1.042 W 

3.9 The parallel-generator (Millman's) theorem 

This theorem is a special case of nodal analysis and is particulady useful 
not only in the case of parallel generators, but also in electronic amplifier 
circuits, and in the solution of unbalanced three-phase three-wire a.c. 
circuits (see chapter 7 for details). We will concentrate here on the general 
principles involved so far as d.c. circuits are concerned. 

Consider the case of the three paralle1-connected generators EI> E2 and 
E3 in figure 3.11(a), each having its own internal resistance R J , R 2 and R3 , 

respectively. Since each generator is represented by its Thevenin equiv­
alent circuit we can, alternatively, represent each one by its Norton equiv­
alent circuit, as shown in diagram (b). 

--------.. -VBA 
E,_ 

-----tl ... _ VBA 

E,---
A l--__ --t_J-e B 

E3 ----
A B 

(a) 

(b) 

Figure 3.11 The paral/el-generator theorem or Millman's theorem. 
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The current, 1, leaving the idealised Norton generators at node B is 

1 = EIGI + E 2G2 + E3G3 

where GN = lIRN • By KCL, this is equal to the current entering the three 
parallel-connected conductances, that is 

VBA(GI + G2 + G3 ) 

hence 

EIGI + E2G2 + E3G3 

VBA = GI + G2 + G3 

If there are n practical voltage sources in parallel with one another, we may 
say 

n f Ek L EkGk 

VBA = k~1 k~1 Rk 
n n 

L Gk L lIRk 
k~1 k~1 

or, more simply, though not quite as comprehensively 

Worked example 3.9.1 

If, in figure 3.1l(a), EI = 10 V, E2 = 20 V, E3 = -25 V, RI = 20 Q, 

R2 = 15 Q and R 3 = 10 Q, calculate VBA and the current in each generator. 

Solution 

From the above theory 

10 20 25 
-+---
20 15 10 

111 
-+-+-
20 15 10 

= -0.6667 = -3.077 V 
0.2167 

If 11> 12 and 13 ftow towards node B (see figure 3 .1O( a», then 

11 = (- EI + VBA)/RI = (-10 - 3.077)/20 
= -0.654 A 
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/2 = (- E2 + VBA)/R2 = (- 20 - 3.077)/15 
= -1.538 A 

/3 = (- E 3 + VBA)/R3 = (25 - 3.077)/10 
= 2.192 A 

3.10 Rosen's theorem or the general star-mesh transformation 

It is possible to transform a network of N eonduetanees whieh are eon­
neeted to a eommon star point, S, as shown in figure 3.12(a), to a mesh of 
eonduetanees whieh are eonneeted between the N terminals as shown in 
dia gram (b). 

The relationship between the two sets of eonduetanees ean be deter­
mined as follows. Consider the ease where node 1 is eonneeted to ground 
(zero potential), and other terminals are energised. Applying Millman's 
theorem to figure 3.12(a) gives 

n 

L ElkGk 
k~1 

VSI = -n---
L Gk 
k~1 

and the eurrent entering node 1 is 

/ = V G - E 12G I G 2 + E 13G 1G3 + .. + EwG,Gn 
1 SI 1 - n 

L Gk 
k~1 

= E GI G2 + E GI G3 + 
12 LG 13 LG 

This is the same value of eurrent that would flow into node 1 if it were 
eonneeted to node 2 by a eonduetanee GI2 = GIG/LG, and to node 3 by a 
eonduetanee G13 = GIG/LG, ete. That is, the star and mesh cireuits in 

___ "",-__ z:-N 

3 
(a) (b) 

Figure 3.12 Rosen's theorem or the general star-mesh transformation. 
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diagrams (a) and (b), respectively, of figure 3.12 are equivalent if the 
conductance connected between, say, nodes fand g is 

GfGg 
Gfg = -n--

L Gk 
k~l 

3.11 The star-ilelta, tee-wye or tee-pi transformation 

This is aversion of the general star-mesh transformation, and is restricted 
to three elements - see figure 3.13. 

3 

2 2 

(a) (b) 

Figure 3.13 The star-delta and delta-star transformations. 

Using the results of the general star-mesh transformation, we see that 

G = G;Gj 

I] ~G 

that is 

or 

G = G2G3 R 23 = R2 + R3 

R 2R3 
(3.2) or +--

23 ~G R1 

G = G I G3 R\3 = R I + R3 

R I R3 
(3.3) or +--

\3 ~G Rz 
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3.12 The delta-star, wye-delta or pi-tee transformation 

While it is not possible to obtain a general mesh-star transformation, a 
delta-star transformation for three elements of the type in figure 3.13 can 
be deduced as folIows. 
From equation (3.1) 

From equation (3.2) 

G23 ( GI + G2 + G3 ) = G2G3 

and from equation (3.3) 

G13(GI + G2 + G3 ) = GIG3 

Dividing (3.4) by (3.5) yields 

GI = G3G12/G23 

and dividing (3.4) and (3.6) gives 

G2 = G3G12/G 13 

Substituting for GI and G2 in equation (3.3) shows that 

R = R13R23 

3 "LR 

where "LR = RI2 + R23 + R13 • Similarly it may be shown that 

R = R I2R13 

1 "LR 

and 

R = R12R23 

2 "LR 

3.13 Summary of star-delta and delta-star transformations 

For the star-delta transformation 

G = Gpj 

1J "LG 

and for the delta-star transformation 

(3.4) 

(3.5) 

(3.6) 
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R = RjjR jk 

1 'LR 

where i =1= j and i =1= k. 

Unworked problems 

3.1. Using the principle of superposition, calculate /1 in figure 3.14. 
[-2.667 A] 

75 

3.2. Using the principle of superposition, calculate the value of /1> /2 and 
/3 in figure 3.15. Calculate the power consumed in the 4 Q resistor, 
and show that the principle of superposition does not hold for 
power. 
[- 2.4 A; 0.553 A; - 2.953 A; 1.22 W] 

3.3. Determine Thevenin's equivalent circuit with respect to terminals A 
md B for the circuit in figure 3.16. What current would ftow in a 
resistor of 10 Q resistance connected between A and B? 
[ET = -13 V, RT = 10 Q; 0.65 A (B to A)] 

3.4. Determine Thevenin's equivalent circuit with respect to terminals A 
and B of figure 3.17. Hence calculate the power which would be 
developed in an 8 Q resistot connected between terminals A and B. 
[ET . = 1.17 V, RT = 4.44 Q; 70.7 mW] 

3.5. Determine Norton's equivalent circuit with respect to terminals A 
and B of figure 3.15. A resistance of 8 Q is connected between these 
terminals; calculate the current in the resistor. 
[IN = 2.833 A, GN = 1.283 S; 0.2515 A] 

3.6. Deduce Norton's equivalent circuit with respect to terminals A and 
B of figure 3.18 if element Xis (a) a 4 A current source with the 
current ftowing upwards, (b) a 10 V voltage source with the positive 
pole connected to terminal B. 

[Ca) 4 A, 0.5833 S; (b) 5 A, 1.083 S] 

3.7. In problems 3.3, 3.4 and 3.5, determine the resistance of the load 
resistor connected to terminals A and B which dissipates maximum 
power, together with the power in each case. 
[10 Q, 4.225 W; 4.44 Q, 0.077 W; 0.779 Q, 1.57 W] 

3.8. Calculate the maximum power wh ich may be delivered to a load 
connected between A and B in problem 3.6. 
[Ca) 6.86 W; (b) 5.77 W] 



76 Electrical Circuit Analysis and Design 

2Q 

-
Figure 3.14 

10 V 

5V~ 

B 

Figure 3.15 

5V ---
A 

3A 

B 

Figure 3.16 

A 

...-----oB 

Figure 3.17 

3.9. For the circuit in figure 3.19, ca1culate 11> 12 , 13 and VBA • 

[1.091 A; - 1.455 A; 0.364 A; 4.54 V] 

3.10. Convert the star network in figure 3.20 into its equivalent general­
ised mesh network. 



Circuit Theorems 77 

1-..... - .... --oA 

x 

L..-_-...... - ....... ---O B 

Figure 3.18 

10 V -- 50 

" 
10 V -- 100 

A B 

" 10 V -- 150 

'3 

Figure 3.19 

o A 

c B 

Figure 3.20 

20 
A~--'-~-~DB 

Figure 3.21 
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A~B 
c~Qc 

Figure 3.22 

[GAO = 0.0952 S; GAB = 0.0476 S; GAC = 0.119 S; 
GBO = 0.019 S; GBC = 0.024 S; Gco = 0.048 S] 

3.11. Convert the star-connected set of resistors in figure 3.21 into their 
equivalent delta network, and hence calculate the resistance be­
tween A and B. 
[1.3 Q] 

3.12. Evaluate the equivalent (a) delta network, (b) star network for the 
circuit in figure 3.22. 
[(a) R Ac = 1.65 Q; R Bc = 4.34 Q; RAB = 11.75 Q; 
(b) RAs = 1.09 Q; R Bs = 2.87 Q; R cs = 0.403 Q] 



4 
Energy Storage Elements 

4.1 Introduction 

So far, our discussions have covered elements which are either energy 
sources or energy dissipators. However, elements such as capacitors and 
inductors have the property of being able to store energy, whose V-I 
relationships contain either time integrals or derivatives of voltage or 
current. As one would suspect, this means that the response of these 
elements is not instantaneous. 

4.2 Capacitors 

A simple capacitor comprises parallel conducting plates separated by a 
dielectric. In an ideal capacitor, the charge q stored in the dielectric is 

q = Cv 

where v is the voltage across the capacitor, and C is the capacitance of the 
capacitor in farads (F). It is of interest to point out that the abbreviation for 
the unit of charge (the coulomb) is also C; the reader should be careful not 
to confuse the symbol for capacitance with that for the unit of charge. The 
current, i, wh ich charges the capacitor is 

i = dq = C dv 
dt dt 

Consider tbe circuit in figure 4.1, in which the capacitor has been 
connected to a d.c. supply long enough to be fully charge. The differential 
relationship for the capacitor at this time is 

i = C dv = 3d[1O] = 0 A 
dt dt 

that is, an ideal capacitor is an open-circuit to a d.c. source. Using this 
relationship in the circuit in figure 4.2(a), and assuming that the capacitors 

79 
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Figure 4.1 Current in a capacitor in a d. c. circuit. 

2 F 

(a) (b) 

Figure 4.2 Capacitors in a d.c. network. 

are fully charged, the circuit can be reduced to that in figure 4.2(b) for the 
purpose of the calculation of the steady-state current, I, in the 4 Q resistor. 
That is 

I = 5 x 6/(4 + 6) = 3 A 

Worked example 4.2.1 

The voltage waveform, v, applied to the circuit in figure 4.3(b) is described 
by 

v -

o for t < 0 
1.5t for 0 ::::; t < 2 
(6 - 1.5t) for 2 ::::; t < 4 
o for 4::::; t< 00 

and is illustrated in figure 4.3(b). Sketch the waveform of the current 
through the capacitor. 

Solution 

The current in the circuit is 

and is illustrated in figure 4.3(c). 

o for t < 0 
4.5 for 0 ::::; t < 2 

- 4.5 for 2::::; t< 4 
o for 4::::; t< 00 
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(a) 

v 

3vi J\ 
(b)~t(S) 

o 2 4 

i 
4.5 

(C)-+-+--r--t (5) 

-4.5 

Figure 4.3 Figure for worked example 4.2.1. 

4.3 Energy stored in capacitor 

81 

Energy is stored in the electric field of the capacitor, and the instantaneous 
energy supplied to a capacitor of capacitance C in time dt is 

dW = P dt = vi dt = vC dv dt = Cv dv 
dt 

The total energy supplied to the capacitor is the time integral of this 
expression, as follows 

w = fV Cv dv = l.cv2 
o 2 

Worked example 4.3.1 

For worked example 4.2.1, sketch to a base of time the graph of energy 
stored in the capacitor. 

Solution 

The energy stored is 

1 
W = -Cv2 = 1.5v2 = 

2 

o for t < 0 
3.375t2 for 0 ~ t < 2 

1.5(6 - 1.5ty for 2 ~ t < 4 
o for 4 ~ t< 00 

The resulting graph is shown in figure 4.4. 
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....,~---r-_.....::::!.,...-t (s) 
o 2 4 

Figure 4.4 Figure tor worked example 4.3.1. 

4.4 Capacitors in parallel 

When n ideal capacitors are connected in parallel with one another, each 
supports the supply voltage, Vs, between its terminals - see figure 4.5. That 
is, the charge stored by each capacitor is 

QI = CIVs , Q2 = C2VS , Qn = CnVs 

and the total charge, Q, stored by the parallel-connected capacitors is 

Q = QI + Q2 + ... + Qn = Vs( Cl + C2 + ... + Cn) 

If the parallel-connected capacitors are replaced by an equivalent capaci­
tor, CE' then 

Q = CEVS = (Cl + C2 + ... + Cn)Vs 

That is, the effective capacitance of the parallel circuit is 

CE = Cl + C2 + ... + Cn 

For a parallel circuit, the effective capacitance is always greater than the 
largest value 0/ capacitance in the circuit. 

t.L 
Vs T 

Figure 4.5 Capacitors in parallel. 

4.5 Capacitors in series 

When capacitors are connected in series with one another (known as a 
string of capacitors), the same value of charging current flows through each 
capacitor for the same length of time (see figure 4.6). That is, each 
capacitor supports the same value 0/ charge, Q, hence 

Q = QI = Q2 = ... = Qn 
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Figure 4.6 Capacitors in series. 

where Q = Cl VI = C2 V2 = ... = Cn Vn • Applying KVL to the circuit in 
figure 4.6 yields 

Q Q Q 
Vs = VI + V2 + ... + Vn = - + - + ... + -

Cl C2 Cn 

= Q [.1..- + .1..- + ... + .1..-] 
Cl C2 Cn 

If CE is the effective capacitance of the series circuit, then 

or 

Q V =-
S CE 

1 1 1 1 -=-+-+ ... +­
CE Cl C2 Cn 

For the special case of two capacitors in parallel 

C - Ct C2 

E - Cl + C2 

In the case 01 series-connected capacitors, the effective capacitance is always 
less than the lowest value 01 capacitance in the circuit. 

4.6 Potential division in series-connected capacitors 

As stated earlier for series-connected capacitors, the total charge stored by 
the string is equal to the charge stored by each capacitor in the string, that 
is 

or 
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Figure 4.7 Diagram [ar worked example 4.6.1. 

Consequent upon this piece of theory, the capacitor with the smallest value 
o[ capacitance supports the largest voltage! 

Worked example 4.6.1 

Calculate the effective capacitance of the circuit in figure 4.7 and the value 
of Vt. 

Solution 

The capacitance, Cp , of the parallel section of the circuit is 

Cp = 40 + 60 = 100 F 

The complete circuit effectively consists of astring of capacitors of 20 F, 
50 Fand Cp F. The reciprocal of the effective capacitance of the circuit 
therefore is 

~ = ~ + ~ + _1_= 0.05 + 0.02 + 0.01 
CE 20 50 100 

= 0.08 F- t 

or 

CE = 1/0.08 = 12.5 F 

The voltage across the 50 F capacitor can be calculated as follows 

V = V CE = 10 12.5 = 2.5 V 
n Sc 50 

n 

4.7 Inductance 

When current flows in a wire, it produces a magnetic field around the wire; 
when the wire is wound into a coi! or inductor, the resulting magnetic field 
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is strengthened. The self-inductance, L henrys (unit symbol H), of the coil 
is defined as the ratio of the magnetic Bux, cP weber (unit symbol Wb), to 
the current I amperes (also known as the excitation current) which prod­
uces the Bux. That is 

cP 
L= - H 

I 

When the current in the inductor changes, the resulting change in magnetic 
Bux associated with the circuit produces a self-induced e.m.f, e, in the coil, 
that is 

di 
e = -L - V 

dt 

where di/dt is the rate of change of current in the circuit. Since electrical 
engineers regard an inductor as a passive element rather than a source of 
e.m.f., we write the p.d. across the inductor as 

di 
v = L - V 

L dt 

That is to say, e and VL act in opposite directions, as shown in figure 4.8. 
Let us look for the moment at the circuit in figure 4.9 in which a constant 

current of 2 A has been Bowing long enough to allow steady-state operat­
ing conditions to be reached. The volt-ampere relationship for the circuit 
at this time is 

e = L di = 3 d[2] = 0 V 
dt dt 

• ____ ._--~~~--_L----_ 
e 

Figure 4.8 e.m.f. and p.d. associated with an inductor. 

Pure inductor 

Figure 4.9 The steady-state self-induced e.m.[. in an ideal inductor in a d.c. circuit. 
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5 F 

3Q 
10 Q 

5H 3Q 

v = 15 vt 
2 F 

4Q 

(al (bl 

Figure 4.10 A more camplex d.c. circuit. 

That is, under steady-state conditions in a d.c. circuit, an ideal inductor acts 
as though it were a short-circuit. 

Looking now at the so me wh at more complex d.c. circuit in figure 
4.1O(a) involving both capacitors and inductors, we will calculate the 
steady-state value of the current I. For this calculation we replace inductors 
by short-circuits and capacitors by open-circuits, leaving the 'steady-state' 
d.c. circuit in figure 4. 9(b). Clearly, the steady-state value of I is 

I = 15/(10 + 3 + 2) = 1 A 

While the above discussion is in order for steady-state d.c. conditions, 
there may be other factors operating in the circuit because we have two 
types of energy storage elements in the circuit. We will discuss these factors 
in chapter 10. 

Worked example 4.7.1 

The current in the circuit in figure 4.11(a) is described as follows 

(al 

(cl -+-+---r-- t (5) o 

-6 

Figure 4.11 Diagram for worked example 4.7.1. 
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o for t < 0 
t for 0 ~ t< 3 

(6 - t) for 3 ~ t < 6 
o for 6 ~ t< 00 

Determine the waveshape of the voltage across the inductor. 

Solution 

87 

The current waveform is shown in figure 4.11(b), and the self-induced 
e.m.f. is defined by 

di 6 di L-= -= 
dt dt 

and is shown in figure 4.11(c). 

4.8 Energy stored in an inductor 

o for t < 0 
6 for 0 ~ t< 3 

-6 for 3 ~ t< 6 
o for 6 ~ t< 00 

The instantaneous energy supplied to an inductor is 

di 
dW = P dt = vLi dt = L dt x i dt = Li di 

and the total energy supplied is the time integral of this expression as 
follows 

W = fI Li di = l.Li1 
o 2 

4.9 Inductors in series 

For the series circuit in figure 4.12 

VI = LI di/dt, V1 = L1 di/dt, Vn = Ln dildt 

Applying KVL to the circuit shows that 

Vs = VI + V 1 + ... + Vn = (LI + L1 + ... + Ln) di/dt 

If LE is the effective inductance of the circuit, then 

Vs = L E di/dt 

hence the effective inductance of the circuit is 
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Figure 4.12 lnductors in series. 

L E = LI + L 2 + ... + Ln 

That is, the effective inductance 01 aseries circuit is greater than the largest 
individual inductance in the circuit. 

4.10 Inductors in parallel 

Applying KCL to the parallel-connected inductors in figure 4.13 yields 

is = il + i2 + . . . +' in 

hence 

dis dil di2 din -=-+-+ ... +­
dt dt dt dt 

and, since the voltage across the circuit is 

v = L dil = L di2 = 
1 dt 2 dt 

that is 

or 

dis v V -=-+-+ 
dt LI L 2 

Figure 4.13 lnductors in parallel. 
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If the effective inductance of the circuit is LE , then 

hence 

or 

dis 
v = L - or 

E dt 
dis v 
-=-
dt L E 

1 1 1 1 -=-+-+ ... +­
L E LI L2 Ln 

89 

In the case of parallel-connected inductors, the effective inductance is 
always less than the lowest value 01 inductance in the circuit. 

For the special case of two inductors in parallel 

L _ L IL 2 

E - LI + L z 

Worked example 4.10.1 

Calculate the effective inductance between terminals A and B in figure 
4.14. 

Figure 4.14 Figure for worked example 4.10.1. 

Solution 

We must begin to analyse this circuit at the point which is most remote 
from the input terminals, and then work towards the input. For the parallel 
combination of 5 Hand 6 Hinductors 

Lpl = 5 x 6/(5 + 6) = 2.727 H 

The effective inductance of 4 Hand Lpl in se ries is 

LSI = 4 + 2.727 = 6.727 H 

The parallel combination of 3 Hand LSI results in an inductance of 
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= 3 x 6.727 = 2.075 H 
L p2 3 + 6.727 

and the effective inductance between A and B is 

L E = 2 + L p2 = 4.075 H 

4.11 Duality between inductors and capacitors 

Two circuits are said to be the dual of one another if the mesh current 
equations of one circuit have the same mathematical form as the node 
voltage equations of the other. 

The differential equations for inductors and capacitors are 

Inductors 
di 

v = L­
dt 

1 ft 
i = - v dt 

L 0 

Capacitors 

. Cdv 
1= -

dt 

1 ft 
v=- idt 

C 0 

That is, inductors and capacitors are dual quantities. An inductor of 3 H is 
the exact dual of a 3 F capacitor (see also seetion 2.12). 

4.12 Relationship between inductance, reluctance and the number of 
turns on a coil 

For a magnetic circuit having a constant reluctance, that is, an air-co re 

L = NiP 
I 

Now, the magnetic flux produced is 

NI NI 
iP = BA = IlHA = 1l- A = -

I S 

where B is the magnetic flux density, A is the cross-sectional area of the 
magnetic circuit, His the magnetic field intensity, N is the number of turns 
on the coil, I is the current in the coil, II is the permeability of the magnetic 
path, I is the length of the magnetic circuit and S is the reluctance of the 
magnetic path. Hence 

L = ~/S 

That is, if the reluctance of the magnetic path is constant then doubling the 
number of turns on the coil quadrupies the inductance. 
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- ---v, v, 

Figure 4.15 Magnetically coupled circuits; 11>1 is the ftux leaving coill and 11>2 is the ftux 
reaching coil 2. 

4.13 Mutual inductance 
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When current ftows in a coil, a magnetic ftux is established and energy is 
stored in the magnetic field. If two coils are wound on the same magnetic 
circuit (see figure 4.15) and current ftows, say, in coil1, then some of the 
magnetic ftux produced by that coillinks with coil 2. If the current in coil 1 
is altered, the ftux entering coil 2 also changes, resulting in a mutually­
induced e.m.f., V2 , in coil 2. If M12 is the mutual inductance existing 
between the coils, then 

M 12 = lP2/i1 

where lP2 is the flux reaching coil2. Similarly, if coil 2 is excited and coil 1 is 
the magnetically coupled coil, then the mutual inductance M21 between coil 
2 and coil 1 is 

M 21 = lP/i2 

where i2 is the current in coil 2 and lP1 is the magnetic ftux entering coil 1. 
Since the two coils are wo und on the same magnetic circuit 

M 12 = M 21 = M 

where M is the mutual inductance between the two coils. 
When only one of the coils is excited, that coil is known as the primary 

winding, and the coil which has the mutually induced e.m.f. in it is known 
as the secondary winding. The two circuits are described as magnetically 
coupled circuits. 
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4.14 Direction of the mutually induced e.m.f. - the dot notation 

In figure 4.15, the current i 1 is produced by the applied voltage VI> which 
has the polarity shown. The direction of the current induced in coil 2 is 
deduced as folIows. 

Lenz's law states that the direction of the induced e.m.f. (whether self 
or mutually induced) opposes the change producing it. Consequently, the 
current induced in coil 2 must produce a magnetic flux which opposes the 
flux developed by coill. Since, in figure 4.15, the flux enters coil2 from 
the left, the current induced in coil 2 must produce a magnetic flux which 
leaves the left-hand side of coil 2. The result is that the mutually induced 
e.m.f., V 2 , has the polarity shown in the figure. 

Engineers have developed the concept of the dot notation which allows 
us to specify ends of coils having similar polarity as folIows. One end (any 
end) of the primary coil is marked with a dot, and the end of each 
secondary coil (there may be several of these) having the same instan­
taneous polarity as the 'dotted' end of the primary coil is also marked with 
a dot. 

Thus, in figure 4.15, if we mark the left-hand end of the left-hand coil 
with a dot, then we must mark the left-hand end of the right-hand coil with 
a dot since they both have the same instantaneous polarity (one polarity 
arising from the forcing voltage, and the other being the induced polarity). 

If we apply this reasoning to the coupled circuit in figure 4.16(a), we will 
quickly be able to deduce a set of mesh equations to solve the circuit. 
Lenz's law enables us to say that, for each mutually coupled coil, there is a 
mutually induced e.m.f. in that coil. Since each winding carries a current, 
there is a mutually induced e.m.f. (a current-controlled voltage source) in 
each coupled coil. Thus we can separate the two magnetically coupled 
circuits in figure 4.16(a) into two separate circuits, as shown in diagram (b). 

We now investigate a method of deducing the direction of the mutually 
induced e.m.f.s. When drawing diagram (b), we transfer a copy of the 'dots' 

di, t M-
dt 

(a) (b) 

t di, 
M­

dt 

Figure 4.16 (a) Coupled circuits energised by independent sourees, (b) an equivalent 
circuit. 
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from diagram (a), and insert adependent voltage source in each winding 
for each mutually coupled coil (there is one such voltage source Jor each 
mutually coupled coi/). The possibility always exists for the introduction of 
errors at this point; from experience, the author suggests that the depen­
dent voltage source(s) should be drawn at the opposite end to the dot on 
the coil- see figure 4.15(b). The value of the mutually induced e.m.f. is 

M din/dt 

where in is, in this case, either i1 or i2 • At this point the reader should note 
that a mutually induced e.m.f. only exists so long as the current is changing 
in the exciting coil. 

Since we have assumed that i 1 enters the dotted end of LI, that is, the 
dotted end of LI is assumed to be connected to the positive pole of the 
forcing voltage, the magnitude of the mutually induced e.m.f. in coil 2 is 
M di/dt, and this acts to make the dotted end of coil 2 positive. 

By applying a similar reasoning to the mutually induced e.m.f. in coil1, 
the reader will confirm that the direction of the e.m.f. is as shown in figure 
4.16(b), and that its value is M di/dt. In addition to the mutually induced 
e.m.f. in each coil, there is also a self induced e.m.f. of value Ln din/dt in 
each coil. The mesh equations for the two circuit are therefore 

VI = L di1 + M di2 
1 dt dt 

V = M di1 + L di2 

2 dt 2 dt 

4.15 Coefficient of coupling 

Suppose that coil1 (of inductance LI) in figure 4.15 produces ftux <PI' and 
that a proportion k<P1 links with coil2 (of inductance L 2). The parameter k 
is known as the magnetic coupling coefficient, where 0 :::::; k :::::; 1. Also, if a 
current ftows in L 2 and produced ftux <P2 , then a ftux k<P2 links with LI. 
Now 

Multipyling the two equations gives 

M 2 __ N 1k<P2 N 2k<P1 __ k2 NI <PI N 2 <P2 
= k2L 1L 2 

i2 i1 i1 i2 
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M 
.~. 

~ --­v 

(al 

Figure 4.17 Series-connected mutually coupled coils. 

M~ 
dt 

- v 

(bI 

4.16 Mutually coupled coils in series and in parallel 

Series-connected coils 

Coil2 

M~ 
dt 

Using the work on the dot notation, the circuit in figure 4.17(a) can be 
re-drawn as shown in figure 4.17(b), the equation for wh ich is 

di di di di 
v = L I-+ M-+ L z-+ M-

dt dt dt dt 

di 
= (LI + L z + 2M) -

dt 

That is, the effective inductance of the circuit is LI + L z + 2M H. In the 
connection shown, the coils are said to be series-aiding since the flux from 
one coil assists or aids the flux produced by the second coil. 

If the coils are re-connected so that the flux produced by the coils 
oppose one another, they are said to be series-opposing, and the effective 
inductance of the circuit is LI + L z - 2M H. 

Parallel-connected coils 

Consider the two parallel-aiding magnetically coupled coils in figure 
4.18(a). The corresponding equivalent circuit is drawn in diagram (b) (the 
reader will find it an interesting exercise to verify the circuit), and the 
corresponding equations for the circuits are 

di l diz 
v=LI-+M-

dt dt 

di l diz 
v=M-+L -

dt z dt 
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di, 

vt vf 
L, dt 

di, M~ M-
dt dt 

(a) (b) 

Figure 4.18 Parallel-connected mutually coupled coi/s. 

Eliminating dizfdt between the two equations gives 

or 

L j L 2 - M 2 di j di j 

v = -----= L'-
L 2 - M dt j dt 

where L; is the equivalent inductance of the branch containing L j • Simi­
lady, eliminating dizldt between the equations gives 

where L~ is the effective inductance in the branch containing L 2 • Hence 

and 

For example, if L j = 1 H, L 2 = 4 Hand M = 0.2 H, then 

L; = (1 x 4 - 0.22)/(4 - 0.2) = 1.042 H 

and 

L~ = (1 x 4 - 0.22)/(1 - 0.2) = 4.95 H 

The effective inductance, L E , of the complete circuit is 

L'L' L = j 2 

E L' + L' 
j 2 

1.042 X 4.95 

1.042 + 4.95 
= 0.861 H 

The reader will observe that when L 2 = M then L; ~ 00, and when L j = M 
then L; ~ 00. If, for example, in the above calculation M = 1 H, then 
L; = 1 H, L~ = 00 and L E = 1 H. 
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Unworked problems 

4.1. A pulse of direct current of amplitude 30 mA is applied for 10 ms to 
an ideal capacitor of 5 IlF capacitance. What is the change of voltage 
between its terminals at the end of the pulse? 
[60 V] 

4.2. A practical capacitor can be represented by an ideal capacitor 
shunted by a leakage resistor. If a 5 IlF capacitor has a leakage 
resistance of 1 MQ, determine an expression for (a) the current 
through the leakage resistor, (b) the current through the 'ideal' 
capacitor and (c) the energy stored in the capacitor when a voltage 
of 200 sin 120:n:t V is applied. 
[(a) 2 x 10- 4 sin 120:n:t A; (b) 0.12:n: cos 120:n:t A; 
(c) 0.1 sin2 120:n:t J] 

4.3. The operation al amplifier circuit in figure 4.19(a) has the equivalent 
circuit in diagram (b). If VA is a voltage which rises steadily from 
zero volts at the rate of 1 V/s for 1 s, and then falls at the rate of 1 V/s 
until it reaches zero, thereafter remaining at zero, deduce the wave­
form for VB. The voltage gain, A of the op-amp is very large, and it 
may be assumed that the op-amp does not saturate. 
[VB = - 1 V for 1 s, when it becomes 1 V for 1 s, remaining at zero 
thereafter. ] 

(a) (b) 

Figure 4.19 

4.4. The voltage across a 20 IlF capacitor during the time interval 
o ~ t ~ 3.333 s is given by v(t) = 50t2 (5 - t) V. Deduce an expres­
sion for i(t), and calculate the maximum current and the instant at 
which it occurs. 
[t(lO - 3t) mA; 8.333 mA; 1.6667 s] 
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Figure 4.20 

Figure 4.21 

4.5. Calculate the effective capacitance between terminals A and B in 
figure 4.20 when C and 0 are (a) open-circuited, (b) short-circuited. 
[(a) 6.275 IlF; (b) 6.5 IlF] 

4.6. Figure 4.21 is a simplified diagram of astring of suspension insula­
tors. If the maximum voltage per unit (unit capacitance C) is 18 kV, 
calculate the maximum line voltage. 
[33 kV] 

4.7. A current i(t) = 100(2 + 10 sin 100 Jtt) A ftows in a pure inductor of 
0.1 H inductance during the time interval 0 :s:; t :s:; 0.02 s. Calculate 
the maximum voltage across the inductor. 
[104Jt V] 

4.8. If, in figure 4.22(a), (i) element A is a pure inductor and element B 
is a pure resistor, (ii) element A is a pure resistor and element B is a 
pure inductor, deduce an expression for the voltage vu(t) for the case 
where the voltage gain, A, of the op-amp (see diagram (b» is 
infinity. 

[(i) - ~J VA dt; (ii) - ~ d;tA ] 
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B B 

VA t ! VB 
VAt V;t 

(a) (b) 

Figure 4.22 

2H 
A C 

D 

Figure 4.23 

2 

~ 

<---__ D 

" 
( -p <_D 

3 

4 

Figure 4.24 

4.9. A solenoid 1 m in length and 15 cm diameter has 4000 turns of wire 
on it; the coil has an air core (110 = 43t x 10-7 Hirn). Calculate (a) its 
approximate inductance and (b) the energy stored when a current of 
3 A ftows in the coil. 
[(a) 0.355 H; (b) 1.6 J] 

4.10. Calculate the equivalent inductance between terminals A and B of 
figure 4.23 when C and D are (a) open-circuited, (b) short-circuited. 
[(a) 0.774 H; (b) 0.758 H] 
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4.11. What are the possible alternative locations for the dot notation for 
the coupled circuit in figure 4.24? 
[1 and 4 or 2 and 3] 

4.12. Calculate the effective inductance of the circuit in figure 4.25. 
[12 H] 



5 
The Sinewave, Phasors 
and Power 

5.1 Introduction 

Advantages of an alternating supply over a direct current supply include 
not only the simplicity by which it can be 'transformed' or altered in 
magnitude, but also the way in which it can be transmitted and controlled. 

When a given amount of power is transmitted over a great distance from 
a generating source to a load, the voltage is transformed to a high value so 
that the current is correspondingly low. The net result is that the power loss 
(PR) in the transmission system is redueed when eompared with the case 
when the power is transmitted at a lower voltage (and a higher current). At 
the receiving end, the voltage is transformed to a lower value before being 
conneeted to the consumer. 

While there is an infinite variety of alternating waveshapes, such as, 
reetangular , triangular , ete., the sine and eosine waves are the best for 
eleetrieal power transmission. 

When describing alternating quantities, the letters 'a.e.' should simply 
be interpreted as meaning 'alternating'. For example 'a.c. eurrent' means 
'alternating eurrent', 'a.c. voltage' means 'alternating voltage' , etc. 

5.2 Mean or average value of an alternating quantity 

When the alternating voltage waveform in figure 5.1(a) is applied to a 
resistanee, R ohms, by Ohm's law the current is proportional to the 
voltage. The eurrent waveform therefore has the sinusoidal waveform in 
diagram (b). The instantaneous voltage at time t is 

v = Vm sin wt 

100 
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(a) 0 II------>,------/------l..-

(b) 0 f----->r-------r------->-

I~R 

(c) 0 "'------~-----""-'<.------"'-

Figure 5.1 Sinusoidal (a) voltage and (b) current waveforms associated with a resistive 
element. (c) Power waveform in a resistive element. 
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where w is the angular frequency in radis. The current, from Ohm's law is 

. v V rn • 
l = - = -- sm wt 

R R 

Since both the voltage and the current waves are sinusoidal, the area under 
the positive half-cycle is equal to the area under the negative half-cycle. 
That is, the mathematical average value of both of them over one complete 
cycle is zero! 

In cases such as the sinewave, electrical engineers take a special view­
point about the average or mean value of the wave. It is, in fact, taken to 
be the average value of the rectified wave; that is, the negative part of the 
wave is inverted so that it appears in the positive half. The average value of 
the sinewave is then taken to be the average value of the rectified sinewave 
over the complete cycle; since both positive and 'negative' half-cycles in 
this case have the same shape, we may either calculate the average value 
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over the complete cyc1e, or over the first half-cyc1e! We will do the latter. If 
a = A sin wt, then the average value (A av ) or mean value (A mean) is 

1 fT'2 
A av or A mean = -- A sin wt dt 

TI2 0 

where T (= 2nlw) is the periodic time of the wave, hence 

A [1 ]T12 
A av or A mean = -- - - cos wt 

TI2 w 0 

A [1 2n ]TI2 A [ 2n ]T12 
- T/2 2nlT cos T t 0 = - -; cos T t 0 

= 2Aln = 0.637A 

The corresponding value for a sinewave of voltage and current, respect­
ively, are 

Vav = 2V mln = 0.637 V m 

I av = 2Imln = 0.637 Im 

The frequency of the wave in hertz (Hz) is given by the number of cyc1es 
per second, and is 

f = lITHz 

The corresponding angular frequency or radian frequency is 

w = 2nf radis 

5.3 The etfective value or r .m.s. value of a periodic wave 

The effective value of an alternating current is equal to the value of direct 
current which, when flowing in a resistor, delivers the same power to the 
resistor. The waveform of the instantaneous power in a resistor when a 
sinusoidal voltage is applied is shown in figure 5.1(c). The instantaneous 
power consumed by a resistor R is 

p = i 2R W 

and the average power consumed during one cyc1e is 

1 fT RfT 
P = - i 2R dt = - F dt 

ToT 0 

The power delivered by the corresponding direct current, I eff , is 

p = RI~ff 
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henee 

and similarly 

The values Ieff and Veff, respeetively, are the root-mean-square value (or 
r.m.s. value, meaning the square root of the mean of the sum of the 
instantaneous square values) of the eurrent and the voltage waves. When 
dealing with periodie waves, the subseript 'eff' is usually dropped, and the 
symbols I and V are taken to me an the r.m.s. or effeetive value of the 
eurrent and voltage wave, respeetively. 

r.m.s. value 01 a sinewave 

The instantaneous eurrent in a sinewave is 

i = Im sin wt 

whieh has a periodie time of T = 2rrJw. The r.m.s. value of the wave is 

I = V [~ [ I~ sin2 wt dt] 

= Im V[2: [ ~ (1 - eos 2wt) dt] 

Similarly, for a voltage sinusoid 

V = Vmtv'2 = 0.707 Vm 

5.4 Phase angle 

The general equation for a sinusoidal wave is 

a = A sin (wt + 8) 

whieh includes aphase angle, 8, in its argument (wt + 8). A sinewave ean 
be thought of as the plot of the vertieal displaeement of a line of length A 
whieh rotates in a counterclockwise direction at a eonstant speed w radIs 
(see figure 5.2). If the radialline has moved through angle 8 at t = 0, then 
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w radIs 

~ . 
_ _ A - /" -... A sm wt // 1[' --- / '{ 

I ~ \ I 
I I 8 \ / \ 

I I 
\ I 0 7[\ 

/ \ 
',// \ 

.......... _-,./ 

(a) 

A sin (wt + 8) 

(b) 

Figure 5.2 The sinewaves A sin (wt + 0) and A sin wt. 

we get the waveform shown in full li ne in diagram (b); this corresponds to 
the general sinusoid a = A sin (wt + 8). If the radialline is horizontal at t = 

0, that is, 8 = 0, we get the sinewave shown in the broken li ne in diagram 
(b); this corresponds to the curve a = A sin wt. The two sinewaves in figure 
5.2 are said to be out of phase with one another. 

The sinewave A sin wt can be though of as a reference sinewave, since its 
value is zero when t = 0, and increases when t is greater than zero. That is, 
a sinewave represents the displacement of the tip of a line of length A, 
wh ich rotates in a counterclockwise direction. When the line is horizon­
tal, engineers say that it is in the reference direction. 

Since sinewaves are drawn out by the tip of a line rotating in a 
counterclockwise direction, then the line which traces the curve A sin (wt 
+ 8) passes a given position (say the horizontal) before the li ne which 
traces the curve A sin wt. That is, the waveform A sin (wt + 8) leads the 
waveform A sin wt by 8, the phase angle being measured relative to the 
reference direction. 

In electrical engineering it is customary (but not mandatory) to give 
the phase angle in degrees, and no confusion should arise if we express a 
current in any of the following ways 

I = 10 sin (wt - n13) A 

10 sin (wt - 60°) A 

10 sin (2n x 100t - n13)A 

10 sin (628.3t - 60°) A 

In the case of the latter two expressions, the supply frequency is 100 Hz (or 
628.3 radis). 
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0.9 

L 
Figure 5.3 Phasor representation o[ 1.273 sin (wt + 8). 

S.S Phasors and phasor diagrams 

At a given frequency, a sinusoidal quantity is characterised by two para­
meters, namely its magnitude or amplitude and its phase angle. In the UK 
we usually me an the Lm.S. value of a wave when we refer to the magnitude 
(in so me US texts it may mean the maximum value). We can therefore 
describe the waveform 1.273 sin (wt + 8) as the phasor quantity 

0.9L8 

where the value 0.9 represents the Lm.S. value of the sinewave of maxi­
mum value 0.9\12 = 1.273, and we can represent it as shown in figure 5.3. 
Thus the voltage v = 141.4 sin (wt + lt/4) V can be represented as 

i = Im sin (wt - 3D") 

B, - I j 

O~~--~~---r----7-----+-wt 

A, 
----

B, 

5n/6 
(a) (b) 

0< ~ 60° 

30° 3D" 

I 
V 

(c) (d) 

Figure 5.4 Phasor representation o[ a voltage and a current. 
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100Ln/4 V or as 100L45° V 

Suppose that we represent the current and voltage waveforrns in figure 
5 .4(b) by the pair of rotating lines in diagram (a). If we choose to 'freeze' 
or 'fix' the rotating lines at wt = 0, the voltage is represented by line AI and 
the current by BI. Since these lines represent the maximum value of the 
respective quantities, the phasor diagram at t = 0 is obtained by scaling the 
length of each line by a factor of 1/Y2 to give the corresponding r.m.s. 
phasors, shown in diagram (c). 

Alternatively, we can select so me other angle at wh ich to 'freeze' or 
look at the phasors. If we choose wt = 5n/6 rad or 150°, we get the phasor 
diagram in figure 5.4(d). The reader will note that in both cases I leads V 
by 90° (or V lags behind I by 90°). 

5.6 Representation of a sinusoidal quantity as a complex value 

Sinusoidal quantities are time-varying and, strictly speaking, we cannot 
state the value of, say, a current or voltage that will be correct for all values 
of time. Moreover, we need a technique which will allow us to apply laws 
and theorems to alternating current circuits. We therefore introduce a 
technique here, namely the complex value, which is of vital importance to 
electrical and electronic engineers. The concept of complex values is, 
without doubt, the most powerful tool in the armoury of the engineer. 

The time-domain sinusoidal current 

i(t) = Im sin (wt + <jJ) 

is expressed as the imaginary part of a complex quantity (see chapter 15 
for information on complex numbers) by Euler's identity 

i(t) = Im(Im ej(wl + <1») 

We represent the current as a complex quantity by dropping the imaginary 
(Im) wording from the expression, and a further simplification is achieved 
by suppressing the factor eiw1 as folIows. 

I = Im ei<l> 

Since phasors are complex quantities, that is, they embody magnitude and 
phase angle, they are printed in boldface type. 

In addition, the maximum value is converted to its r.m.s. value, I, and 
the whole is written in its polar form as follows 

1= IL<jJ 

The quantity i(t) varies sinusoidally, and contains amplitude and phase 
information as a function of time and, accordingly, it is known as the 
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time-domain representation of the current. The phasor representation, I, is 
the frequency-domain representation of the current, and does not explicitly 
include the frequency. (The 'frequency' aspect of the frequency-domain 
representation is emphasised by the absence of frequency in the ex­
pression!) 

Similarly for voltages, we may represent the time-domain sinusoidal 
voltage 

v(t) = V rn sin (rot + 8) 

as the complex phasor quantity 

V= VL8 

where V is the Lm.S. value of the voltage. 

Worked example 5.6.1 

Transform the current i(t) 150 sin (300t - rr/6) A into its frequency-
domain complex polar value. 

Solution 

The general steps to be followed are: 

1. Convert the maximum amplitude to its Lm.S. value. 
2. If necessary, convert the phase angle to degrees. 
3. Write down the frequency-domain representation. 

Since rr/6 rad = 30°, then 

1= ~~ L-30° = 106.07 L-30° A 

To convert from the frequency-domain representation to the time-domain 
representation, it is merely necessary to reverse the steps. If the frequency 
is unknown, then it is simply necessary to write rot where 30üt appears in 
the equation in the worked example. 

5.7 Impedance of elements 

The impedance, Z, of an electrical element is its total opposition to flow of 
(sinusoidal) current. If a complex voltage V gives rise to the complex 
current I in an element then, by Ohm's law, the impedance of the element 
is 

V 
Z =- Q 

I 
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5.7.1 Resistance 

A resistance does not store energy, and a change in the voltage across the 
resistor gives rise to an instantaneous change in current in the resistor. 
That is the sinusoidal waveform of the voltage across the resistor is in phase 
with the current in the resistor. The impedance of the resistor is, therefore 

v = RL00 = R + jO Q 
1 

Worked example 5.7.1 

Calculate the complex polar expression for the current in a 5 Q resistor 
when a voltage of v(t) = 10 sin (50t - 50°) V is applied to it. 

Solution 

The frequency-domain representation of the voltage is 

V = ~2 L-50° = 7.071L-50° V 

hence 

1 = 7.071 L-50° = 1.414L-50° A 
5 

5.7.2 Pure inductance 

Since an inductor stores energy in its magnetic field, a change in current 
through the inductor causes the stored energy to change and, when this has 
occurred, the voltage across the inductor changes. That is, the current 
through the inductor and the voltage across it are not in phase with one 
another. The phase relationship between the voltage and current associ­
ated with the inductor can be deduced as folIows. 

The v-i relationship for an inductor is VL = L di/dt, and if the current is 
of the form i = Im sin rot, then 

di d(Im sin rot) 
VL = L - = L = roLIm cos rot 

dt dt 

= roLIm cos rot = roLIm sin (rot + 90°) 

= Vm sin(rot + 90°) 
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where V m is the maximum voltage across the inductor. 
Hence 

Vrn = wL/rn = XL/rn 
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where XL = wL is known as the inductive reactance at frequency w. 
Moreover, since vL has a cosine waveform, it leads the current waveform by 
90°. Engineers te nd to think of the voltage across the inductor as being in 
the reference direction, and we prefer to say that the current in the inductor 
lags behind the voltage across it by 90°. 

The complex expression for the impedance of the inductor is, therefore 

VL VL 
Z = - = - L90° = J'wL = J"X LI/ L 

Worked example 5.7.2 

A current of i(t) = 14.14 sin(100t + 15°) A ftows in a 0.5 Hinductor. 
Determine the phasor voltage across the inductor. 

Solution 

The polar complex current in the inductor is 

14.14 

and 

hence 

From Ohm's law 

1= -- L15° = lOL15° A 
v'2 

XL = wL = 100 x 0.5 = 50 Q 

v = IZL = 10L15° x 50L90° = 500L105° V 

5.7.3 Pure capacitance 

Since a capacitor stores energy in its electric field, a change in the voltage 
between the capacitor terminals causes the stored energy to change; when 
the energy changes, the current ftowing through the capacitor changes. 
That is, the voltage between the capacitor terminals and the current 
ftowing through it are not in phase with one another. The phase re la­
tionship between the voltage and the current can be deduced as folIows. 

The v-i relationship for a capacitor is i = C dvc/dt, and if the capacitor 
voltage is v c = V rn sin wt, then 
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i = C d(V m sin wt)/dt = wCV m COS wt 

= wCVm sin (wt + 90°) = Im sin (wt + 90°) 

where Im = wCVm, and is the maximum current in the capacitor. From 
Ohm's law 

Vm Vm 
1=-

m Xc 1/wC 

where Xc is the reactance of the capacitor at frequency w. That is 

X =_1_ 
c wC 

Morever , since the current has a eosine form, it leads the voltage across the 
capacitor by 90° (alternatively, we may say that the voltage lags behind the 
current by 90°). 

The impedance of the capacitor is given by Ohm's law as follows 

Z = V = V L-900 = _ J·X = XL-900 = _1_ 
c I lee jwC 

The manipulation of complex numbers is fully explained in chapter 15. 

Worked example 5.7.3 

If a voltage 3 L - 60° V is applied to an ideal 2 IlF capacitor at a frequency 
of 60 radis, calculate the current flowing through the capacitor. 

Solution 

The capacitive reactance is 

Xc = 1/wC = 1/(60 X 2 x 10- 6) = 8.333 kQ 

and the current in the capacitor is 

V 3L-60° 
I = - = = 0.36L30° mA 

Zc 8.333 x 103 L - 90° 

5.7.4 CIVIL - an a.c. mnemonic 

In the above context, the mnemonic CIVIL is very useful, as follows 
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in C. I leads V 
~I 

CIVIL 

T 
V leads I in L 

5.8 The susceptance of elements 

The susceptance of an element is the reciprocal of its reactance, That is 

B = 1/X 

For an inductance 

and for a capacitance 

5.9 The admittance of elements 

1 

1/wC 
= wC 

The admittance, Y, of an element is the reciprocal of its complex im­
pedance; since it is a complex value, it is written in hold type/ace. That is 

Y =~ = G + jB 
Z 

where G is the conductance and B is admittance. 
For a resistance 

Y =_1_=!+J'O=G +J'B 
R R + jO R R R 

That is, G R = 1/R (as it is in d,c. circuits) and BR = 0, The process of 
division of complex numbers is fully described in chapter 15, 
For an inductance 

Y = 1 = 0 + _1_ = 0 - J'/X = G - J' B 
L 0 'X ·x L L L + J L J L 
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That is GL = 0 and BL = lIXL = lIwL. 
For a capacitance 

1 
y = = 0 + j/Xe = Ge + jBe 

c . 0 - j/Xe 

or Ge = 0 and Be = lIXe = wc. 

The corresponding representation of Ohm's law is 

I = VY = V( G ± jB) 

5.10 The impedance of elements in series 

If n elements Zl' Zz, ... , Zn are connected in series, and current I flows 
through them, by KVL 

Vs = Z.I + ZJ + ... + ZJ = I(ZI + Zz + ... + Zn) 

where Vs is the supply voltage. The effective complex impedance of the 
circuit is 

n 

ZE = Zl + Zz + ... + Zn = L Zk Q 

and the complex voltage Vn across the nth element is 

Worked example 5.10.1 

A voltage of 10L20° V is applied to aseries circuit containing the foHowing 
elements 

Zl = lOL45° Q, Zz = 10LO° Q, Z3 = 15L- 80° Q 

Calculate the current in the circuit and the voltage across Zz. 

Solution 

This example illustrates the advantage of having complex numbers in 
rectangular form when adding (or subtracting) complex values, and of 
having them in polar form when multiplying (or dividing) complex values. 

In order to add complex impedance together, it is necessary to convert 
them to their rectangular complex values; this is described fuHy in 
chapter 15. 
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Z, = lOL45° = 7.071 + j7.071 Q 

Z2 = lOLO° = 10 + jO Q 

Z, = 15L-80° = 2.605 - j14.772 Q 

ZE = ~ Z = 19.676 - j7.071 = 21.13 L - 21.37° Q 

From Ohm's law 

V lOL20° 
1= - = = 0.473L41.37°A 

ZE 21.13 L - 21.37° 

and the voltage across Z2 is 

v = V _Z_2 = 10 L200 __ lO_L_O_O __ 
2 s ZE 21.13 L - 21.37° 

= 4.73L41.37° V 
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The reader should note that, since Z2 is a resistor, the voltage, V2 , across it 
is in phase with the current. 

5.11 The admittance and impedance of elements in parallel 

If n admittances Y" Y2 , ••• , Yn are connected to the voltage V., then by 
KCL 

Is = VsY, + VSY2 + ... + VsYn = Vs(Y, + Y2 + ... + Yn) 

where I s is the supply current. The effective admittance of the parallel 
circuit is 

n 

YE = Y, + Y2 + ... + Yn L Yk 

k~' 

and the corresponding effective impedance, ZE' is calculated from 

1 1 1 1 n 1 
YE = - = - + -+ ... +- = L-

ZE Z, Z2 Zn k~1 Zk 

The current, In, in the nth branch is 

Yn ZE 
In = I s - = I s 

YE Zn 

In the special case of a two-branch parallel circuit 

YE = Y, + Y2 

and 
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Z.Zl 
ZE = 

Z. + Zl 

The current in each of the two branches is 

Y. Zl 
I. = I. = I. ---=--

Y. + Y1 Z. + Zl 

Y1 Z. 
11 = I. = I. ---

Y. + Y1 Z. + Zl 

Worked example 5.11.1 

Impedances of lOL20° g, lSLO° g and (17.32 - jlO) gare connected in 
parallel to a 100L30° V a.c. supply. 

Calculate (a) the effective admittance and impedance of the circuit, (b) 
the current drawn by the circuit and (c) the current in the branch contain­
ing the capacitor. 

Solution 

(a) We can solve the problem using either admittances or impedances. 
Selecting the former gives 

1 = 0.lL-200 = 0.094 - jO.0342 S 
lOL20° 

1 
Y2 = -l-S-L-O-o = 0.0667 - jO S 

1 1 
Y = = 0.OSL30° 

3 17.32 - jlO 20L-30° 

= 0.0433 + jO.02S S 

and YE = ~Y = 0.204 - jO.OO92 = 0.2042L-2.S8° S 

hence 

ZE = lIYE = 4.9L2.S8° = 4.89 + jO.22 g 

(b) From Ohm's law 

Is = VSYE = 100L30° + 0.2042L-2.S8° = 20.42L27.42° V 

(c) Since the third branch has a negative value of reactance, it must contain 
the capacitance. From the theory outlined in section S.10 
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Y O.05L30° 
13 = Is _3 = 20.42L27.420-----

YE O.2042L-2.58° 

= 5L60° A 

Alternatively, 13 could have been worked out as follows 

13 = VS /Z3 = lOOL30oI20L-30° = 5L60° A 

5.12 Impedance and admittance of series-parallel circuits 

The impedance (or the admittance) of an a.c. series-parallel circuit is 
worked out in a similar manner to that for an otherwise similar circuit 
containing pure resistances (or conductances). The only exception is that it 
is necessary to not only add the camp/ex impedances of series elements, but 
also add the camp/ex admittances of parallel elements. 

5.13 Power and power factor 

If the voltage across an element is 

v(t) = Vm sin (wt + (}I) 

and the current through the element is 

i(t) = Im sin (wt + (}2) 

then the instantaneous power consumed by the element is 

pet) = [V m sin (wt + (}1)][Im sin (wt + (}2)] 

= V mImsin (wt + (}I) . sin (wt + (}2) 

The trigonometric identity 

sin A . sin B = ~ [cos (A - B) - cos (A + B)] 

leads to the following expression for the instantaneous power consumed by 
the element 

pet) = ! V mIm[cos «(}I - (}2) - COS (2wt + (}I + (}2)] 

The average power consumed is obtained by integrating this expression 
over one cycle. Since the second term in the expression is a sinusoid of 
frequency 2w, its average value is zero, and it may be ignored. The average 
power, P, is therefore 

P = iv mIm cos «(}I - (}2) = VI cos </> W 
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2::Ja- VI"o_ 

P = VI cas <p 

Figure 5.5 The power triangle. 

where V and I are the r.m.s. value of the voltage across and the current in 
the element, respectively. The angle cp is the phase angle between the 
voltage and the current. 

The situation in an a.c. circuit is illustrated by the power triangle in 
figure 5.5. The average power (or actual power), P, absorbed by the circuit 
or element is 

P = VI cos cp W 

As measured on an ammeter and a voltmeter, the apparent power 
absorbed by the circuit is 

S = VI volt-amperes (VA) 

In the above equation for power, cos cp is known as the power Jactor of the 
circuit, where 

P power 
power factor = cos cp = - = ----­

VI volt amperes 

power 

apparent power 

Since cos cp has a positive mathematical sign for either +cp or -cp, it is 
customary to define the power factor as follows. In engineering it is usual 
to think of the voltage as being the reference phasor, and to state whether I 
lags or leads V. If I lags behind V, we say that the circuit has a lagging 
power Jactor and, if I leads V we say that the circuit has a leading power 
Jactor. 

The third side of the power triangle is the reactive VA (V Ar) or reactive 
power, Q, as follows 

Q = VI sin cp volt-amperes reactive (VAr) 

and, finally 
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5.14 Power, VA and V Ar absorbed by ideal elements 

In the following we will assume that the r.m.s. voltage across an element is 
V, the current in it is I, and the phase angle quoted assume that V lies in the 
reference direction. 

Resistors 

In this case (jJ = 0°, hence 

PR = VI cos 0° = VI 

SR = VI VA 

QR = VI sin 0° = 0 

or PR = SR' and an ideal resistor does not consume reactive VA. Also 
V = IR so that 

PR = VI = V x V/R = V 2/R 

and 

PR = VI = IR x R = PR 

Inductors 

In this case (jJ = 90° (lagging) so that 

Also V = IXL so that 

and 

P L = VIcos 90° = 0 

SL = VI 

QL = VI sin 90° = VI(lagging) 

SL = VI = IXL x I = P XL 

hence SL = Qu and an ideal inductor does not absorb power. 

Capacitors 

In a capacitor (jJ = 90° (leading), and 

Pe = VIcos 90° = 0 

Se = VI 
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Qc = VI sin 90° = VI(leading) 

bence Sc = Qc, and an ideal capacitor does not absorb power. Also V = IXc 
so tb at 

and 

Sc = VI = IXc X 1= J2Xc 

5.15 v-i waveforms 

From work in earlier sections we know tbat, in a resistor, tbe voltage and 
current are in pb ase witb one anotber. Tbese waveforms, togetber witb 
tbat of tbe vi product are sbown in diagrams (a) and (b), respectively, of 
figure 5.6. Tbe instantaneous value of tbe vi product wave is eitber positive 
or zero at all times, and tbe average power consumed is finite. Tbe reader 
will note tbat tbe v-i wave is a sinusoid of twice tbe supply frequency (as it 
is for tbe otber cases considered bere). 

In tbe case of a pure inductor, tbe current lags bebind tbe voltage by 90° 
as sbown in figure 5.6(c). Tbe corresponding v-i product wave is drawn in 
diagram (d), and its average value over tbe complete cycle is zero! Tbis 
confirms tbe work in section 5.14, wbere we sbowed tbat tbe average 
power consumed by an inductor is zero. Tbe pbysical reason is tb at tbe 
energy absorbed by tbe inductor during tbe period wben tbe magnetic field 
is being built up is returned to tbe supply wben tbe magnetic field collapses. 

Similarly for a pure capacitor, tbe average power consumed is zero (see 
diagrams (e) and (f) of figure 5.6). 

Wben tbere is a pbase difference of <p between tbe v and i waveforms, as 
sbown in figure 5.7 (a), tbe corresponding v-i product wave is as sbown in 
diagram (b). In tbis case, more energy is consumed by tbe circuit tban is 
returned to tbe supply, resulting in a net average power consumption by 
tbe circuit, wbicb is 

P = VI cos <p W 

- see also section 5.13. 

5.16 Power consumed in an a.c. circuit 

We will use tbe information in tbe previous sections to evaluate tbe 
apparent power, tbe power and tbe reactive power absorbed in eacb 
element in figure 5.8. 

Tbe impedance of tbe parallel section of tbe circuit is 
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(a) 

1- T --.-.la 1 

(b) 

VV~i 124--. I Energy a~sorbed Y/ A //;/A / by reslstor 

~~~L-~~~~~ __ L-~~L-__ t 

(c) 

1- T ~I 

(d) 

~ 'o"gy "",,d by L 

\SJ~ t 

Energy released by L 
v 

(e) 

(f) 

~ ~ Energy stored by C 

'&W Ene:gy released by C 

Figure 5.6 v, i and p wave[orms (a) and (b) tor a pure resistor, (e) and (d) tor a pure 
induetor and (e) and (f) tor a pure eapaeitor. 
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f};;.; ~E","JY "00"" by clrcult 

~~ t 

Energy released 
by circuit 

Figure 5.7 WaveJorms Jor v, i and v-i product when i tags behind v by <p. 

Figure 5.8 Figure Jor the exampte in section 5.16. 

Z = 5(-jlO) = 50L-90° = 4.472L-26.570 
p 5 - jlO 11.18L-63.43° 

= 4 - j2 Q 

Since the parallel circuit is in se ries with the (2 + j4) Q section, the total 
impedance of the circuit is 

ZE = (2 + j4) + (4 - j2) = 6 + j2 = 6.325L18.44° Q 

By Ohm's law, the current drawn by the circuit is 

Vs 20LO° 
I =-= =3.162L-18.44°= 3 - j1 A 

1 ZE 6.325L18.44° 

This current flows into the parallel section of the circuit, and divides 
between the two branches as folIows. 

The current in the capacitor is 

I = I Zp = 3.162L -18.440 4.472L - 26.57° 
3 1 Zc 10 L - 90° 

= 1.414L45° = 1 + j1 A 
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Applying KCL to the parallel circuit gives 

12 = I 1 - 13 = (3 - j1) - (1 + j1) = 2 - j2 

= 2.828L-45° A 

The power consumed by the 2 Q resistor is 

T:R = 3.1622 X 2 = 20 W 

and the power consumed by the 5 Q resistor is 

T:R = 2.8282 X 5 = 40 W 
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Neither of the resistors consumes reactive VA. Also, since the inductor 
and the capacitor are both pure elements, they do not consume any power. 
The reactive VA consumed by the inductor is 

QL = T:XL = 3.1622 X 4 = 40 V Ar lagging 

and that consumed by the capacitor is 

Qc = J2jXc = 1.4142 X 10 = 20 V Ar leading 

It should be pointed out he re that the current through the inductor lags 
behind the voltage ac ross it by 90°, and that the current through the 
capacitor leads the voltage across it by 90°. That is, QL and Qc have 
opposite mathematical signs! If we assign a positive sign to Qu then we 
must assign a negative sign to Qc. and the total V Ar consumed by the 
circuit is 

Q = 40 - 20 = 20 V Ar (lagging) 

The mathematical sign associated with QL and Qc is discussed further in 
section 5.17. 

5.17 Complex power 

If a voltage V = VLa results in a current 1 = 1 Lß in a circuit, then the 
average power P absorbed is 

P = VI cos (a - ß) 

Using compiex number nomenciature, we may say that 

P = VI Re[ej(a - ß)] = Re[Ve ia Ie- iß ] 

The first term within the final set of brackets can be recognised as the 
phasor voltage. However, since the current in the circuit is 

1 = ILß = Ie iß 
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the second term in the square brackets is not the current phasor. To correct 
this, we make use of conjugate notation (see chapter 15 for details) as 
follows 

1* = Ie- iß 

where 1* is the complex conjugate of the current. That is 

P = Re[VI*] 

and we can let the apparent power become complex by defining it as 

S = VI* = Vlej(a - ß) = Vlei</> = P + jQ 

where P is the power absorbed by the circuit, Q is the reactive power, and 
the apparent power is ISI. The power factor is given by cos 4>. 

If the current lags behind the voltage, 4> has a negative sign, with the 
result that the complex part of VI* has a positive value. By international 
agreement, complex lagging VA is given a positive sign and leading VA is 
given a negative sign. 

We will now apply this method of calculation to the problem in section 
5.16 in which Vs = 20LO° V, / 1 = 3.162L-18.44° A, 12 = 2.828L-45° A 
and 13 = 1.414L45° A. The complex power absorbed by the circuit is 

S = Vs/; = 20LO° x 3.162LI8.44° = 63.24LI8.44° 

= 60 + j20 VA 

That is, the circuit absorbs 63.24 VA, 60 Wand 20 V Ar (lagging). Refer­
ring to the solution in section 5.16, the reader will note that the 2 Q resistor 
consumes 20 W, and the 5 Q resistor consumes 40 W, giving a total power 
consumption of 60 W. Moreover, the inductor receives 40 V Ar (Iagging), 
and the capacitor receives 20 VAr (Ieading). In the notation adopted in this 
method of calculation these respectively correspond tO + 40 V Ar and - 20 
V Ar, giving a total reactive power consumption of + 20 V Ar, as calculated 
above. 

Unworked problems 

5.1. A sinusoidal voltage waveform has a value of - 45 V at t = 0 and is 
rising; it reaches zero volts at t = 0.104 ms, and has its first positive 
peak at t = 0.4165 ms. Calculate the frequency and the periodic time 
of the wave, and also its maximum value. Write down an expression 
for the voltage waveform. If this voltage produces a current of 10 cos 
(rot - 135°) A, calculate the phase angle of i(t); with respect to v(t). 
[800 Hz; 1.25 x 10-3 s; 90 V; 90 sin (1600Jtt - 30°) V; v(t) leads i(t) 
by 15°] 
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5.2. The voltage indueed in a eoil of an eleetrieal generator inereases at a 
eonstant rate from zero volts at zero radians to V m at a radians, then 
remains eonstant from a to (n - a), after whieh it deereases at a 
eonstant rate until it reaehes zero volts at n radians. This is repeated 
with the reverse polarity in the seeond half of the wave. Calculate 
the r.m.s. value and the average value of the wave for a value of a of 
0, nl6 and n12. 

! ra.(mra.sd.) 0 nl6 nl2 
Vm Vm v'(7/9) Vm v'(l/3) 

average V m 5V m/6 V m/2 

5.3. A sinusoidal eurrent of 20 A (r.m.s.) at a frequeney of 50 Hz is 
added to a eurrent of the same magnitude whose frequeney is 60 Hz. 
Write down an expression for the instantaneous eurrent in the 
eireuit, and ealculate its value at t = 10 ms. 
[28.28(sin 100 nt + sin 120 nt); -16.62 A] 

5.4. Convert the following values into their reet angular eomplex form: 
(a) 20L150°, 
(b) 9 LlO° - lOLllO°, 
(e) (5 - j3) x (6 + j2), 
(d) 5L2000/7 L90°, 
(e) 8.7 LlO° + (8 - j12). 
[Ca) -17.32 + jlO; (b) 12.28 - j 7.83; (e) 36 - j8; 
(d) - 0.244 + j 0.671; (e) 16.57 - j 10.49] 

5.5. Convert the following eomplex values into polar form: (a) -6 - j8, 
(b) (7 + j6) + (-8 - jlO), (e) (-7 + j9)/(5 + j3), 
(d) 4L-170° + (2 - j3). 
[(a)lOL -126.9°; (b)4.123L -104°; (e)1.96L -96.9°; 
(d)4.173 L -117.7°] 

5.6. A two-terminal blaek box eontains (a) a 50 Q resistor, (b) a 50 IlF 
eapaeitor, (e) a 0.5 H induetor. If the eurrent flowing into the box is 
5ej(IOOOt - 30°) A, ealculate the voltage between the terminals of the box 
in eaeh ease. 
[( a) 250ej(1000t - 30°) V; (b) 250ej(1000t - 12(0) V; 2500ej(1000t + 60°) V] 

5.7.. Three wires are eonneeted to anode in a eireuit; the wires earry 
eurrents i}> i2 and i3 , respeetively. (a) If i1(t) = 10 sin (300t + 40°) A 
and i2(t) = 15 eos (300t - 60°) A, ealculate i3(t); (b) if 11 = 
15L-20° A and 13 = 20L40° A, ealculate 12 , 

«a) 24.9 sin (300t - 146°) A; (b) 30.42L-165.3° A] 

5.8. If v AB(t) = 50 sin (50t - 30°) mV, vBC(t) = 25 sin (50t + 40°) mV and 
VAD(t) = 90 sin (SOt - 10°) mV, ealculate VCD and VBD • 
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100 f-IF 100 f-IH 

O----j A 

o------..----OB 

Figure 5.9 

[19.1L165.6° mV (note: Voc = 19.1L-14.4° mV); 
32.73L-168.3° mV] 

5.9. If the supply frequeney to the eireuit in figure 5.9 is 400 radis, 
ealculate the eomplex input impedanee Zin if terminals AB are (a) 
open-eireuited, (b) short-eireuited, (e) eonneeted by a 50 Q resistor. 
[Ca) 47.17L-32° Q; (b) 20.62L-14° Q; (e) 31.17L-36.2° Q] 

5.10. A 1 H induetanee, a 1 !lF eapaeitanee and a resistor Rare eonneeted 
in parallel to a supply voltage of frequeney 500 rad/so Express the 
real and imaginary parts of the impedanee of the parallel eireuit in 
terms of R. 
[Real part = R x 106/(106 + 2.25R2 ); imaginary part = 
1500R/(106 + 2.25R2 )] 

S.ll. Wh at value of induetance must be eonneeted in se ries with a deviee 
whose internal eireuit is equivalent to a resistanee of 5000 Q in series 
with a eapaeitanee of 0.1 !lF, to give an overall eireuit admittanee of 
(51.42 + j87.4) !lS. The supply frequeney is 1000 rad/so 
[1.5 H] 

5.12. Aseries eireuit eontains a resistanee of 5 Q, an induetor of reaetanee 
10 Q and a eapaeitor of reaetanee 6 Q. If the r.m.s. voltage of the 
supply is 100 V, ealculate (a) the eomplex impedanee and admit­
tanee of the eireuit, (b) the eurrent drawn by the eireuit, (e) the 
phase angle and power faetor of the eireuit and (d) the voltage aeross 
eaeh element in the eireuit. 
[Ca) 6.4L38.66° Q, 0.156L-38.66° S; (b) 15.63L-38.66° A; (e) I 
lags V by 38.66°, power faetor = 0.781 (lagging); (d) VR = 
78.13L-38.66° V; VL = 156.3°L51.3° V, Vc = 93.75L-128.7° V] 

5.13. In problem 5.12, ealculate the apparent power, the power and the 
VAr eonsumed. Calculate also the VAr eonsumed by the induetor 
and the eapaeitor. 
[1563 VA; 1220 W; 976.4 VAr (lagging); 2443 VAr (lagging); 1466.6 
V Ar (leading)] 
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5.14. A resistor and a coil are connected in series to a 240 V supply. If the 
current drawn from the supply lags the supply voitage by 37°, and its 
r.m.s. value is 3 A, calculate (given that the r.m.s. voitage across the 
coil is 171.4 V) the resistance and reactance of the inductor, and the 
resistance of the resistor. Calculate also the power and V Ar con­
sumed by the circuit. 
[30.74 Q, 48.15 Q; 33.26 Q; 575 W; 433 VAr (lagging)] 

5.15. A 3-branch parallel circuit contains a 4 kQ resistor in one branch, a 5 
kQ inductive reactance in the second branch and a 7 kQ capacitive 
reactance in the third branch. Calculate the effective admittance and 
impedance of the circuit. If it is energised by a 200 V r.m.s. supply, 
calculate the current in each branch, the total current drawn 
by the circuit and the phase angle of the circuit. Determine also the 
apparent power, the power and the VAr consumed, together with 
the power factor of the circuit. 
[0.2564 L -12.87° mS, 3.9 L12.87° kQ; I. = 0.05 LO° A; 12 = 
0.04L-90° A; 13 = 0.0286L90° A; -12.87°; 10.26 VA; 10 W; 2.29 
VAr (lagging); 0.975 (lagging)] 

5.16. A two-branch parallel circuit contains impedances of (8 - j7) Q and 
(5 + j6) Q, respectively. If the current in the (8 - j7) Q branch is 
9.41 L41.2° A, calculate the current in the other branch, and the 
supply voitage. Also evaluate the complex admittance of the circuit. 
What is the phase angle of the circuit? What apparent power, power 
and VAr are consumed? 
[12.8L-50.1° A; 100LO° V; 0.157 L-13.41° S; 13.41° (lagging); 
1570 VA; 1527.2 W; 364.1 VAr (lagging)] 



6 
Sinusoidal Steady-state 
Analysis 

6.1 Introduction 

This chapter not only deals with a.c. applications of techniques dealt with 
in the work on d.c. circuits, but deals with other circuit theorems particu­
larly appropriate to a.c. circuit analysis. In particular, the application of 
complex numbers to electric circuits; the theory of complex numbers is 
covered in chapter 15, where the reader can study this and other math­
ematical techniques appropriate to electrical and electronic engineering. 

We commence by analysing the circuit in figure 6.1(a), which is specified 
in terms of time-domain data. Following the concepts developed in earlier 
chapters, the frequency-domain equivalent circuit is drawn in diagram (b). 

We shall retain ohmic values in kQ, so that the resulting currents are in 
mA. The impedance of the series branch is 

Zs = 2 + j1 kQ 

and the impedance of the parallel branch of the circuit is 

56.57 sin (5OOOt + SO·) V 

(a) 

1 kQ 

i.(t) 

4OLSO· V 

(b) 

I. 

-j1 kQ 

Figure 6.1 The circuit in diagram (a) contains time-domain tiata which, in diagram (b), is 
converted into its co"esponding frequency-domain equivalent. 
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Z = p 

j2(1 - j1) 

j2 + (1 - j1) 

= 2LO° kQ 

j2(1 - j1) 

1 + j1 

2L90° x 1.414L-45° 

1.414L45° 
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Since the two branches are in se ries with one another, the effective impe­
dance of the complete circuit is 

ZE = Zs + Zp = (2 + j1) + (2 + jO) = 4 + j1 

= 4.123L14.04° kQ 

By Ohm's law, the current 11 drawn by the circuit is 

11 = VS/ZE = 40L900/4.123L14.04° = 9.7 L 75.96° mA 

The current in each branch of the parallel circuit may be evaluated by any 
of the methods described earlier, typical calculations being 

Z2 J2 
1 = 1 = 9.7 L 75.96° x -----''------
3 1 Z2 + Z3 j2 + (1 - j1) 

2L90° 
= 9.7 L 75.96° x = 13.72L120.96° mA 

1.414L45° 

and 

Z3 
1 = 1 =9.7L-14.04° mA 

2 1 Z + Z 
2 3 

The power , VA and V Ar in the various sections of the circuit can be 
calculated by any one of the methods outlined in chapter 5. 

Since types of a.c. analysis deal with circuit equations involving complex 
numbers, we will be concerned with the solution of simultaneous equations 
involving complex quantities. Generally speaking, their solution is no more 
difficult than solving conventional simultaneous equations, with the excep­
tion that we also need to deal with phase angles as weIl as magnitude. That 
is, the solution takes a little longer, and needs a little more care. Consider 
the solution of the following simultaneous equations 

50LO° = 11.18L - 26.56°X + 5L900y 

o = 5L900X + 3.162L-18.43°Y 

(6.1) 

(6.2) 

where X and Yare unknowns. To eliminate variable Y from the equations, 
we need to make the coefficient of Y have the same value in both equa­
tions; that is it must have the same magnitude and phase in both equations. 
We then add (or subtract) the equations, leaving only the variable X, 
whose value can then be determined. Full details of the theory of complex 
number manipulation is given in chapter 15. 
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If we multiply equation (6.2) by the complex value 

5L90° = 1.581L108.43°, it makes the coefficient Y in the new 
3.162L -18.43° 
equation 5L90°. When the new equation is subtracted from equation (6.1), 
Y is eliminated as follows 

50LO° = 11.18L-26.56°X + 5L900y «61) repeated) 

o 7.91LI98.43°X + 5L900y «6.2) x 1.581 L108.43°) 

50LO° = 17.68L-8.21°X (SUBTRACT the equations) 

To perform the subtraction it is first necessary to convert both equations 
into rectangular form, as described in chapter 15. The value of X is 

X = 50LO° = 2.83L8.12° 
17.68L-8.21° 

Substituting this value into equation (6.2) gives 

Y= -5L90° x 2.83L8.12° = -14.15L98.12° 
3.162L -18.43° 3.162L-18.43° 

=-4.47 L116.55° = 4.47 L-63.45° 

Alternatively, the equations can be solved by determinants which, in the 
opinion of the author, is an easier and more reliable routine. As with other 
mathematical processes, this is dealt with in chapter 15. 

Yet another method of solving a pair of simultaneous equations with 
complex values in polar form is given by the computer program in listing 6.1. 

The main program is in lines 10 to 610, inclusive; the input of data is 
complete by line 290, and lines 310 to 590, inclusive, make computations 
on each of the determinants. Two subroutines are used; the one commenc­
ing at line 1000 calculates the magnitude and phase angle of the determi­
nants, and that commencing at line 2000 keeps the final phase angle within 
the limits ± 180°. 

Listing 6.1 
Solution of two simultaneous equations having complex values. 

10 CLS 
20 PRINT TAB (3) ; "Solution of two CCIlplex siIrultaneous equations" 
30 PRINT TAB(18); "of the form" 
40 PRINT TAB(15); "V1 = A*X + B*Y" 
50 PRINT TAB(15); "V2 = c*x + D*Y" 
60 PRINT TAB(3); "Where V1 and V2 are corcplex values," 
70 PRINT TAB(3); "A,B,C and D are corcplex coefficients," 
80 PRINT TAB(3); "and X and Y are the variables." 
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90 PRINT 
100 INPUT "Magnitude of VI = ", VI 
110 INPUT "Phase of VI (degrees) = ", PI 
120 REM ** Convert degrees to radians ** 
130 PI = PI * .01745 
140 INPUT "Magnitude of A = ", A 
150 INPUT "Phase of A (degrees) = ", PA 
160 PA = PA * .01745 
170 INPUT "Magnitude of B = ", B 
180 INPUT "Phase of B (degrees) = ", PB 
190 PB = PB * .01745 
200 PRINT 
210 INPUT "Magnitude of V2 = ", V2 
220 INPUT "Phase of V2 (degrees) ", P2 
230 P2 = P2 * .01745 
240 INPUT "Magnitude of C = ", C 
250 INPUT "Phase of C (degrees) = ", PC 
260 PC = PC * .01745 
270 INPUT "Magnitude of D = ", D 
280 INPUT "Phase of D (degrees) = ", PD 
290 PD = PD * .01745 
300 PRINT 
310 REM ** Ca1culations for main determinant ** 
320 Mag = A * D: PH = PA + PD 
330 Re1 Mag * COS(PH): Iml = Mag * SIN(PH) 
340 Mag C * B: PH = PC + PB 
350 Re2 Mag * COS(PH): 1m2 = Mag * SIN(PH) 
360 GOSUB 1000 
370 Det = Mag: DetP = PH * 57.3066 
380 REM ** Calculations for determinant X ** 
390 Mag VI * D: PH = PI + PD 
400 Re1 Mag * COS(PH): Iml = Mag * SIN(PH) 
410 Mag V2 * B: PH = P2 + PB 
420 Re2 Mag * COS(PH): 1m2 = Mag * SIN(PH) 
430 GOSUB 1000 
440 DetX = Mag: DetXP = PH * 57.3066 
450 REM ** Calculations for determinant 'Y ** 
460 Mag = A * V2: PH = PA + P2 
470 Re1 = Mag * COS(PH): Iml = Mag * SIN(PH) 
480 Mag VI * C: PH = PI + PC 
490 Re2 = Mag * COS(PH): 1m2 = Mag * SIN(PH) 
500 GOSUB 1000 
510 DetY = Mag: DetYP = PH * 57.3066 
520 REM ** There is no solution of Det = 0 ** 
530 IF Det = 0 'IHEN PRINr TAB (3) ; '''Ihe equations cannot be solved": END 
540 REM ** Calculate and print the value of the variables ** 
550 PRINT TAB(3); "X = "; DetX / Det 
560 Phi = DetXP - DetP: GOSUB 2000 

129 
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570 PRINT TAB(9); "at angle "; Phi; " degrees." 
580 PRINT TAB(3); "Y = "; DetY / Det 
590 Phi = DetYP - DetP: GOSUB 2000 
600 PRINT TAB(9); "at angle "; Phi; " degrees." 
610 END 
1000 REM ** Calculate magnitude and phase of determinant ** 
1010 Re = Re1 - Re2: Im = Im! - 1m2 
1020 Mag = SQR(Re A 2 + Im A 2): pi = 3.141593 
1030 IF Re = 0 AND Im > 0 THEN PH = pi / 2: RETURN 
1040 IF Re = 0 AND Im < 0 THEN PH = -pi / 2: RETURN 
1050 PH = ATN(Im / Re) 
1060 REM ** Compensation for angular ca1cu1ation ** 
1070 IF Re < 0 AND Im < 0 THEN PH = PH - pi 
1080 IF Re < 0 AND Im > 0 THEN PH = PH + pi 
1090 IF Re < 0 AND Im = 0 THEN PH = pi 
1100 RETURN 
2000 REM ** Modify phase angle to within 180 deg ** 
2010 IF Phi> 180 THEN Phi = Phi - 360: RETURN 
2020 IF Phi< -180 THEN Phi = Phi + 360: RETURN 
2030 RETURN 

6.2 Nodal, mesh and loop analysis 

The technique involved for each of these methods of analysis is generally 
similar to that described in chapter 2 for resistive circuits, with the excep­
tion that complex values are used. 

We will illustrate nodal and mesh analysis using simple problems. When 
a cireuit eontains a mixture of voltage and eurrent sourees it may be 
necessary to modify the eireuit equations using supermeshes (when using 
mesh analysis) or supernodes (when using nodal analysis). Where depen­
dent sourees are involved the teehniques are, onee again, similar to those 
outlined for resistive cireuits. 

As with d.c. eireuits, loop analysis ean be used to evaluate loop currents 
in any eircuit, but has the dis advantage that it is less systematic than mesh 
analysis, and is not generally so convenient for computer solution. 

Worked example 6.2.1 

In the first example in this section, we apply nodal analysis to the solution 
of the cireuit in figure 6.2. 

Solution 

In this case we take node 0 to be the reference node. Applying KCL to 
node 1 we get 
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2L20° A 4L40° A 

Figure 6.2 Circuit Jor worked example 6.2.1. 

2L200= «2 + 3) + j(-2 + 3))V. - (3 + j3)V2 
= (5 + j1)V. - (3 + j3)V2 
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= 5.1 L11.31°V. - 4.24L45°V2 (6.3) 

The application of KCL to node 2 yields 

4L40o= -(3 + j3)V. + «4 +3) + j(3 + 4))V2 
= - (3 + j3)V. + (7 + j7)Vz 
= -4.242L45°V. + 9.9L45°V2 (6.4) 

V2 can be eliminated between these equations by multiplying equation 
(6.3) by 9.9L45°/4.24L45° = 2.335LO°, and adding it to equation (6.4) as 
folIows. 

4.67 L20° = 1l.91Lll.31°V. - 9.9L45°V2 
4L40° = -4.242L45°V. +9.9L45°V2 

8.45L29.22° = 8.7 L -4.37°V. 

Hence 

«6.3) x 2.335) 
«6.4) repeated) 

(ADD the equations) 

8.45 L29.22° O.982L33.60 V 
V. = 8.7 L-4.370 

Substituting this value into equation (6.3) gives 

V = (5.1 L11.31° x O.982L33.6°) - 2L20° 
z 4.24L450 

= O.778L14.72° V 

This calculation involves several polar-to-rectangular and rectangular-to­
polar conversions, which are not shown. A simpler method may be to use 
determinants, or the computer program in listing 6.1. 

In.examples which follow, details of the solution of simultaneous equa­
tions is omitted. 
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Figure 6.3 Mesh current analysis. 

Worked example 6.2.2 

In this problem we will use mesh analysis to determine the currents in 
figure 6.3. 

Solution 

Applying KVL to mesh 1 yields 

lOL20° = «2 + j2) + (4 - j4) )/1 - (4 - j4)/2 

= (6 - j2)/1 - (4 - j4)/2 

= 6.325 L -18.44°/1 - 5.657 L - 45°/2 

and to mesh 2 gives 

-30L50° = -(4 - j4)/1 + «3 + j3) + (4 - j4»/2 

= -(4 - j4)/1 + (7 - j1)/2 

= -5.657 L-45°/1 + 7.071L-8.13°/2 

Solving these equations in the manner described earlier gives 

I1 = 2.39L163.4° A 

and 

12 = 3.69 L -148.6° A 

6.3 Principle of superposition 

The principle of superposition can be applied to linear circuits, including 
a.c. circuits. Consider the calculation of the voltage VI in the circuit in 
figure 6.4. The value of this voltage is dependent on the two sources in the 
circuit, one being a current source and the other a voltage source. 

When the circuit is energised by the current source alone (in the mean­
time, the voltage source is replaced by its internal impedance, that is, 
zero), the voltage at the left-hand node is VIA' In this case, 2LO° A flows 
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V, 4 + j5 Q 

Figure 6.4 Principle o[ superposition. 

into a two-branch parallel circuit comprising (2 + j3) Q in parallel with 
(4 + j5) Q, and VIA is 

V = 2LOo~-+ j3)(4 + j5) = 2.68 + j3.76 V 
IA (2 + j3) + (4 + j5) 

When the circuit is energised by the voltage source alone (in the meantime, 
the current source is replaced by its internal impedance, that is, infinity), 
the voltage at the left-hand node is now VIB' This voltage is the proportion 
of the 5LO° V source appearing across the (2 + j3) Q impedance, which is 

00 2 + j3 1 8 '0 
VIB = 5L = . 1 + J .1 V 

(2 + j3) + (4 + j5) 

Hence, by superposition 

VI = VIA + VIB = 4.49 + j3.86 = 5.92L40.8° V 

6.4 Thevenin's theorem and Norton's theorem 

Thevenin's and Norton's theorems (see also chapter 3) may be used for 
frequency-domain circuits, the only difference being that we need to re­
place the term resistance by impedance, and conductance by admittance. 
We will illustrate their use in a.c. circuits by way of examples. 

Worked example 6.4.1 

Determine Thevenin's equivalent circuit with respect to terminals A and B 
of the network in figure 6.5. Hence calculate the current which would flow 
in a (6 - j5) Q impedance connected between A and B. 

Solution 

Firstly, we must replace the source by its internal impedance (zero in this 
case), and determine the impedance between terminals A and B as folIows. 
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j40 Q 

'---e---o A 

Figure 6.5 Thevenin's theorem. 

Z = 20 X j40 
TH 20 + j40 

16 + j8 Q 

Next we calculate the voltage VAB , which is the Thevenin source voltage as 
follows 

° 20LO° 
VTH = V AB = 50LlO = 22.36L-53.44° V 

20 + j40 

That is, the Thevenin source between terminals A and B comprises a 
voltage VTH = V AB = 22.36L-53.44° V having an internal impedance of 
(16 + j8) Q. When the externaiload is connected, the total impedance in 
the circuit is 

ZE = ZTH + (6 - j5) = 22 + j3 = 22.2L 7.77° Q 

and the current in the load is 

VTH 
1=-= 22.3L-53.44° = 1.007 L-61.21° A 

22.2L 7.77° 

Worked example 6.4.2 

Repeat worked example 6.4.1 using Norton's theorem. 

Solution 

We can avoid some work simply by saying that the Norton internal admit­
tance is equal to the reciprocal of the Thevenin internal impedance, that is 

Y N = l/ZTH = 1/(16 + j8) = 0.0559 L - 26.56° 
= 0.05 - jO.025 S 

The value of the Norton internal source current is equal to the current 
which ftows from A to B when these terminals are short-circuited. That is 
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The Norton equivalent source current could, alternatively, have been 
deduced by saying 

IN = VTH/ZTH = 22.36L-53.44°/(16 + j8) 
= 1.25L-80° A 

The Norton source current divides between the internal admittance of the 
source and the admittance of the load, the latter value being 

YL = 1/(6 - j5) = 0.098 + jO.082 S 

The effective admittance of the Norton generator and the load in parallel is 

YE = YN + YL = (0.05 - jO.025) + (0.098 + jO.082) 
= 0.148 + jO.057 = 0.159L21.06° S 

and the current in the load is 

I = IN YL = 1.25L-80° 0.128L39.8° = 1L-61.26° A 
YE 0.159L21.06° 

When comparing the values of I obtained by the two methods of calcula­
tion, minor discrepancies are due to rounding errors. 

6.5 Millman's theorem 

Other circuit theorems, subject to any special conditions discussed earlier, 
apply equally weIl in the frequency domain; Millman's theorem (also 
known as the Parallel Generator theorem) is no exception. This theorem is 
widely used in electronics, and is weH suited to the solution of unbalanced 
3-phase, 3-wire power systems (see also chapter 7) as is illustrated below. 

Worked example 6.5.1 

Consider the system in figure 6.6, in which an unbalanced load (see chapter 
7 for a description of the term unbalanced) is supplied by an unbalanced 
three-phase supply. We need to calculate the current in each line, together 
with the voltage VSN ' 

Solution 

Using the equation developed in chapter 3, the voltage VSN is 

V ANYAS + VBNYBS + VCNYCS 
VSN =-'-----------

YAS + YBS + Ycs 
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100LO° V --- ' A 10LO° g 

A 

110L-130° V --- 18 20L20° g 
N S 

B 
120L 110° V ---

Figure 6.6 Millman's theorem applied to an unbalanced 3-phase, 3-wire power system. 

100LO° 1l0L-130° 
----+ + 

120 L 110° 

40L-4Q0 
=----------------------------

1 1 1 
---+ +-----
lOLO° 20L20° 40L-40° 

2.92L-25.35° 
=------

0.166LO.36° 

= 15.86 - j7.64 V 

The current in line A is 

= 8.45L5.19° A 

Similarly, it may be shown that 

17.6L-25.71° 

100LO° - 17.6L-25.71° 

lOLO° 

lB = 5.79L-158.4° A and le = 3.33L155.4° A 

6.6 Rosen's, star-delta and delta-star theorems 

Rosen's theorem or the general star-mesh transformation is as applicable 
in the frequency domain as it is to d.c. circuits, as are the star-delta and 
delta-star transformations. 
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Worked example 6.6.1 

Three impedances are connected in delta as folIows. An impedance of 
(6 + j3) Q is connected between lines 1 and 2, (7 - j5) Q is connected 
between lines 2 and 3, and an impedance of (6 + jO) Q is connected 
between lines 3 and 1. Determine the impedances in the equivalent star­
connected network. 

Solution 

Since each of the star-connected impedances is connected to the star-point 
S, then 

where 

Hence 

Also 

LZ 

= (6 + j3) + (7 - j5) + (6 + jO) = 19 - j2 

= 19.1L-6° Q 

(6 + j3)(6 + jO) 

19.1L-6° 

= 2.11L32.57° Q 

40.25 L26.57° 

19.1L-6° 

Zzs = Z21Z,jLZ = 3.02L-2.96° Q 

Z3S = Z31Z32/LZ = 2.7 L-29.53° Q 

6.7 Maximum power transfer theorem 

The maximum power transfer theorem as applied to a.c. circuits is more 
involved than is the case in d.c. circuits because of the existence of complex 
impedances and complex voltages and currents. There are four general 
conditions for maximum power transfer in a.c. networks, and these are 
given below without proof: 

1. A pure resistance load extracts maximum power from a circuit when the 
load resistance is equal to the magnitude of the internal impedance of 
the source to which it is connected. 
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2. A constant reactance, variable resistance load extracts maximum power 
when the resistance of the load is equal to the magnitude of the internal 
impedance of the network plus the reactance of the load. 

3. A constant power factor, variable impedance load extracts maximum 
power when the magnitude of the load impedance is equal to the 
magnitude of the internal impedance of the network. 

4. A variable resistance, variable reactance load extracts maximum power 
from a circuit when the impedance of the load is equal to the complex 
conjugate of the impedance of the network. 

While we cannot illustrate each version of the theorem here, we will take a 
look at the final version. 

Worked example 6.7.1 

If a load having independently variable resistance and reactance is con­
nected to terminals A and B of the circuit in worked example 6.4.1 (figure 
6.5) and extracts maximum power from it, calculate the value of the 
impedance of the load and the power absorbed. 

Solution 

The Thevenin equivalent circuit of worked example 6.4.1 is a voltage 
source of 22.36L -53.44° V having an internal impedance of (16 + j8) Q. 

Maximum power is absorbed when the impedance of the load is the 
complex conjugate of this value, namely 

ZL = ZTH * = 16 - j8 Q 

The effective impedance of the complete circuit is then 

ZE = ZTH + ZL = (16 + j8) + (16 - j8) = 32 Q 

and the current in the load is 

1= VTH/ZE = 22.36L-53.44°/32 = 0.7 L-53.44° A 

The maximum power absorbed by the load is 

Pmax = IFI RL = 0.72 X 16 = 7.84 W 

6.8 a.c. circuits with dependent sources 

So far we have only looked at circuits containing independent sources. The 
techniques involved in circuits with dependent sources are generally the 
same as those in d.c. circuits, with the exception that we are dealing with 
complex quantities, as shown in the following worked example. 
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100 kQ 

r----'ooQ"j 
I H--'-'~r~~----'---ö 

I 
110Loot '1.,.. 
I mV I 
I I 
I Signal souLrc-e--T,-...... --------..... --O 

"--~-±---g~m 
:O~im 
L _____ ...J 

Figure 6.7 Figure tor worked example 6.8.1. 

Worked example 6.8.1 

The circuit in figure 6.7 is a simplified circuit of a transistor amplifier. 
Calculate the voltage gain (ViV l ) at a frequency of (a) 1 kHz, (b) 200 kHz. 

Solution 

One method of solving this problem is by nodal analysis as follows. Initial­
ly, the 10 mV source and its associated 100 Q internal resistor (shown in 
the broken box in figure 6.7 are converted into a O.lLO° mA source which 
is shunted by a 100 Q resistor, as shown in insert (i). The 100 Q resistor is 
seen to be in parallel with the 10 kQ resistor, the two being equivalent to a 
99 Q resistor (or a 0.0101 S conductance). The nodal equations for the 
circuit are as follows 
Node 1: 

0.1 x 10-3 LO° = 0.0101 + V -( 1+j100X103WC) 
100 X 103 1 

= (0.01011 + jWC)Vl - (1 X 10-5 + jwC)V2 
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Node 2: 

( 1 + j 100 X 103WC) 
0= 8- V+ 

100 X 103 I 

( 1+j100X103WC) 
6.667 x 10-3 + V2 

100 X 103 

= (7.9999 - jwC)VI + (6.677 X 10-3 + jWC)V2 

(a) Whenf = 1 kHz, wC = 2Jt X 1000 x 25 X 10-12 = 1.57 x 10-\ and the 
equations are 

0.1 x 10-3 + jO = (0.01011 + j1.57 x 10-7)VI - (1 X 10-5 + j1.57 X 10-7)V2 

0= (7.9999 - j1.57 x 10-7)VI + (6.677 X 10-3 + j1.57 X 10-7)V2 

Solving by one of the methods outlined earlier 

V2 = 5.423L179S V 

hence 

voltage gain = V21VI = 542.3L179S 

(b) Whenf= 200 kHz, wC = 2Jt X 200 X 103 x 25 X 10-12 = 3.142 X 10-5 , 

and the equations are 

0.1 x 10-3 + jO = (0.01011 + j3.142 x 10-5)VI - (1 X 10-5 + j3.142 X 10-5)V2 

0= (7.9999-j3.142 x 10-5)VI+ (6.677 x 10-3+j3.142 x 10-5)V2 

Solving gives 
and 

V2 = 2.741L120.4° V 
voltage gain = V/VI = 274.1L120.4° 

The reduction in gain (and the change in phase shift) when the frequency is 
increased from 1 kHz to 200 kHz is due to the reduction in the reactance of 
the capacitor with increase in frequency. Frequency response is dealt with 
more fully in chapter 11. 

Unworked problems 

6.1. Aseries circuit containing a 10 Q resistor and an 8 Hinductor is 
energised by a voltage v(t) = 8 cos 2t + 6 sin 2t V. Determine an 
expression for the current in the circuit. What is the phase rela­
tionship between the voltage and the current? 
[0.53 sin (2t - 4.87°) A; i(t) lags v(t) by 4.87°] 
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6.2. A voltage of 5 sin (5t - 11:/4) V is applied to aseries circuit containing 
a coil of 10 Q resistance and 4 H inductance, and a 0.04 F capacitor. 
Calculate the voltage across the coil. [6.2 sin (5t + 74.74°) V] 

6.3. For the circuit in figure 6.8, if EI = lOLO° V, E z = 0, E 3 = 6LO° V, 
ZI = j4 Q, Zz = 4 Q, Z3 = - j2 Q, use mesh analysis to calculate 1I 
and Iz• [li = 2.262L-96.4° A; Iz = 2.594L-101.3° A] 

6.4. If in figure 6.8, EI = (20 + j7) V, Ez = (10 + jO) V, E3 = 0, ZI = 
(1 + j2) Q, Zz = (5 - j6) Q and Z3 = j8 Q, calculate 1I and I z using 
mesh analysis. [li = 1.21L-50° A; Iz = 2.31L-69.9° A] 

6.5. Write down, but do not solve, the mesh equations for the circuit in 
figure 6.9. 

o (5 + j9)/1 

-(5 - j2) = -j10/1 

(10 + j3) = -(2 - j5)/1 

jlOlz 

+ (6 + j10)lz 

51z 

(2 - j5)/3 

5/3 

+ (7 - j8)/3 
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200 Q -jl00 Q 
1001 

30 Q 1 kQ t V, 

Figure 6.10 

j20 Q 

L..-..... ---o A 

50L45° V t 10 Q 

L..----~-----~~-~B 

Figure 6.11 

Figure 6.12 

1 LO° V ---

6.6. Solve the circuit in figure 6.9 for 1.,12 and 13 , 

jl000 Q 

[I. = 1.05L57° A; 12 = 1.8L63.4° A; 13 = 2.07 L 75.8° A] 

6.7. Figure 6.10 shows a simplified equivalent circuit of a common-base 
amplifier. Calculate the value of V2 • 

[3.09L-178.2° V] 

6.8. Using the superposition theorem, calculate the current I in figure 
6.1l. 
[2.704L-67S A] 

6.9. Using superposition, calculate the current I L in figure 6.12. 
[4.97 L84.3° A] 

6.10. The network in figure 6.13 is the sm all-signal hybrid parameter 
equivalent circuit of a transistor. Determine the Thevenin equiva-
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h, 
,----..... ---0 A 

~---~--~~---~--uB 

Figure 6.13 

lent circuit with respect to terminals A and B; parameters h, and h f 

are dimensionless, h i is a resistance and ho is a conductance. 
[ETH = -hfE/(hohj - hrhf); ZTH = l/(ho - hrh/h j ) Q)] 

6.11. Deduce Thevenin's equivalent circuit with respect to terminals A 
and B for the circuit in problem 6.8. 
[ETH = 27.04L-67S V; ZTH = 7.071 L45° Q] 

6.12. Deduce the Norton equivalent circuit with respect to terminals A 
and B of problem 6.3. 
[IN = 0.502L90° A; YN = 0.354L45° S] 

6.13. Use Millman's theorem to solve problems 6.3 and 6.4. 

6.14. An impedance of (2 + j4) Q is connected between nodes A and B, 
an impedance (3 - j5) Q is connected between nodes Band C, and 
an impedance (2 + jO) Q is connected between nodes A and C. 
Determine the equivalent star-connected circuit. 
[ZAS = 1.26L 71.57° Q; ZBS = 3.69L12.53° Q; Zes = 1.65L-50.9° Q] 

6.15. The load in problem 6.14 is energised by a 3-phase, 3-wire system, 
whose neutral point is node N. If node A is energised by a voltage of 
100L 10° V with respect to node N, node B is energised by a voltage 
of 120L -120° V with respect to node N, and node C is energised by a 
voltage of 90 L 100° V with respect to node N, use Millman's 
theorem to calculate the current flowing into nodes A, Band C, 
respectively. 
[lA = 111.9L-29.4° A; IB = 16.3L-166.2° A; le = 100.7 L144.2° A] 
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Polyp hase Circuits 

7.1 Introduction 

Polyphase supply systems have a number of advantages over single-phase 
systems including the fact that, for a given amount of electrical power 
transmitted, the total power loss is lower in the polyphase system; more­
over, the total volume of conductor material needed in the cable is less. 
For these and other reasons, power is transmitted across the nation by a 
three-phase system. Another feature is that the torque produced by a 
single-phase motor is pulsating rather than rotating; that is, an ideal 
single-phase motor has no starting torque! In order to cause the rotor of a 
single-phase motor to begin to rotate, it is necessary (at starting) to convert 
it to a two-phase motor. On the other hand, polyphase motors produce a 
smooth torque, and their speed can be controlled using relatively straight­
forward methods. 

Industry uses many other types of multi-phase system. For example, 
many control systems use two-phase supplies to drive servomotors, and 
many rectifier systems use a six-, twelve- or twentyfour-phase supply. In 
this chapter we shall concentrate on three-phase systems. 

The US notation for phase markings has been adopted, so that the 
phases in a three-phase system are called A, Band C rather than R, Y and 
B, respectively. 

7.2 Three-phase generation 

The usual method of producing a three-phase set of voltages is to have 
three separate, but identical, windings on the rotor of an alternator , each 
winding being physically displaced from the next winding by 120°. Since the 
windings are displaced in space by 120°, and are moving through the same 
magnetic field system, the net result is three single-phase voltages (referred 

144 
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(a) 

A 

(b) (c) 

Figure 7.1 (a) Three-phase valtage wavefarms, (b) star-eanneeted valtages and (e) a 
typical phasar diagram. 
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to as the phase voltages) having an angular displacement of 120° between 
them. 

Alternatively, the voltages can be produced electronically, the phase 
displacement being controlled either by R-C circuits and operational am­
plifiers, or by integrated circuits. 

While 3-phase voltage sources are widely used, the reader should note 
that 3-phase current sources are very uncommon. 

7.3 Star-connection or Y -connection 

Imagine an alternator with three separate windings with ends marked A 
and A', Band B', and C and C', respectively having the time-varying 
voltage VAA, , VBB, and VCC' induced in them, the respective waveform 
diagrams being shown in figure 7.1(a). The voltages can be written down in 
the form 

V AN = V m(AA') sin rot V 

VI;IB' = Vm(BB') sin (rot - 120°) 

= V m(BB') sin (rot + 240°) V 
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v cc = V m(CC) sin (wt - 240°) 

= V m(CC) sin (wt + 120°) V 

If the ends A', B' and C' (each of which can be thought of as the 'start' 
end of the corresponding winding) are connected together at node N, then 
the eonneetion diagram is as shown in diagram (b), and the phasor diagram 
at wt = 0 is illustrated in diagram (e). Onee again, it is pointed out that the 
magnitude of eaeh phasor is the r.m.s. value of the associated sinusoidal 
waveform. 

Moreover, we use the double-subseript notation for three-phase vol-
tages as follows 

V AN = voltage of terminal A with respect to N 

VBN = voltage of terminal B with respect to N 

V CN = voltage of terminal C with respect to N 

In many systems, point N is connected to earth, that is, to a point of neutral 
potential, and is known as the neutral point of the supply. Where it is not 
earthed, it is sometimes ealled the star point. 

The reader should note that, in the above analysis, we have taken VAN to 
lie in the referenee direction. Although this will generally be the case, it 
may not always be so for any given problem. 

7.4 Phase sequence 

As explained in chapter 5, a sinusoidal waveform can be thought of as the 
vertieal eomponent of the tip of a radial line whieh rotates at eonstant 
speed in a counterclockwise direetion. A three-phase set of voltages can 
therefore be thought of as the vertieal eomponent of three radial lines 
whieh are separated from one another by 120°, and whieh rotate at a 
eonstant speed in a eounterclockwise direetion. 

The phase sequence of the system in question is the order in which they 
pass a fixed point in space. In the ease of the phasors in figure 7.1(e), this is 
the sequence ABC or positive phase sequence (PPS). PPS supplies are 
generally assoeiated with eleetrical power systems, and are the subject of 
the majority of the work in this chapter. 

The windings ean be reconnected so that the phase sequenee is reversed, 
that is, the sequenee ACB, whieh is known as negative phase sequence 
(NPS). Power supply systems normally generate PPS supplies but, under 
abnormal conditions such as eertain types of eleetrical fault, NPS compo­
nents may be produeed. NPS systems are discussed more fully in section 
7.17. 
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7.5 Balanced and unbalanced systems 

A balanced polyphase supply is one having phase voltages which are equal 
in magnitude, and which are phase displaced from one another by an equal 
angle; in a three-phase system, this angle is 120°. If either of the conditions 
is not met, the supply is said to be unbalanced. 

A balanced polyphase load is one in which the impedance of each phase 
of the load has the same magnitude and the same phase angle. If either 
condition is not met, the load is said to be unbalanced. 

In the majority of large industrial loads, both the supply and the load 
are balanced, but in domestic situations and sm all industries, we meet with 
unbalanced supplies connected to unbalanced loads. 

While we have already met with many analytical tools which allow us to 
deal with most polyphase circuits, one of the most powerful techniques 
(symmetrical components) has yet to be introduced (see section 7.17). 

7.6 Phase and line voltages in a star-connected system 

As explained earlier, a phase voltage is the voltage induced in a winding or 
phase of an alternator . In the case of the phasor diagram of the star­
connected supply in figure 7.2, the phase voltages are V AN , V BN and VCN. 

A fine voltage or fine-to-fine voltage is the voltage between a pair of 
lines. For example, the line voltage between lines A and Bin figure 7.2 is 

V AB = voltage of line A with respect to line B 

= V AN - VON 

Similarly 

VBC = voltage of line B with respect to line C 

c 

>---~~A 

B 

Figure 7.2 Phase and fine vo/tages. 
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Figure 7.3 Calculation o[ the Une voltage V AB . 

and 

V CA = voltage of line C with respect to li ne A 

In the case of a balanced system, the phase voltages are equal in magni­
tude, and each is called Vp • The way in which the line voltage VAB can be 
related to Vp is shown below (see also figure 7.3). 

In a balanced system 

VAB = VpLO° - V pL-120° = Y3 VpL30° V 

That is the magnitude, Vu of the voltage between a pair of lines (the Une 
voltage) in a balanced star-connected supply system is 

VL = Y3 Vp 

Referring to figures 7.2 and 7.3 we see that 

VAB = Y3 VpL30° V 

VCA = Y3 V pL150° V 

VBC = Y3 V pL-90° V 

That is, the fine voltages in a balanced 3-phase supply are equal in magni­
tude, and are phase displaced tram one another by 120". 

Worked example 7.6.1 

Calculate complex expressions for phase and line voltages in a three-phase 
system in which Vp = 250 V. 

Solution 

Vp = 250 V, hence V L = Y3 V p = 433 V 
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Assuming that V AN lies in the reference direction then 

VAN = 250LO° = 250 + jO V 

and 

VBN = 250L-120° = -125 - j216.5 V 

V CN = 250 L 120° = -125 + j216.5 V 

VAB = 433L30° = 375 + j216.5 V 

VCA = 433L150° = -375 + j216.5 V 

VBC = 433L-90° = 0 - j433 V 

Worked example 7.6.2 
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If VAN = 400 L20° V, VBN = 350 L-130° V and VCN 

determine a complex expression for each line voltage. 
450 LllO° V, 

Solution 

In this case we are dealing with an unbalanced set of voltages and, more­
over, V AN is not in the reference direction. 

VAB = VAN - VBN = 400L20° - 350L-130° 

= (375.88 + j136.8) - (-224.98 - j268.12) 

= 600.86 + j404.92 = 724.6L33.98° V 

There are two points the reader should note. Firstly, it is necessary to 
convert the polar complex values ·to rectangular complex values before 
they can be subtracted. Secondly, the answer is given in polar form, which 
is more usual form for practical purposes since most engineering instru­
ments give readings in this form rather than in rectangular complex form. 

VCA = VCN - VAN = 450LllO° - 400L20° 

= (-153.9 + j422.86) - (375.88 + j136.8) 

= -529.78 + j286.06 = 602.1L151.6° V 

VBC = VBN - VCN = 350L-130° - 450L11O° 

= (-224.98 - j268.12) - (-153.9 + j422.9) 

= -71.08 - j691.02 = 694.02L-95.9° V 
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c c 

A A 

B 

(a) (b) 

Figure 7.4 (a) A 3-phase delta-connected generator, and (b) its phasor diagram. 

7.7 Delta-connected or mesh-connected three-phase source 

If the three separate windings on the rotor of a 3-phase alternator are 
interconnected so that the end of one winding is connected to the start of 
the next (see figure 7.4(a)), the result is the delta- or mesh-connection, 
having the phasor diagram in figure 7.4(b). 

Since each phase of the generator is connected between a pair of lines, 
then the magnitude of the li ne voltage is equal to the phase voltage. That 
is, in a balanced delta-connected system 

or 

VL = Vp 

V AB = VL L30° V 

VCA = VL LI50° V 

VBC = VL L-90° V 

The reader will observe that in a balanced system, the line voltages are 
equal in magnitude, and are phase displaced from one another by 120°. 

7.8 Three-phase, four-wire, star-star system 

A typical system is illustrated in figure 7.5; the neutral point (N) of the 
supply is connected to the star point (S) of the load by a line of zero 
resistance. 



Figure 7.5 A three-phase, four-wire, star-star system. 

7.8.1 Balanced supply, balanced load 

In this case each phase voltage has the same value, and each is separated 
from the next phase voltage by 120°. Also, a balanced load is one in which 
the magnitude of the impedance in each phase of the load has the same 
value, and each has the same phase angle. That is for each load 

Zp = ZpLcJ> Q 

The current l BA ftowing from node a of the supply to node A of the load is 

VaN V LO° V V 
l BA =- = -p-- = -p L cJ> = -p (cos cJ> + j sin cJ» 

Zp ZpLcJ> Zp Zp 

also 

VbN V L-120° V 
I bR =--= P =-p L(-120° + cJ» 

Zp ZpLcJ> Zp 

= Vp (cos( -120° + cJ» + j sin( -120° + cJ>)) 
Zp 

V 
= -p «-0.5 cos cJ> + 0.866 sin cJ» + 

Zp 

j( -0.866 cos cJ> - 0.5 sin cJ») 

and 

VeN VpL120° V 
lee =--= = -p L(120° - cJ» 

Zp ZpLcJ> Zp 



152 Electrical Circuit Analysis and Design 

Vp 
= « -0.5 cos cp - 0.866 sin cp) 

Zp 

+ j(0.866 cos cp + 0.5 sin cp» 
The current in the neutral wire, ISN (usually described as the neutral wire 
current or neutral current, IN) is 

IN = I aA + I bB + I ec = 0 + jO A 

That is, in a balanced star-connected 4-wire system the current in the neutral 
current is zero. In such a system, there is no need for a neutral wire, and a 
three-phase three-wire supply can be used (see also section 7.9). This is the 
case in most industrial systems (but not in most domestic supply systems). 

7.8.2 Three-phase, Jour-wire, star-connected system with an unbalanced 
load 

With an unbalanced load, it is gene rally the case that IN is non-zero, and is 
illustrated in the following example, 

W orked example 7.8.1 

A 502.3 V, 3-phase, 4-wire supply is connected to a star-connected load 
having the following load impedances 

ZAS = lOLO° Q, ZBS = lOL20° Q, Zcs = lOL-40° Q 

Calculate the current in each line and in the neutral wire. 

Solution 

The phase voltage is 

Vp = VJV3 = 502.3/\/3 = 290 V 

The circuit is gene rally as shown in figure 7.5, and the current in line A is 

I A = VAN/ZAS = 290Loo/lOLO° = 29LO° = 29 + jO A 

in line B is 

and 

I B = VBN/ZBS = 290L-120o/lOL20° = 29L-140° 

= -22.22 - j18.64 A 

Ic = VCN/ZCS = 290L120o/lOL-40° = 29L160° 

= -27.25 + j9.92 A 
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Figure 7.6 Phasor diagram for worked example 7.8.1. 

The current in the neutral wire is 

= (29 + jO) + (-22.22 - j18.64) + (-27.25 + j9.92) 

= 22.25L-156.9° A 

The corresponding phasor diagram is shown in figure 7.6. 

7.9 Three-phase, three-wire, star-star system 
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In many industrial systems, both the supply and the load are balanced, so 
that the neutral wire current is zero; in this case the neutral wire may be 
removed without any effect on the voltages and currents in the system. 

However, if either the supply or the load is unbalanced, or both are 
unbalanced, then it is usually the case that the neutral point of the supply is 
not at the same potential as the star point of the load. This is iIIustrated in 
the following example, in wh ich both the supply and the load are unba­
lanced. 

Worked example 7.9.1 

Calculate the star-to-neutral voltage, the voltage across each phase of the 
load, and the current in each phase of the load in the following 3-phase, 
3-wire, star-star system. 

VAN = 200LlO° V, VBN = 220L-140° V, VCN = 180LlOO° V 

ZAS = lOLO° Q, ZBS = 15LlO° Q, Zcs = 5L-20° Q 
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Solution 

In this case we can use Millman's theorem to calculate the voltage between 
the star point of the load and the neutral point of the supply as folIows. 

111 
-+-+­
ZAS ZBS Vcs 

200LlO° 220L-140° 
----+ + 

1 1 1 

180 L 100° 

5L-20° 

---+ +---
lOLO° 15LlO° 5L-20° 

29.44Lll1.9° 
----= 82.23 L 102.9° 

0.358L9° 

= -18.36 + j80.15 V 

That is to say, a voltage exists between the neutral point of the supply and 
the star point of the load. 

Using this value, we can ca1culate the voltage across each phase of the 
load as folIows. 

and 

V AS = VAN - VSN = 200LlO° - 82.23L102.9° 

= 220L-11.9° V 

VBS = VBN - VSN = 220L-140° - 82.23L102.9° 

= 267.63L-124.1° V 

VCS = VCN - VSN = 180L100° - 82.23L102.9° 

= 97.97 L97.57° V 

The current in each line can be calculated as follows. 

. VAS 
I =-­

A Z 
AS 

220L-11.9° 

lOLO° 
22L-11.9° A 

VBS 267.63L-124.1° 
IB =--= 17.84L-134.1° A 

ZBS 15LlO° 
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/ 
VBS / 

/ 

/ 
VB' 

/ 
/ 

c 

Figure 7.7 Phasor diagram Jor worked example 7.9.1. 

and 

Vcs 
I =-­c 

Zcs 

97.97 L97.57° 

5L-20° 
19.59L117.6° A 

The corresponding phasor diagram is shown in figure 7.7. 
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Note: The problem can, alternatively, be solved either by using mesh 
current or node voltage analysis. 

7.10 Delta-connected systems 

Many three-phase loads are delta-connected rather than Y -connected, the 
principal reason being that if the load is unbalanced, it can either be 
connected or removed without affecting the voltage distribution at the load 
end (in a 3-phase, 3-wire system, the addition or rem oval of an unbalanced 
Y -connected load almost invariably produces a change in the individual 
phase voltages at the load). 

The reader will observe that, in figure 7.8, each phase of the load is 
connected to a corresponding phase of the supply. Consequently, we can 
(to a large extent) regard a delta-connected system as three single-phase 
systems, in wh ich a pair of phases use one line in common to carry the line 
current. Arising from these observations, we may say that 

VAB 
I =-

AB Z 
AB 

Applying KCL at node A shows that 
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c le C 

v.e ~ f'\., 
A IA 

z.e A 

I.e 
I. 

B B 

Figure 7.8 A delta-delta connected system. 

Applying it to node B yields 

and at node C gives 

The above equations are gene rally applicable to any delta-connected sys­
tem, whether balanced or unbalanced. 

7.10.1 Balanced delta-connected load with a balanced supply 

In this case 

and 

The magnitude of the phase current, I p , flowing in each phase of the load is 

Vp VL 
1=-

p Zp Zp 

That is, each phase current has the same value. Now (see also figure 
7.4(b)) 
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and 

Z V L150° V 
ICA = ~= L =~L(150° - lj» 

ZCA ZpLlj> Vp 

The line current lA is calculated from 

V 
lA = lAB - ICA = ZL (L(30° -lj» - L(150° - lj>)) 

p 

~ / VL VL 
v3 -(cos lj> + j sin lj» = V3- Llj> 

Zp Zp 

= V3 IpLlj> 

Similarly it may be shown that the magnitude of the other line currents (IB 
and le) is V3Ip , and the phase angle between each phase current and the 
associated phase voltage at the load (which is one of the line voltages) is lj>. 

Worked example 7.10.1 

A balanced 500 V, 3-phase source supplies a balanced 3-phase delta­
connected load of (4 + j5) Q per phase. Calculate the current in each phase 
of the load and in each line. Draw the phasor diagram. 

Solution 

The impedance in each phase of the load is 

4 + j5 = 6.4L51.34° Q 

and the modulus of the current in ·each phase of the load is 

I p = 500/6.4 = 78.125 A 

and the magnitude of the line current is 

I L = V3Ip = V3 x 78.125 = 135.32 A 

Since the load is balanced, each phase current lags behind the associated 
phase voltage by 51.34°. The corresponding phasor diagram is shown in 
figure 7.9. The reader should note that, since each node of the delta is 
separate, it is sometimes convenient (though not strictiy true) to draw all 
the phasors from a common cent re point. 
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Figure 7.9 Figure Jor worked example 7.10.1. 

7.10.2 Unbalanced delta-connected load with a balanced supply 

If the load is unbalanced, it is necessary to calculate individually the phase 
currents in the load, and then implement the equations at the beginning of 
this seetion to calculate the line currents, as outlined in worked example 
7.10.2. 

Worked example 7.10.2 

The following impedances are connected in delta to a balanced 3-phase, 
500 V supply 

ZAB = lOL25° Q, ZBC = 15L-30° Q, ZAC = 20LO° Q 

Solution 

The phase currents are 

VAB 500L30° 
I =--= =50L5° = 49.8 + J·4.36 A 

AB ZAB lOL25° 

500L-90° 
---= 33.33L-60° = 16.67 - j28.86 A 

15L-30° 



VCA 
I =-­

CA Z 
CA 
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500L150° 
-2-0-L-0-o - = 25 L 150° = -21.65 + j 12.5 A 

and the corresponding line currents are 

IA = lAB - I CA = (49.8 + j4.36) - (-21.65 + j12.5) 
= 71.45 - j8.14 = 71.91L--6S A 

I B = I Bc - lAD = (16.67 + j28.14) - (49.8 + j4.36) 
= -33.13 - j33.22 = 46.92L-134.9° A 

I c = I CA - I Bc = (-21.65 + j12.5) - (16.67 - j28.14) 
= -38.32 + j41.36 = 56.38L132.8° A 

7.10.3 Unbalanced delta-connected load with an unbalanced supply 

159 

The solution of this type of circuit is gene rally similar to that outlined in 
worked example 7.10.2, with the exception that the unbalanced line vol­
tages are used in the calculation. 

7.11 Delta-connected supply and a star-connected load 

This situation generally presents no problem if the supply and load are 
both balanced, since it can be dealt with as though the load is supplied by a 
3-phase, 4-wire supply (even though the neutral wire is absent). The reason 
is that, since the load is balanced, the neutral wire current is zero and the 
voltage across each phase of the load is VL tv'3. 

If either the supply or the load is unbalanced, a convenient method of 
dealing with the problem is to convert the load into its equivalent delta 
network (see chapter 6), and deal with the circuit as described in section 
7.10. 

7.12 Star-connected supply and delta-connected load 

Once again, the situation is fairly straightforward, because we can calculate 
the line voltages (which may either be balanced or unbalanced), and then 
treat the problem as outlined in section 7.10. 
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7.13 Summary of balanced star- and delta-connected systems 

Phase Line Phase Line 
voltage voltage current current 

Star Vp = VJY3 VL = Y3Vp I p = I L I L = I p 

Delta Vp = VL VL = V p I p = I L /Y3 I L = Y Jlp 

7.14 Power consumed in a three-phase system 

The power eonsumed by one phase of a polyphase system is 

Pp = Vp/ p eos cp 

where eos cp is the power faetor of the load in that phase. 

Unbalanced load 

The total power eonsumed is the sum of the power in eaeh of the three 
phases. That is, the total power PT is 

PT=PA+PB+Pc 

where PA' PB and Pe are the power eonsumed, respeetively, in the A-, B­
and C-phases. 

Balanced load, balanced supply 

Onee again, the total power is the sum of the individual value of power in 
the three phases but, in this ease, an equal value of power is eonsumed by 
eaeh phase so that 

PT = 3 V pI p eos cp 

In a Y-eonneeted load, V L = Y3V p and I L = I p and 

PT = Y3VL I L eos cp 

In a delta-connected load, V L = V p and I L = Y3I p, henee 

PT = Y3VLI L eos cp 

That is, in any balanced 3-phase load the total power eonsumed is 

PT = Y3VLI L eos cp 

Moreover, in a balaneed system, eaeh phase eonsumes not only the same 
value of VA but also the same value of VAr, so that 
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ST = V3V L I L 

PT = V3V L I L cos <p 

QT = V3V L I L sin <p 
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Calculate the VA, the power and the VAr consumed by the balanced 
delta-connected load in worked example 7.10.1. 

Solution 

We are dealing here with a system with a balanced 500 V supply, whose 
line current is 135.32 A and the phase angle of the load is -51.34°. 
Hence 

ST = V3V L I L = V3 x 500 x 135.32 W = 117.19 kVA 

PT = V3V L I L cos <p = 117.19 X 10 3 x 0.6247 W 

=73.2 kW 

QT = V3V L I L sin <p = 117.19 X 103 x 0.781 VAr 

= 91.51 kVAr lagging 

Alternatively, we may say that in the A-phase of the load 

Hence 

or 

V AB = 500 ,L 30° V and I AB = 78.125 L (30° - 51.34°) 

= 78.125 L -21.34° A, so that 

S AB = V Auf tB = 500 L 30° x 78.125 L 21.34° 

= 39.06 L 51.34° kV A 

ST = 3 x 39.06 L 51.34° = 117.18 L 51.34° 

= (73.2 + j91.5) kV A 

ST = 117.18 kVA 

PT =73.2 kW 

QT = 91.5 kVAr (lagging) 
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Worked example 7.14.2 

Calculate the power consumed by the unbalanced 3-phase, 3-wire, star­
connected load in worked example 7.9.1. 

Solution 

The relevant data are (see also worked example 7.9.1) 

V AS = 220 L -11. 9° V, I A = 22 L -11. 9° A 

VBS = 267.63L-124.1° V, I B = 17.84L-134.1° A 

V es = 97.97L 97.57° V, I B = 19.59L 117.6° A 

The power consumed by phase A is 

PA = Re(V Jt) = Re(220L -11.9° x 22L11.9°) 

= Re( 4840 L 0°) = 4840 W 

and by phase B is 

PB = Re(VBJ;) = Re(267.63L-124.1° x 17.84L134.1°) 

= Re(4774.5LlOO) = 4702 W 

and by phase C 

Pe = Re(V cJ~) = Re(97.97L 97.57° x 19.57L -117.6°) 

= Re(1919.2L-20.03°) = 1803 W 

Hence 

PT = PA + PB + Pe = 11 345 W 

Note: The power in each phase could, alternatively, have been calculated 
on the basis of 

(phase current) 2 X resistance per phase 

7.15 Power measurement in three-phase systems 

The majority of power measurement is carried out using analogue watt­
meters, and these have one coil to sense the voltage applied to a circuit, 
and another to sense the current flowing in the circuit. The instrument 
pro duces a deflecting torque proportional to the average power consumed 
by the circuit. 

In the special case of a balanced load, it is theoretically only necessary to 
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Figure 7.10 The two-wattmeter method o[ power measurement. 

have one instrument, which measures the power consumed by one phase. 
The total power is three times the reading of the instrument. 

In general (both for balanced and unbalanced loads) it is necessary to 
connect correctly (N - 1) wattmeters, where N is the number of lines used 
to supply power to the load. That is, a 3-phase, 4-wire system requires 
(4 - 1) = 3 wattmeters to measure the total power, and a 3-phase, 3-wire 
system needs two wattmeters to measure the total power. 

7.16 The two-wattmeter method of power measurement 

The total power consumed by a three-phase, three-wire system can be 
measured by two wattmeters connected in any two lines. For example, they 
can be connected as shown in figure 7.10. 

The markings on the wattmeter terminals are as folIows. When current 
ftows from terminal M to terminal L, AND terminal V + is positive with 
respect to terminal V _, the wattmeter produces a positive deftection_ If the 
current ftows in the reverse direction, OR the voltage polarity is reversed, 
the wattmeter produces a negative torque. If both the current and polarity 
are reversed, the wattmeter produces a positive deftection. For power 
measurement, the usual connection between the potential coil and current 
coil is as shown in figure 7.10, that is V + is linked to M. 

The instantaneous total power consumption by the load in figure 7.10 is 

where v AS is the instantaneous volta ge between line A and the star point of 
the load (assurning for the moment that the load is star-connected), i A is 
the current in line A, etc. Since the load is supplied by a 3-wire system 
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i B = -(i A + ic) 

that is, the instantaneous power consumed is 

PT = (v AS - vBs)i A + (v cs - vBs)i c 

and the total average power consumed is 

PT = V ABI A cos a + V CBI c cos ß 
where ais the phase angle between V AB and I A' and ß is the angle between 
V CD and I c; PT is the sum of the readings of the wattmeters. 

The reader is asked to note that we have not applied any conditions to 
the load, so that it may either be balanced or unbalanced. There are, of 
course, two other possible ways in which the wattmeters may be connected 
to measure power, and a similar analysis will show that in either case the 
sum of the readings of the two wattmeters is equal to the total power 
consumed. 

Alternatively, using complex quantities for figure 7.10, we may say 
that 

PT = Re(V AJ~) + Re(V cJ~) 

The analysis above assumed that the load was star-connected. It will 
prove an interesting exercise for the reader to show that the analysis is also 
correct if the load is delta-connected. 

7.17 Introduction to symmetrical components 

An unbalanced set of 3-phase voltages or currents can be analysed into 
three sets of balanced components, namely: . 

1. A positive phase sequence (PPS) balanced system having the same phase 
sequence as the original unbalanced system (say ABC). 

2. A negative phase sequence (NPS) balanced system having a phase 
sequence opposite to that of the original unbalanced system (say 
ACB). 

3. A zero phase sequence (ZPS) system whose elements are aB in phase 
with one another, and have the same magnitude. 

If either the supply or load is unbalanced, either two or aB three sets of the 
symmetrical component elements exist. 

If a 'healthy' balanced system has a fault on it (other than a symmetrical 
short-circuit), either two or aB three sets of symmetrical components exist. 
If only for this fact, the determination of the symmetrical components or 
voltage and current is a useful weapon in the armoury of an electrical 
engineer. 
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Figure 7.11 Symmetrical components o[ current. 

7.18 Analysis of unbalanced conditions 

If I A' I Band I c are a set of 3-phase unbalanced currents, then 

I A = I A+ + I A- + I AO 

I B = I B+ + I B- + IBo 

I c = I c+ + I c- + I co 
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where I A+' I B+ and I c+ are the PPS components of the currents, I A-' I B­
and I c- are the NPS components of the currents, and I AO' IBo and I co are 
the ZPS components of the currents. 

Figure 7.11 illustrates the use of these equations. The PPS, NPS and 
ZPS components of a set of unbalanced currents are shown in diagrams 
(a), (b) and (c), respectively, and the way in which the unbalanced currents 
are synthesised from them using the above equations is shown in diagram (d). 

For a set of unbalanced voltages, there is a similar set of equations, that is 

VA = V A+ + V A- + V AO' etc. 
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The phase sequence components can be calculated from the original 
unbalanced components as folIows. If the complex operator h is defined as 
h = 1 L 120°, then 

and 

hence 

or 

I B+ 

I B-

I AO 

= h 21 A+ I c + = hIA+ 

= hIA_ I c _ = h 2I A_ 

= IBo = I co 

I A = I A+ + I A- + I AO 

I B = h 21 B+ + hI B- + IBO 

I c = hl c+ + h 21 c- + I co 

I A+ = (lA + hl B + h 21 c)/3 

I A- = (lA + h 21 B + hl c)/3 

I AO = (I A + I B + I c)/3 

The reader should note that in a 3-phase, 4-wire system, the current in the 
neutral wire is (lA + I B + I c) = 31 AO; that is to say, the current in the 
neutral wire is entirely ZPS current. Similarly, we may conclude that in a 
'healthy' 3-phase, 3-wire system, none of the lines carries ZPS current. 
However, should a fault occur on the system (such as, for example, an 
earth fault when the system has a supply with an earthed neutral point), 
then ZPS current may flow in the supply lines. 

In an unbalanced but 'healthy' delta-connected system, ZPS current 
does not flow in the supply lines, but may flow inside the mesh. This 
situation can arise, for example, in the case of a delta-star connected 
transformer when current flows in the neutral wire of the secondary circuit. 
A corresponding component of ZPS current flows around the closed 
delta-connected primary winding in order to maintain m.mJ. balance 
between the two windings. 

7.18.1 Power consumed by symmetrical components 

The total average power consumed in a system is the sum of the individual 
powers due to the PPS, NPS and ZPS components. No average power is 
associated with the voltage from one phase sequence and the current from 
another phase sequence. 



Polyphase Circuits 167 

Worked example 7.18.1 

A 3-phase, 4-wire balanced supply of line voltage 502.3 V supplies the 
following line currents 

1 A = 29 L 0° A, 1 B = 29 L -140° A, 1 C = 29 L 160° A 

Calculate the PPS, NPS and ZPS components of the line current, and 
determine the associated power consumption. 

Solution 

From the equations derived earlier 

1 A+ = (lA + hl B + h 21 c)/3 

= (29 L 0° + [1 L 120° x 29 L -140°] 

+ [1 L 120° x 29 L 160°])/3 

= 29(1 L 0° + 1 L -20° + 1 L 40°)/3 = 26.32 L 6.3° A 

1 A- = (I A + h 21 B + hl c)/3 

= (29 L 0° + [1 L 240° x 29 L -140°] 

+ [1 L -240° x 29 L 160°])/3 

= 29(1 L 0° + 1 L 100° + 1 L -80°)/3 = 9.67 L 0° A 

1 AO = (I A + 1 B + 1 c)/3 

= 29(1 L 0° + 1 L -140° + 1 L 160°)/3 = 7.42 L -157° A 

Since the supply is balanced, V A- = 0 and V AO = O. The total power is 
therefore supplied by the PPS component of the current as folIows. Now 

hence 

V A+ = V p LO° = (502.3/V3) L 0° = 290 L 0° V 

PT = 3 Re(V A+1 A~) = 3 Re(290 L 0° x 26.32 L -6.3°) 

= 22788 W 

Unworked problems 

7.1. The voltage V AB in a balanced 3-phase system is 173.2 L 50° V. 
Determine the value of V CN. 

[100 L 140° V] 
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7.2. If the source in problem 7.1 is a negative phase sequence source, 
calculate V CN' 

[100 L -400 V] 

7.3. Calculate the active (in-phase) and reactive current components in 
each phase of a Y-connected, 12 kV, 3-phase alternator supplying a 
5 MW load with apower factor of 0.7 lagging. If the magnitude of 
the line current remains unchanged, and the load power factor is 
raised to 0.9 lagging, calculate the new output power from the' 
alternator . 
[In-phase component = 240.6 A, quadrat ure component = 245.5 A; 
6.43 MW] 

7.4. A balanced Y-connected load of (6 + j8) Q per phase is connected 
to a balanced 3-phase, 500 V supply. Calculate the magnitude of the 
line current, the power factor, and the total VA, power and V Ar 
consumed. 
[28.9 A; 0.6; 25 kVA; 15 kW; 20 kV Ar] 

7.5. A phase sequence indicator is an instrument which can be used to 
determine the phase sequence of a polyphase supply. A simple 
indicator comprises the star-connected combination of a 19 !J,F 
capacitor connected between phase A and the star point, an electri­
cal lamp of resistance 200 Q connected between phase Band star, 
and an identical lamp connected between phase C and star (the star 
point of the indicator is not connected to the neutral point 01 the 
supply). If the line voltage is 200 V, 50 Hz, calculate the voltage 
across the lamp connected to the B-phase when the supply is 
(a) PPS, (b) NPS. 
[(a) 182.1 L -104'so V; 51.36 L 152.40 V] 

7.6. A balanced mesh-connected load of (8 + j6) Q per phase is supplied 
by a balanced 500 V, 3-phase supply. Calculate the modulus of the 
phase current, its power factor, and determine the total apparent 
power, power and reactive volt-amperes. 
[50 A; 0.8 (lagging); 43.3 kVA; 34.64 kW; 25.98 kVAr] 

7.7. The currents in branches AB, BC and CA of a mesh-connected 
system supplied by a symmetrical source of phase sequence ABC are 
as folIows: 

AB: 50 A at apower factor of 0.8 lagging 
BC: 60 A at apower factor of 0.7 leading 
CA: 40 A at unity power factor. 

Calculate the current in each line. 
[I A = 30 L -900 A; 1 B = 72.9 L 88.40 A; 1 C = 42.9 L -92.60 A] 
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7.8. An unbalanced set of phase voltages are 

V AN = 200 L 0° V, V BN = 200 L - 90° V, V CN = 200 L 90° V 

and the corresponding line currents are 

I A = 30 L 0° A, I B = 40 L -145° A, I C = 40 L 125° A 

Calculate the symmetrical components of voltage and current, 
together with the power supplied by each set of symmetrical 
components, and the total power consumed. 
[V AO = 66.67 L 0° V; V A+ = 182.14 L 0° V; V A- = 48.8 L 180° V; I AO 

:;: 9.17 L 159° A; I A+ = 35.65 L -7.2° A; I A- = 3.42 L 20S A; 
Pus = -1712 W; P pps = 19326 W; P NPS = -469 W; PT = 17 145 W] 

7.9. Three delta-connected impedances of (40 - j20) Q per phase are 
connected in parallel with three Y -connected impedances of 
(20 + j40) Q per phase. If the line voltage is 500 V, calculate the 
magnitude and phase angle of the line current, and determine the 
total apparent power, the power and the reactive power con­
sumed. 
[20.42 A; -8.13°; 5.9 kVA; 5.84 kW; 0.83 kVAr] 

7.10. A 300 V, 3-phase supply of sequence ABC is connected to the load 
in figure 7.12. Neglecting instrument losses, determine the power 
indicated by the wattmeter. 
[187.3 W] 

40 0 j40 0 M L -j40 0 

A~-Ölv_1 
v+ L..: __ .J 

B 
200 200 

400 
Co------i-....J-----' 

Figure 7.12 

7.11. The circuit in figure 7.13 is energised by a 200 V, 3-phase supply of 
sequence ABC. Calculate the reading of the wattmeter. 
[493 W] 

7.12. A symmetrical 500 V, 3-phase, 50 Hz supply is connected to the 
circuit in figure 7.14. Determine the magnitude of the voltage 
between points XY, YZ and ZX for the phase sequence (a) ABC, 
(b) ACB. 
[Ca) 0 V; (b) 500 V] 
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7.13. A balanced star-connected load, each phase contammg a 15 Q 
resistor in parallel with an inductive reactance of 5 Q, is supplied by 
a balanced 3-phase, 3-wire, 200 V supply. If the line connecting the 
supply to the load has a resistance of 0.5 Q per phase, calculate a 
complex expression for I A' together with the power consumed by the 
load and the total power loss in the transmission line. 
[23.47 L -660 A; 2480 W; 826 W] 

7.14. Repeat problem 7.13 but for a delta-connected load having an 
impedance in each phase consisting of a 15 Q resistance in parallel 
with a - j5 Q reactance. 
[23.47 L 660 A; 2480 W; 826 W] 



8 
Two-port Networks 

8.1 Introduction 

Apart is a pair of terminals in a network where a signal may either enter or 
leave. A two-port network is a dass of multi-port networks, which have 
more than one port. Figure 8.1 shows a general block diagram of a 
two-port network, which has voltage VI between the terminals of one port, 
and V 2 between the terminals of the other port. A condition which must be 
satisfied in all two-port networks is 1 1 = 13 and 1 2 = I •. 

Two-port networks are important building blocks in a wide range of 
applications, induding electronics, automatic contral systems, communica­
tion circuits, transmission and distribution systems, etc. 

There is a wide range of parameters which can be used to define the 
operation of a two-port network, and are selected according to the ease 
with which they can be applied to a particular situation. In this chapter we 
will be looking at admittance parameters, impedance parameters, hybrid 
parameters and transmission parameters. 

The parameters described in this chapter have particular application to 
electrical and electranic engineering; for example, admittance parameters 
have special use in high-frequency circuits (transistor amplifiers, RF appli­
cations, etc.), hybrid parameters are particularly useful in describing 
transistor characteristics, transmission parameters are important in trans­
mission line calculations, etc. 

Figure 8.1 A /Wo-port network. 

171 
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Whenever we deal with most two-terminal networks, it is the usual 
convention to assume that current flows into the upper terminal 01 both 
ports. However, in the case of the transmission parameters, which are 
largely concerned with transmission lines, the current 12 ftows out of the 
upper terminal of the right-hand port. 

In every case, we assume that the two-terminal network is composed of 
linear elements and contains no independent sources; dependent sources 
are permissible. We may therefore assume that I. and 12 are produced by 
the superposition of two components, one produced by V. and the other 
by V 2 • 

It is usual to think of V. and V 2 (or I. and 12) as being produced by ideal 
sources, but this is not necessarily the case. Moreover, a network may be 
terminated at either end by another 2-port network, which may further be 
connected to another 2-port network, etc. 

8.2 Input impedance, output impedance, voltage gain, current gain 
and power gain 

Input impedance and admittance 

When dealing with the input impedance of a 2-port network, we are 
concerned only with the V-I relationship at the input port. It is therefore 
only necessary to think at this stage about a simple one-port network. 
Quite simply, we can define the input impedance of the port as 

input voltage V. Z in = -. -=-___ c:..-. 

mput current I. 

Similarly, we may define the input admittance as 

input current I. 
y. = =-

m input voltage V. 

Consider the 2-port passive network enclosed in the broken lines in 
figure 8.2. A load is usually connected to the output terminals of the 
network before it can be used, and we will assume that a 2 Q load is 
connected. In order to write the mesh equations for the network, we will 
assume that a current 13 circulates in a clockwise direction around the mesh 
containing the 10 Q, 20 Q and 5 Q resistors. It should be pointed out that 
we have adopted the 2-terminal network convention that currentflows into 
the output terminals. This is taken account of in the resulting mesh 
equations for the circuit (including the load), which are 
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Figure 8.2 A passive two-port network. 
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If we let VI = 1 V, and solve the equations for I}> we get 11 = 0.1467 A. 
Aeeordingly 

Zin = V/lI = 1/0.1467 = 6.82 Q 

and 

Yin = 1/Zin = 0.1467 S 

Output impedance 

The output impedanee of a network is simply the Thevenin equivalent 
impedanee between the output terminals. There are a number of ways of 
ealculating Z out> one of which (after removing the load from the eireuit) is 
to replace the input supply souree by its internal impedance, and drive the 
output terminals by a 1 L 0° A current. The potential difference between 
the output terminals is equal to Zout. 

In the case of the network in figure 8.2, we can obtain the output 
impedanee by observation as follows. Sinee the network is energised by a 
voltage souree, the output impedanee of the network is seen to be a 5 Q 

resistor in parallel with a 20 Q resistor (the 10 Q resistor being short­
cireuited by the internal impedanee of the voltage souree), that is 

Zout = 5 X 20/(5 + 20) = 4 Q 

If, on the other hand, the network had been energised at the input by an 
ideal eurrent souree, we would have open-eireuited the input terminals 
when evaluating the output impedanee, giving 

Zout = 5 x (20 + 10)/(5 + [20 + 10]) = 4.29 Q 

Yet another method of ealculating the output impedanee is to energise the 
input of the network and determine (i) the open-eireuit output voltage 
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V 20C , (ii) the short-eireuit output eurrent 12SC ; the output impedanee is the 
ratio of these two values. If 12SC is assumed to flow out of the network, 
then 

and if 12SC is assumed to flow into the network, then 

Zout = V2oc/(-/2SC) 

We illustrate the latter approach using nodal analysis applied to the 
network in figure 8.2. If the input is energised by alL 0° A eurrent source, 
the nodal equations with the output terminal open-cireuited (1 2 = 0) are 

11 = 1 = 0.15V1 - 0.05V2oc 

1 2 = 0 = -0.05V 1 + 0.25V 20C 

Solving gives V 20C = 1.429 V. 
The short-eircuit (V 2 = 0) output current when I 1 = 1 L 0° A ean be 

evaluated from the following nodal equations 

I 1 = 1 = 0.15V 1 - 0 12SC = -0.05V 1 + 0 

giving 12SC = -0.3333 A, henee 

Zout = V 2OC/( -/2SC ) = 4.29 Q 

Finally, another method of evaluating Zout is to replaee the input source by 
its internal impedance and, with the load disconneeted, drive the output 
terminals with a current of 1 L 0° A; the voltage (in volts) between the 
output terminals is equal to Zout (in Q). 

V oltage gain 

The voltage gain, G v , of a network is given under normal operating 
eonditions with the load connected by the ratio 

Gv = V 2 /V. 

The reader will note that we use G for gain; it is a convention to use Gin 
this way, and the reader should not eonfuse it with G for conduetanee. 

To determine its value for the passive network in figure 8.2, let us drive 
the input with a current of 1 L 0° A, and determine the voltage from the 
nodal equations, which are 

I. = 1 = 0.15V. - 0.05V2 

and 0= -0.05V1 + 0.75V2 

From the second equation we see that 

Gv = V 2 /V. = 0.05/0.75 = 0.06667 
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Although, in this case, V 2 is less than V. we, none-the-Iess, refer to the 
ratio as the voltage gain. 

Current gain 

The current gain, G., of a four-terminal network is calculated under 
normal operating conditions (with the load connected) from the ratio 

G. = /2//' 

If we energise the passive network in figure 8.2 by a voltage of 1 L 0° V, 
and write down the mesh equations we obtain 

V. = 1 = 10/. - 10/3 

o = - 10/. + 35/3 + 5 ( -/ 2) 

0= - 5/3 - 7(-/2) 

where /2 ftows into the network; solving for /. and /2 yields 

/. = 0.147 LO° A 

/2 = -0.033 L 0° A (ftowing into the network) 

and the current gain of the network is 

G. = /2//' = -0.033/0.147 = -0.224 

The reader will have observed that we could have calculated /. from 

/. = V.lZin = 1/6.82 = 0.147 A 

Power gain 

The power gain, G p, of a network is given by the ratio 

G = output power P out 

p • 

mput power P in 

Assuming sinusoidal excitation, the power gain is 

Re[-V /*] G - 2 2 

P - [ *] Re V.I. 

The negative sign in the numerator arises from the fact that the output 
current is assumed to ftow into the output terminals of the 2-port net­
work. 

There are several ways of calculating the power gain, one of the simplest 
being 
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In the case of the network in figure 8.2, the power gain is 

G p = 10.0667 x (-0.224)1 = 0.0149 

Although the values above were calculated for a passive network, the 
techniques involved are applicable to networks containing dependent 
sourees. 

8.3 Admittance parameters or y-parameters 

In this case the network is defined by the equations 

I. = YIIV. + y 12V 2 

1 2 = Y 2. V. + Y 22 V 2 

The y-parameters are simply constants of proportionality, and have dimen­
sions of siemens (S). We may write the equations in general matrix form as 
folIows. 

The parameter Y 11 can be evaluated by measuring V. and I. when the 
output terminals are short-circuited (V 2 = 0). That is 

I.=YIIV .+ O 

or 

Similarly, we may calculate the other y-parameters as follows 

I. 
Y.2=­

V 2 
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Figure 8.3 A two-port, y-parameter equivalent circuit. 
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Because each parameter has the dimensions of admittance, and each 
is obtained by short-circuiting either the input or output port, the 
y-parameters are also known as the short-circuit admittance parameters. 
More specifically, the parameters are known respectively as 

Y 11 is the short-circuit input admittance 

Y zz is the short-circuit output admittance 

Y 12 and Y Zl are the short-circuit transfer admittances 

There are several equivalent circuits corresponding to the y-parameter 
equations, one circuit being shown in figure 8.3. 

It is pointed out here that the parameters y 1\1 Y 12> Y 21 and y 22 are 
sometimes known as parameters Yi, Y n Y rand Y 0' respectively, corre­
sponding to input, reverse, forward and output parameters. 

As a simple example, we will calculate the y-parameters for the passive 
2-port network in figure 8.4. 

Now, Y 11 is the input admittance with the output terminals shorted, that 
is its value is (1110 + 1120) S, or 

Y11 = 0.15 S 

To calculate Y 12' we short-circuit the input terminals, and apply 1 V to the 
output terminals. The current wh ich ftows in the short-circuit in the 
direction of 11 is equal to the value of Y IZ. Inspecting figure 8.4, we see that 
the current whichjlows out of the input terminals is 1120 A. However, we 
define 1 1 as the current jlowing into the input terminals, hence 

Y12 = -0.05 S 
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Similarly, to calculateY21' we short-circuit the output terminals and apply 
1 V to the input terminals. The current which flows in the short-circuit in 
the direction of 12 is equal to Y 21. By a similar argument to that above, we 
see that 

Y21 = -0.05 S 

The parameter Y 22 is the admittance between the output terminals with the 
input short-circuited which, by observation, is 

Y22 = (1/5 + 1/20) = 0.25 S 

The y-parameter equations for the 2-port network in figure 8.4 are 
therefore 

and 

11 = 0.15V1 - 0.05V2 

12 = -0.05V 1 + 0.25V 2 

[ 
0.15 

[y] = -0.05 
-0.05] 

0.25 

It is not a coincidence that y 12 = Y 21 in the above calculation. Elements 
such as resistors, inductors and capacitors (other than, perhaps, electro­
lytic capacitors) can be connected in a circuit in either direction, and the 
result is the same. These elements are known as bilateral elements. A 
network containing only bilateral elements is known as abilateral network, 
and for such a two-port it can be shown that Y 12 = Y 21. Some two-ports 
contain non-bilateral elements, such as dependent sources; these networks 
also have this property. A two-port for which Y 12 = Y 21 is known as a 
reciprocal network. 

Worked example 8.3.1 

Determine the y-parameters of the network in figure 8.5, which is a 
small-signallinear equivalent circuit of a transistor in the common-emitter 
mode with resistive feedback between the collector and base. Calculate the 

" 
1.5 kn 

" 
V,!600 n 

Figure 8.5 Figure for worked example 8.3.1. 
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voltage gain and the current gain of the 2-port network when a 2 kQ 
resistor is connected to the output terminals. 

Solution 

Whatever circuit we analyse with the y-parameters, we must stricdy adhere 
to the parameter definitions. The parameter Y 11 is the input admittance 
measured with the output terminals short-circuited. Since, in this case, the 
dependent source in figure 8.5 is shorted, then 

Y11 = (11600 + 111500) = 2.333 mS 

The parameter Y 12 is equal to the current which ftows in a short-circut 
between the input terminals in the direction of I I when 1 V is applied to the 
output terminals. Since V I = 0, no current ftows in the dependent source, 
and 

Y12 = -111500 S = -0.6667 mS 

The parameter Y21 is the current ftowing in a short-circuit between the 
output terminals in the direction of 12 when we apply 1 V to the input 
terminals. Since V 2 = 0, the current ftowing through the 1.5 kQ resistor 
towards the output is 111500 A. The current in the current source is 0.04V I 
= 0.04 A, hence the current ftowing in the short-circuit between the output 
terminals gives the value 

Y21 = (0.04 - 111500) S = 39,33 mS 

Finally, Y 22 is the admittance between the output terminals when the input 
terminals are shorted. Since V I = 0, no current ftows through the depen­
dent source, and the 600 Q resistor is short-circuited. Hence 

Y22 = 1110 000 + 111500 = 0.767 mS 

The y-parameter equations which apply to figure 8.5 are therefore 

I I = 2.333VI - 0.6667V2 mA 

12 = 39.33VI + 0.767V2 mA 

In order to calculate the voltage and current gain, we need to connect the 
2 kO load, and supply a current to the input; let this be 1 mA. That is 

I I 1 mA and V2 = -200012 A = -U2 mA 

or -0.5V2 mA 

Substituting these values into the y-parameter equations for the network 
gives 

1 X 10-3 

o 
2.333 X 1O-3VI 

39.33 X 1O-3VI + 
0.6667 X 1O-3V2 

1.267 X 1O-3V2 
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From the second of these equations we get 

V2 1.348 
Gv =-= ---= -31.06 

VI 0.0434 

and from the first of the equations 

1 x 10-3 = 2.333 X 10-3 X [ -~] - 0.6667 X 1O-3V2 
31.06 

or 

hence 

therefore 

- 0.472V2 

-1.35 V 

-0.5V2 = 0.675 mA 

GI = I/lI = 0.675/1 = 0.675 

8.4 Impedance parameters or z-parameters 

Once again, input and output voltages and currents are assigned as in 
section 8.1. The impedance parameters are specified by the following 
equations 

VI zn/l + Zl2 / 2 

V2 zu/l + z22 / 2 

where 

VI 

Zn 
I I 

12 = 0 

VI 

Zl2 =--
12 

I I = 0 

V2 

ZU 
I I 

12 = 0 

V2 

Z22 =--
12 

I I = 0 

Since the parameter values are calculated for zero current at either input or 
output, the z-parameters are known as open-circuit impedance parameters, 
all having dimensions of ohms. More specifically 
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I, I, 

v I 
Figure 8.6 A z-parameter equivalent circuit. 

Zu is the open-circuit input impedance 
Z22 is the open-circuit output impedance 
Zu and Z21 are the open-circuit transfer impedances 
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The above equations establish the equivalent circuit of the network, one 
version being shown in figure 8.6. 

As with the y-parameters, we often use Zb Zn zfand Zo to represent Zu, 

Zl2' Z21 and Z22 respectively. 
We will now calculate the z-parameters for the passive 2-port network in 

figure 8.4. The parameter Zu is the input impedance with the output 
terminals open-circuited, leaving 10 n in parallel with (20 + 5) n, or 

Zu = 10 x (20 + 5)/(10 + (20 + 5» = 7.143 n 
To calculate Zl2 we open-circuit the input terminals, and cause a current of 
1 LO° A to flow into the upper output terminal: Zl2 is equal to the voltage 
between the input terminals (the upper terminal being assumed positive). 

With the input terminals open-circuited, the current which flows in the 
10 n resistor (making the upper input terminal positive) when a current of 
1 A enters the upper output terminal is 

Hence 

Similarly 

and 

1 x 5/(5 + (20 + 10» = 0.1428 A 

Zu = 10 x 0.1428 = 1.428 n 

Z21 = 5 x 10/(10 + (20 + 5» = 1.428 n 

Z22 = (5 x (20 + 10»/(5 + (20 + 10) 
= 4.286 n 

Once again, it will be seen that Zl2 = Z21 for a reciprocal network. 
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Figure 8.7 Circuit tor worked example 8.4.1. 

Worked example 8.4.1 

Calculate the z-parameters of the 2-port network in figure 8.7. Hence 
calculate the current and voltage gain when a 10 n resistor is connected to 
the output port. 

Solution 

Many of the values can, in this case, be obtained by observation. The 
parameter Zn is the input impedance when the output terminals are open­
circuited. By observation 

Zn = 2 - j4 n 
Since ZI2 is calculated with 11 = 0, then VI is equal to the voltage across the 
2 n resistor, that is 

and 

Zu = V.lV2 = 2 n 
Similarly, Z21 is calculated with 12 = 0; V2 is equal to the voltage across the 
2 n resistor, hence 

and 

Z21 = V/li = 2 n 
Since the circuit contains only bilateral elements, it is a reciprocal network, 
and one would expect that Z12 = ZZl" 

The parameter ~2 is the impedance between the output temlinals when 
the input is open-circuited. That is 

Z22 = 2 + j5 n 
The z-parameter equations which apply to figure 8.6 are therefore 
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VI = (2 - j4)/, + 212 

V2 = 211 + (2 + j5)/2 
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To determine the current and voltage gain of the complete circuit, we must 
connect the 10 n load and apply a voltage of, say, 1 V to the input port. In 
this case 

VI = 1LO° V V2 = -10/2 

The equations which apply to the complete circuit therefore are 

VI 1 = (2 - j4)/, + 212 

V2 -1012 = 211 + (2 + j5)/2 

The second equation yields 

and the first gives 

or 

Hence 

therefore 

12 
G =­

I I 
I 

1 

2 
-- = 0.154L157.4° 
12 + j5 

(2 - j4)/2 

+ 2/2 
0.154L157.4° 

12 = 0.036L-136S A 

V2 = -10/2 = 0.36L43S V 

GV = V/VI = 0.36L43S 

8.5 Hybrid parameters or h-parameters 

Hybrid parameter or mixed parameter networks are weIl suited to bipolar 
transistor circuits, because the parameters are relatively easy to measure 
experimentaIly. The hybrid parameter equations for a 2-port network are 
written in the form 

VI hIlI + h12 V2 

12 h21/ 1 + h22 V2 

By the nature of the equations, it is evident that the parameters have 
different dimensions, two of them being dimensionless. 

The parameters hll and h21 are obtained by letting V2 = 0, while h12 and 
h22 are determined by letting I I = 0, as follows 
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hll = ;'1 I 
V2 = 0 

(ohms) 

h 12 
= ~: I 11 = 0 

(dimensionless) 

h21 = ;: I V2 = 0 
(dimensionless) 

h22 = ;21 11 = 0 
(siemens) 

The parameters are respeetively known as 

hll short-circuit input impedance 
h12 = open-circuit reverse voltage gain 
h21 short-circuit forward current gain 
h22 open-circuit output admittance 

In transistor analysis, the parameters hll , h 12 , h21 and h22 beeome hj, hn hr 
and ho , respeetively. In addition, the subseripts b, e and e are added to 
indieate whether the transistor is operating in the eommon-base, eommon­
emitter or eommon-eolleetor mode. Thus, in the eommon-emitter mode, 
we have the parameters hie , hre , hre and hoe . 

Onee again, the equations lead us direetly to the equivalent eireuit of the 
network, shown in figure 8.8. 

We will analyse the passive 2-port in figure 8.2 to illustrate the appliea­
tion of h-parameters. The value of hll is equal to the input impedanee of 
the network with the output short-eireuited. By observation, this is 10 n in 
parallel with 20 n, giving 

hll = 10 x 20/(10 + 20) = 6.667 n 
The value h12 is eaIculated from the ratio of VI to V2 with the input 
open-eireuited, and a voltage of 1 LO° V applied to the output terminals. 

I, I, 

h21 I, 

Figure 8.8 A 2-port h-parameter equivalent circuit. 
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r---------- ---, 

E, h,/, 

r L ____________ --.J 

Figure 8.9 Figure Jor worked example 8.5.1. 

This is fairly easy to calculate in this case because VI is the voltage across 
the 10 n resistor in a chain containing a 10 n and a 20 n resistor between 
the output terminals. That is 

h12 = 1 x 10/(10 + 20) = 0.333 

h21 is the short-circuit forward current gain, and can be calculated by 
short-circuiting the output terminals, and applying a current of 1 LO° A to 
the input terminals. The value of h21 is the ratio of the current in the 
short-circuit which ftows in the direction of 12 in figure 8.2 to the input 
current. With 1 A at the input, the current in the short-circuit is 

-/2 = 1 x 10/(10 + 20) = 0.3333 A 

hence 

h21 = 12//1 = -0.3333 

Finally, we calculate h22 by open-circuiting the input terminals and evaluate 
the admittance between the output terminals, that is 

1 1 
h = - + = 0.2333 S 

22 5 20+10 

Worked example 8.5.1 

For the hybrid parameter equivalent circuit in figure 8.9, determine an 
expression for (a) the current gain 12//1 , (b) the voltage gain V/VI 

Solution 

The diagram in figure 8.9 satisfies the small-signal operation of a transistor 
in any mode (provided that the parameters for the correct operating mode 
are supplied), and the solutions are applicable to any mode of operation. 
(a) Current gain 
Applying the ruIe for current division in the output circuit we get 
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hence 

(b) V oltage gain 
Applying KVL to the input circuit yields 

EI - h rV2 
11 =----

Rs + hj 

When KCL is applied to the output circuit, we see that 

12 = h f / 1 + hOV2 

however 12 = -V2 /ZL 

or 

-V2 
-- = h f / 1 + hOV2 

ZL 

Substituting 11 from above gives 

or 

That is 

The negative sign associated with Gv implies that there is a phase shift of 
1800 between the input and the output. This value of phase shift will, of 
course, be modified at differing values of frequency if ZL contains a reactive 
element (see also chapters 11 and 12). 

8.6 Transmission parameters 

These parameters are also known as the ABCD-parameters or t-para­
meters or a-parameters. As the name implies, they are largely concerned 
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2-port network 

" " 

v·DAi~D Dv. 
Figure 8.10 Transmission parameters. 

with transmission lines (but are also useful in other applications including 
control systems). Consequently, we are concerned with current which 
leaves the output port (figure 8.10), and we define the parameters as 
follows 

VI = t11 V2 + t1212 

11 = t21 V2 + 12212 

A posItIve value of 12 means that current leaves the network. The 
t-parameters are related to the ABCD-parameters as follows 

The parameters are calculated as follows 

t11 = ~: I (dimensionless) 

(ohms) 

(S) 

11 I t22 = -- (dimensionless) 
12 V2 = 0 

The reciprocity theorem can be used to find the relations hip between the 
t-parameters of a passive two-port as follows. If we apply voltage VT to the 
input terminals of the two-port, as shown in figure 8.11(a) then, since the 
output terminals are short-circuited (V2 = 0), the circuit equations are 

(8.1) 

When VT is applied to the 'input' terminals, as shown in figure 8.11(b), and 
the 'output' terminals are short-circuited, then VI = 0 and the direction of 
the current reverses. The equations for figure 8.11 (b) are 
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,...---o--------j t" t'2 ~ __ -_n_----, 

(a) VT t 
L..---o------l t2 , t 22 I-----O----J 

I' , I' 2 

..---0------1 t" t'2 1--__ -0-----, 

(b) 

L..---O-----I t2 , t22 1----o----.J 

Figure 8.11 Relationship between the t- or ABCD parameters. 

From equation (8.2) we see that 

I~ = tu V -rltiZ 

and from equation (8.3) 

= (tZI - tZZtll/ tl2)VT 

(8.2) 

(8.3) 

The reciprocity theorem states that if the network does not contain voltage 
or current sourees, then I; = Izsc . That is 

- Izsc = (tZI - tZZtll /tl2 ) VT 

but, from equation (8.1) VT = tlzfzsc> or 

or 
that is 

- Izsc (tzi - tzztll/tl2)tl2Izsc 

-1 

In terms of the ABCD parameters this becomes 

AD - BC = 1 

As a simple example, we will calculate the t-parameters of the passive 
2-port in figure 8.2. 
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The parameter 111 is calculated by applying 1 LO° V to the input and 
open-circuiting the output (/2 = 0), the ratio V/V2 giving the value of 111 as 
follows 

V2 = 1 x 5/(20 + 5) = 1/5 V 

hence 

111 = V.1V2 = 1/(1/5) = 5 

We calculate 112 by short-circuiting the output (V2 = 0) and applying 
1 LO° V to the input. The current in the short-circuit (which leaves the top 
output terminal) is 

12 = V/20 = 1120 = 0.05 A 

that is 

112 = V/12 = 1/0.05 = 20 n 
To determine 12• we open-circuit the output (/2 = 0) and apply a current of 
1LO° A at the input. By current division, the current in the 5 n resistor is 

1 x 10/(10 + (20 + 5)) = 0.286 A 
and V2 = 5 x 0.286 = 1.43 V, giving 

12• = I/V2 = 1/1.43 = 0.7 

Finally, we evaluate 122 by short-circuiting the output (V2 = 0) and connect 
a 1 LO° A current source to the input. The current in the short-circuit 
(leaving the output) is 

12 = 1 x 10/(10 + 20) = 0.333 A 

hence 

122 = 1./12 = 1/0.333 = 3 

also 

tll t22 - t12 t21 = (5 x 3) - (20 x 0.7) =.1 

8.7 Relationships between the y-, Z-, h- and I-parameters 

It would be very tedious to deduce the relationship between each set of 
parameters, so we will merely indicate how this is done by relating the y­
and z-parameters. The complete relationship between the z-, y-, h- and 
t-parameters is listed in table 8.1. 

The y-parameter equations for a 2-port network are 

I. = YIIV. + y 12V2 

12 = Y2IV• + Y22V2 
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Table 8.1 Transformation between y-, Z-, h- and t-parameters* 

~ Y Z 

To 

Z22 -Z12 
Yu YI2 -- --

Az Az 

Y 

-Z21 Zu 
Y21 Y22 -- --

Az Az 

Y22 -Y12 -- -- Zll Z 12 
Ay Ay 

Z 

-Y21 Yu 
-- -- Z21 Z22 

Ay Ay 

1 -Y12 Az Z12 -- -- -- --
Yll Yu Z22 Z 22 

h 
Y21 ~ -Z21 1 
-- -- --

Yu Yu Z22 Z22 

-Y22 -1 Zu Az 
-- -- -- --

Y21 Y21 Z21 Z21 

t 
-A -Yll 1 Z22 
--y- -- -- --

Y21 Y21 Z21 Z2l 

* For all parameter sets, A p = PUP22 - PI2P21 

Solving for VI gives 

VI = 

where ~y = Y1IY22 - Y12Yll 
That is, the equation for VI is 

1 
--

h u 

h 21 
--

h ll 

Ah --
h 22 

-h 21 --
h 22 

h ll 

h 21 

-A h 
--

h 21 

-h 22 --
h 21 

V = Y22 I _ Y12 I 
I ~ I ~ 2 

Y Y 

h 

-h 12 
--

h u 

Ah 
--

h ll 

h l2 --
h 22 

1 
--

h 22 

h 12 

h 22 

-h u 
--

h 21 

-1 
--

h 21 

t 

t 22 -At -- --
t 12 t 12 

-1 t ll -- --
t 12 t 12 

tu At -- --
t 21 t 21 

1 t 22 -- --
t 21 t 21 

t 12 At -- --
t 22 t 22 

-1 t 21 
-- --

t 22 t 22 

tu t 12 

t 21 t 22 

When we look below at the equivalent z-parameter equation we see that 

VI = Z1l1, + zll12 

hence 
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Y22 
Z =--

11 li 
y 

-Y21 
Z =--

12 li 
y 

and 

and 

-Y12 
Z =--

12 li 
y 

Y11 
Z =--

22 li 
y 

8.8 Interconnection between two-port networks 
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As mentioned at the outset of this chapter, each parameter set has its own 
advantages for a given application. One of these advantages is that each set 
of parameters allows other 2-port networks using the same parameter set 
to be interconnected in a particular way, thereby simplifying the math­
ematics involved. We look at the interconnections here. 

y-parameters 

These are particularly useful when ports are connected in parallel both at 
the input and at the output, as shown in figure 8.12. For network L 

where 

and [YLl are the y-parameters for network L. Similarly for network M 

Since the networks are in parallel with one another 

I, 

v, 

Figure 8.12 Parallel connection of two 2-port networks. 
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and 

That is 

Consequently, each parameter of the resulting parallel netwo-k is the sum 
of the corresponding y-parameters of the individual networks, that is 

Yu = YUL + YUM' etc. 

This can be extended to any number of 2-port networks connected in 
parallel at the input and at the output. 

z-parameters 

The z-parameters are useful where the 2-port networks are connected in 
se ries both at the input and at the output, as shown in figure 8.13. 

In this case 

and 

[V) = [VL + VM] = [zL][IL] + [zM][IM] 

= ([ZL] + [zM])[I] = [z][l] 

so that ZlI = ZlIL + ZlIM' etc. 

h-parameters 

The primary advantage of h-parameters is the ease with which they may be 
measured in transistors. An analysis of 2-port networks similar to that 
undertaken above shows that the h-parameters of two 2-ports may be 

I, = 11l I, = I" 

V1l t 
I, 

Network L t V'L 
I, 

V, 
= 11l 

= I'M 
=1" V, 
= I'M 

v,J Network M 
tV'M 

/, = I'M I, = I'M 

Figure 8.13 Series connection of two 2-port networks at the input and at the output. 



Two-port Networks 193 

V, DL-N,_twor_k L J--I t :,_v-----L~t I_Net_work---,M 0 V, 

Figure 8.14 Cascaded 2-port networks. 

added together if the two networks are connected in series at the input (see 
figure 8.13) and in parallel at the output (see figure 8.12). This is an 
unusual configuration, and is little used. 

t-parameters 

Transmission parameters are useful where 2-port networks are cascaded as 
shown in figure 8.14, such as transmission line sections. In this case, the 
current leaving the output port of one network is the input current of the 
next network. That is 

V2 = V3 and /2 = /3 

For network L 

VI 
] = [tL] [ 

V2 

] = [tL] [ 
V3 

/1 /2 /3 

and for network M 

That is 

Consequently the t-parameters of the cascaded network is given by the 
matrix product 

This product is not the simple mathematical product of the corresponding 
elements in the matrix, but is the matrix product, as described in chapter 15. 

As a simple example of the above, we will determine the t-parameters of 
the half-T network in figure 8.15(a). This can be considered to consist of 
the series impedance in diagram (b) cascaded with the shunt admittance in 
diagram (c). By inspection, the equations for figure 8.15(b) are 

VI 
/ = I 
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(al (bI (cl 

Figure 8.15 The t-parameters of a half-T network. 

or 

and the equations for figure 8.15(c) are 

or 

The reader will observe that, for both circuits 

When the two are cascaded, as shown in figure 8.15(a), we may write 

[;1] [~~][~ ~][;:] 
[1 +y YZ ~][ ~2] 

That is tn = 1 + YZ, t12 = Z, t21 = Y and t22 = 1; also t11t22 - t12t21 = 1. 

Unworked problems 

8.1. Calculate the input impedance of the non-port network in figure 
8.16. 
[9.1 il] 

8.2. Evaluate R in for the circuit in figure 8.17. Assurne the op-amp to be 
ideal. 
[2 kil] 
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so 40 
20 

Figure 8.16 

ao 

, kO 

Figure 8.17 

Figure 8.18 

8.3. If all the resistance values in figure 8.16 are doubled, calculate the 
input admittance of the circuit. 
[0.057 S] 

8.4. Determine the y-parameters of the circuit in figure 8.18 at a fre­
quency of 50 Hz. 
[Y11 = 0.062L-29.8° S; Yll = 0.028L-146.4° S; 
Yll = 0.028L-146.4° S; Yll = 0.039L-11.3° S] 

8.5. If, in problem 8.4, VI = 10 V at 50 Hz, calculate (a) the voltage gain, 
(b) the current gain, (c) Ztn, and (d) the power gain of the network if 
a capacitor of reactance 20 0 is connected between the output 
terminals. 
[(a) 0.486L-14.2°; (b) 0.44L-63S; (c) 18.5L40.7° 0; (d) 0] 
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I 1000 
1 

y,1 

5000 

13 

500 

-50/3 

12 

Figure 8.19 

Figure 8.20 

8.6. Evaluate the y-parameters of the 2-terminal network in figure 8.19. 
[Yll = 9.3 X 10-3 S; Y12 = -2 X 10-3 S; 
Y21 = -2.7 X 10-3 S; Y22 = 2 X 10-3 S] 

8.7. Determine the z-parameters of the network in figure 8.20. 
[ZI1 = 5.160; Z12 = 2.1 0; Z21 = 2.1 0; Zn = 24.70] 

8.8. Repeat problem 8.5, but for the circuit in figure 8.20 and the 
associated z-parameters. 
[(a) 0.262L-50.1°; (b) 0.067 L-141.1°; (c) 5.05L-1°; (d) 0] 

8.9. Calculate the z-parameters for the circuit in figure 8.21 at a fre-
quency of 50 Hz. . 
[ZI1 = 5.93L-90° 0; Z12 = 5.07 L57.3° 0; Zn = 4.08L90° 0; 
Z22 = 13.63L17.4° 0] 

8.10. Repeat problem 8.5 but for the circuit in figure 8.21 and the associ­
ated z-parameters. 
[(a) 0.69L131°; (b) 0.2L-39.2°; (c) 5.75L-80.2°; (d) 0] 

8.11. If the value of each resistor in figure 8.20 is changed to 10 0, 
calculate the h-parameters for the circuit. 
[h ll = 160; h12 = 0.2; h21 = -0.2; hn = 0.06 S] 

8.12. A transistor has the following h-parameters: hll = 1200 0, h 12 = 
5 x 10-\ h21 = 50, h22 = 20 !lS. If the load connected to its out­
put terminals is 10 kO, calculate the voltage gain and the current 
ga in of the transistor amplifier. 
[Gy = -420.2; GI = 41.69] 
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/ 318/-LF 100 /, 
~ I--"""--Lj---o 

v, v, 

Figure 8.21 

300 

Figure 8.22 

8.13. Determine the z-parameters of the lattice network in figure 8.22. 
[Zl1 = 35 0; ZI2 = 5 0; Z21 = 5 0; Zn = 35 0] 

8.14. A two-port network has the parameters t ll = 0.02; t12 = 
2 0; 121 = 2 mS; 122 = 0.1. If the input source has an internal 
resistance of 10 0, and the resistor connected to the output termin­
als has a resistance of 20 0, calculate (a) the voltage gain and (b) 
the current gain. 
[(a) 14.29; (b) 7.143] 

8.15. A communications line is represented by a symmetrical-Jt network, 
in which the series element is 120L60° 0, and each shunt admittance 
is 2.5 X 10-3 L90° S. Calculate the value of the t-parameters of the 
line. 
[t11 = t22 = 0.755L11.4°; t12 = 120L60° 0; t21 = 4.4 X 10-3 L95° S] 



9 
The Transformer 

9.1 Introduction 

The transformer was briefly intraduced in chapter 4, when mutual induct­
ance was discussed. The majority of transformers have two electrical 
circuits, one - known as the primary circuit - contains apower source, and 
the second - known as the secandary circuit - is connected to the load. 
There are two braad classes of transformer , namely the ideal transformer 
and the linear transformer . 

An ideal transfarmer is one in wh ich the coils are wound on an iron core, 
and the magnetic coupling between the windings is near-perfect; that is, 
the magnetic coupling coefficient is practically unity. This class of trans­
former includes the power transformer. 

A linear transfarmer is one whose magnetic coupling coefficient is less 
than unity, in fact its value can be very low indeed! This class of trans­
former includes the radio-frequency transformer. 

Certain types of transformer with an iran core, such as those used in the 
output circuit of an electranic amplifier, are rather less than electrically 
'perfect'. The reason is that their winding resistance is generally high, and 
the magnetic circuit design is such that the magnetic coupling coefficient is 
less than unity. 

Since the ideal (power) transformer is the type most frequently encoun­
tered, we begin our studies by looking at this type. With this sort of 
transformer , we are not particularly interested in its magnetic coupling 
coefficient, since we can assume its value to be unity. 

9.2 The ideal transformer 

An 'ideal' transformer is one in which the coils are wound on an iran co re 
and the windings have a very high inductance (ideally infinite), and the 
magnetic coupling coefficient is unity. In practice, such an ideal cannot be 

198 
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achieved, but is closely approached in a well-designed iron-cored trans­
former. 

Assuming that the magnetic flux in the core varies sinusoidally, the 
instantaneous flux is given by 

cp = CPm sin wt 

where CPm is the maximum value of flux in the core, and the instantaneous 
value of the induced e.m.f. in a coil of N turns is 

e = - N dcp/dt = - NwCPm cos wt 

Since the form of the equation for the induced e.m.f. in each winding is the 
same, it follows that the e.m.f.s induced in the windings are in phase with 
one another. However, this is a philosophical argument because, unless the 
windings are electrically connected to one another at a common point we 
cannot, at this stage, be absolutely certain wh at the phase relationship iso 
Let us assume, therefore, that the induced voltages are in phase with one 
another. Moreover, since the winding resistance of apower transformer is 
very small, we can say that the voltage across the winding is 

v = -e = NwCPm cos wt 

The maximum value of the voltage across the coil is 

Vm = NwCPm 

and the r.m.s. voltage in the coil is 

V2 x N X 2nfCPm = 4.44NfCPm 

Since we are dealing with an ideal transformer whose magnetic coupling 
coefficient is unity, then we may say that this voltage is induced in every coi! 
on the core. Provided that the winding resistance is low (wh ich is usually 
the ca se in apower transformer) then, to a first approximation, the voltage 
across the coil is equal to the e.m.f. induced in the coil. That is, in coil 1 

VI = IEII 
and in coil 2 

and we mayaIso say 

VI = 4.44NdCPm 

V2 = 4.44N2fCPm, etc. 

Hence 

V2 N2 
-=-=a 
VI NI 

(9.1) 
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(a) (b) 

Figure 9.1 Simple equivalent circuits af the ideal transformer. 

where a is known as the turns ratio of the transformer. An equivalent 
circuit corresponding to equation (9.1) is shown in figure 9.1(a). The 
equation may be re-written as follows 

VI V2 

NI N2 

That is, each winding in an ideal transformer supports the same number of 
volts per turn. This applies even if the transformer has many separate 
windings on its magnetic core. 

Furthermore, since the transformer is ideal, the windings have little 
resistance, and the power loss in them is very low. Assuming that we are 
dealing with a two-winding transformer , we may say, to a first approxima­
tion 

VIII COS cP = Vzf2 COS cp 
where cp is the phase angle between the voltage and current. Hence each 
winding in an ideal transformer supports the same number of volt-amperes, 
that is 

V2 11 
-=-=a 
VI 12 

(9.2) 

An equivalent circuit corresponding to equation (9.2) is shown in figure 
9.1(b). Combining equations (9.1) and (9.2) gives the following rela­
tionship for an ideal transformer 

V2 11 N 2 
-=-=-=a 
VI 12 NI 

From this we see that 

IINI = I 2N2 

That is, each winding in an ideal transformer supports the same number of 
ampere-turns. 
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9.3 Phasor diagram for an ideal transformer on no-load 

It was shown in seetion 9.2 that the voltage aeross eaeh winding on the 
transformer were all in phase with one another and, with a sinusoidal ftux 
waveform, the voltage has a eosine waveform. That is, the valtage across 
each winding leads the flux wavefarm by 90°. Consequently, the phasor 
diagram for the primary and seeondary winding for a transformer on 
no-load is as shown in figure 9.2. 

The phasor diagrams for the primary and seeondary windings are shown 
separately in figure 9.2 beeause the two windings are eleetrieally isolated 
from one another. 

To maintain the magnetie ftux in the eore, the primary winding earries a 
na-Iaad current, 10 , This eurrent eonsists of two eomponents: 

(1) The magnetising current campanent, Imag , whieh lags behind the eur­
rent by 90° and produces the ftux qJ. 

(2) The care lass campanent, le, whieh is in phase with V, and supplies the 
power loss dissipated in the magnetie co re (known as the care lass or 
iran lass). 

The phase angle of 10 is ct>o whieh, in an ideal transformer, approaehes 90°, 
that is 

and the eore loss is 

Po = V,Ie 

When an induetive load is eonneeted to the seeondary of the transformer , 
the phasor diagrams are shown in figure 9.3. The seeondary eurrent, 12 , 

lags behind the seeondary terminal voltage, V2, by ct>2' Sinee ampere-turn 

v, 

90' 
"""-______ .1.-_______ <P 

Jmag 

(a) (b) 

Figure 9.2 No-load phasor diagram for an ideal transformer (a) primary winding, and (b) 
secondary winding. 
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Figure 9.3 Phasor diagram Jor a transJormer with an inductive load (a) primary winding, 
(b) secondary winding. 

balance is maintained on the two windings, a corresponding current I; 
ftows in the primary winding where 

I;NI = 12N 2 

or 

I; = 12N 2 /N I 

Accordingly, I; is sbown lagging VI by CP2. The current in the primary 
winding is the phasorsum of 10 and I; as follows 

11 = 10 + I; 
Figure 9.4 shows a simplified equivalent circuit of apower transformer 

which represents the phasor diagram in figure 9.3. The resistor Re is the 
path through which the core loss current ftows, and Xm is a pure inductive 
reactance through which the magnetising current ftows (no magnetising 
current ftows in the ideal transformer itself). The value of Re and Xm are 
determined by means of a no-load test or open-circuit test on the trans­
former , in which the primary winding is excited at its nominal voltage and 
frequency, at which time the no-load current and power loss, Po, are 
measured. From these values we can say 

CPo = cos-I(PO/VJo) 

le = 10 cos CPo 

Imag = 10 sin CPo 

Re = VI/le 
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I, 1', I, 

10 

'
mag 

V, Re Xm V, Load 

-------­'Ideal' transformer 

Figure 9.4 Simplijied equivalent circuit 0/ apower trans/ormer taking account 0/ the 
no-load current. 

9.4 Leakage Dux in a transformer 

When a load is connected to the secondary of a transformer , as shown in 
figure 9.5, a current 12 flows in the secondary. 

Although the coils are wound on an iron core, the coupling coefficient in 
a practical power transformer is not quite unity, so that some of the flux 
produced by eaeh winding links only with that particular coil, and with no 
other coil. Consequently, this flux induces an e.m.f. only in the originating 
coil. Moreover, one-half of the magnetic path for this flux lies in the air 
surrounding the coil, and the reluctance of this flux path is very high 
indeed. This flux, which is produced by each current-carrying winding, is 
known as the leakage flux associated with that winding; because of the high 
reluctance of the magnetic path, the leakage flux is proportional to the 
current in the coil. In figure 9.5, the primary winding leakage flux is cI>u. 
and the secondary winding leakage flux is cI>L2' 

Since each leakage flux is linked with one winding only, it induces a 
'back' e.m.f. in that winding, wh ich opposes the current flow in the wind­
ing. The greater the leakage flux, the greater the voltage drop due to this 
cause. Good transformer design aims to reduce the leakage flux to a low 
level. 

Unfortunately, the simple winding construction in figure 9.5 gives a 
large leakage flux, and is not used in practice. The leakage flux is kept to a 
minimum either by winding both coils on the same li mb (the shell eonstrue­
tion), or by winding one-half of each winding on each of the verticallimbs 
(the eore eonstruction). 
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Figure 9.5 Leakage flux. 

As mentioned above, the leakage flux has the effect of inducing a back 
e.m.f. in the winding which produced it. We regard this voltage drop as 
being due to a leakage reactance, which can be thought of as being in series 
with each winding of the transformer. That is, in figure 9.6, we have a 
primary winding leakage reactance Xl> and a secondary winding leakage 
reactance X 2 • 

A 'practical' transformer can be thought of as an ideal transformer 
together with circuit elements which allow for no-load current, winding 
resistance, leakage reactance, etc. The sole function of the ideal trans­
former is to carry the main flux and to provide a 'turns ratio'; it neither 
stores nor dissipates energy, so that it does not draw magnetising current, 
has no hysteresis loss, and has no PR loss in its windings. 

A fairly complete form of equivalent circuit for the transformer discus­
sed so far is shown in figure 9.6, in which Xl and X 2 are the respective 
primary and secondary winding leakage reactances, R l and R2 are the 
primary and secondary winding resistance, and Re and Xm are as described 
earlier. 

9.5 Inipedance matching with an ideal transformer 

An iron-cored transformer is widely used as an interface device between 
the output of an electronic amplifier and a loudspeaker; both of these 
usually have widely differing values of resistance. The reader will recall 
that, for maximum power transmission, the resistance of the load should 
have the same resistance as the output resistance of the source (or the 
amplifier in this case). 
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\...--..J 

'Ideal' transformer 

Figure 9.6 A complete equivalent circuit o[ a single-phase trans[ormer. 

205 

" 

V, Load 

In electronic circuits the load is frequently regarded as a pure resistor, 
and the secondary current is 

12 = V2 /R L or R L = V2 /12 

For an ideal transformer 

11 = al2 and VI = V2 /a 

The apparent resistance, R 1 , 'seen' by the primary supply source is 

Suppose that a loudspeaker of resistance 8 Q is to be matched to an 
electronic amplifier of output resistance 100 Q. To obtain maximum power 
transfer from the amplifier to the load, we need to satisfy the condition 

100 = RL /a2 = 8/a2 

where a is the turns ratio of the interface transformer. That is 

a = N 2 /N1 = 1/v'(lOO/8) = 1/3.54 

that is N 1 /N2 = 3.54. 
An audio-frequency transformer is generally less 'perfect' than apower 

transformer , and it will be found that impedance matching is a little less 
perfect than suggested here! 
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Figure 9.7 (a) A dass Apower amplijier and (b) an equivalent circuit. 

Worked example 9.5.1 

An equivalent cireuit of a 'dass A' electronie power amplifier is shown in 
figure 9.7(a). Calculate the eurrent in the 8 Q load if the r.m.s. input 
voltage is 0.5 V. Also determine the power gain of the amplifier. 

Solution 

The transformer wh ich couples the amplifier to the load has a voltage 
step-down ratio of 15:1 (a = 1/15), and is replaced in figure 9.7(b) by an 
equivalent circuit (see also figure 9.1(a». The equation for the mesh 
containing 11 is 

or 

0.5 = 500/1 + 40(1 + 25)/1 = 1540/1 

11 = 3.25 X 1O~4 A 

and the input power to the circuit is 

0.5 x 3.25 X 1O~4 = 1.625 X 1O~4 W 

In the mesh in which 12 flows we have 

13 /15 = 25/1 
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or 13 = 375/1 = 0.122 A 

with a corresponding output power of 

0.1222 x 8 = 0.119 W 

Hence Gp = 0.119/1.625 X 10-4 = 732.3 

9.6 The ideal transformer as a two-port network 

The ideal transformer can conveniently be described as a 2-port network 
using the t-parameters as follows (see chapter 8 for details). 

. N z V2 I I h V I I' f Smce a = - = - = -, t e - re atlOns or 
NI VI 12 

the transformer are VI = V2 /a and I I = a12 , so that the t-parameter equa­
tions for the ideal transformer are as follows 

that is 111 = lIa, 112 = In = 0 and 122 = a. 
If the secondary winding of the transformer has a load connected to it, 

as shown in figure 9.8, the t-parameters of the load (see also chapter 8) are 
111 = 1, 112 = 0, 121 = YL and 122 = 1. The matrix equation for the trans­
former and load in figure 9.8 is therefore 

= [lla 
aYL 

that is 

VI = V4 /a 

I. = Y LaV4 + al4 

I 

~I 
Figure 9.8 A loaded transformer. 
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Since no other load than YL is connected to the secondary, then 14 = 0 and 

1 

where ZL = l/YL • This theme is capable of development, and a loaded 
transformer can be analysed by means of a chain of t-parameters or ABCD 
parameters. 

9.7 Thevenin's equivalent circuit of an ideal transformer and voltage 
regulation 

We can simplify the solution of many problems involving transformer 
circuits by using equations developed earlier, together with TMvenin's 
theorem. 

If we consider the circuit in figure 9.9(a), in which we have an ideal 
transformer with an impedance ZI in the primary circuit (which may, for 
example, represent the winding resistance and leakage reactance of the 
transformer), and a load ZL in the secondary circuit, we may simplify the 
complete circuit by 'reftecting' the load impedance into the primary circuit, 
as shown in figure 9. 9(b ). 

The 'reftected' load impedance is Z L la2 (see section 9.6), wh ich is the 
input impedance of an ideal transformer with a load ZL connected to its 
secondary terminals. Now 1I = Vs/(ZI + Z Lla2 ) and I z = lila, also 
V~ = IIZLla2, hence 

V2 = aV~ = IIZLla 

Similarly, we can 'reftect' the primary circuit values into the secondary 
circuit as folIows. From figure 9. 9(b) 

1I = Vs/(ZI + ZLla2 ) 

and since 12 = lila, then 

a = ~ 

v.li ~i~ z,~ v.1 'vL--

Z

---" 

(a) (b) (c) 

Figure 9.9 An ideal transfarmer with an impedance in the primary and in the secandary 
circuit. 
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a2Z 1 + ZL 

The corresponding equivalent circuit for values reflected into the sec­
ondary circuit is shown in figure 9.9(c). 

Power engineers are concerned with maintaining the electrical voltage 
at the consumers terminals. The variation in voltage at the terminals of the 
consumer is often quoted in terms of the voltage regulation as foBows 

Per unit 
voltage 
regulation 

modulus of the modulus of the 
no-load voltage fuB-load voltage 

modulus of the no-load voltage 

Voc - VL 

Voc 

If ZL represents an impedance which draws fuB-load current from the 
transformer, the equivalent circuits in figure 9.9 can be used to calculate 
the voltage regulation of the transformer (in many cases the voltage regula­
tion is given as a per cent figure ). 

Referring to figure 9.9, the equation for voltage regulation is 
for diagram (b) 

Voltage regulation = (Vs - V~)/Vs 

for diagram (c) 

Voltage regulation = (aVs - V 2)/aVS 

The reader should note that if the dot notation in figure 9.9 is reversed on 
one of the windings, there is no change in the magnitude of the voltages 
and currents involved, and no change in the voltage regulation. However, 
the secondary voltage and current are phase shifted by 180°. 

W orked example 9. 7.1 

A 100 kV A, 3300/250 V single-phase transformer has a total equivalent 
resistance and leakage reactance of 3 Q and 12 Q, respectively, both 
referred to the primary winding. What is the fuB-load current at (a) 0.8 
power factor lagging, (b) 0.8 power factor leading? Calculate the voltage 
regulation in each case. 



210 Electrical Circuit Analysis and Design 

Solution 

The modulus of the full-Ioad secondary current is 

12 = 100 000/250 = 400 A 

Hence 
(a) for a lagging load of 0.8 power factor 

11 = 400L-36.9° A 

(b) for a leading load of 0.8 power factor 

11 = 400L36.9° A 

The voltage regulation is calculated as follows. The magnitude of the 
impedance connected to the secondary winding to produce full-Ioad cur­
rent is 

ZL = 250/400 = 0.625 Q 

At this point we have the choice of calculating the voltage regulation based 
on values referred to the primary winding (see figure 9.9(b», or to values 
referred to the secondary winding (see figure 9.9(c». Selecting the former, 
we need to calculate the load impedance referred to the primary winding, 
which is 

z~ = ZL/a2 = 0.625/(250/3300)2 = 108.9 Q 

(a) For a 0.8 power factor lagging load 

Z~ = 108.9L36.9° = 87.1 + j65.39 Q 

By potential division in figure 9.9(b) 

Hence 

Z' 
V' = V L 

1 S Z + Z' 
1 L 

= 3300 108.9L36.9° 
(3 + j12) + (87.1 + j65.39) 

= 3026L-3.76° V 

. 3300 - 3026 
Voltage regulation = 3300 

= 0.083 per unit (p.u.) or 8.3 per cent 

That is, the secondary voltage is reduced by 8.3 per cent when full load 
(lagging) is connected. 
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(b) For a 0.8 power factor leading load 

Z~ = 108.9L-36.9° = 87.1 - j65.39 Q 

By potential division in figure 9.7(b) 

Hence 

Z' 
V~ = V_---=::.L_ 

S Z + Z' I L 

3300 108.9L-36.9° 
(3 + j12) + (87.1 - j65.39) 

= 3431L-6.25° V 

. 3300 - 3431 
Voltage regulatiOn = 3300 = - 0.04 or - 4 per cent 
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That is, the secondary voltage rises by 4 per cent when the leading load is 
connected. 

9.8 The linear transformer 

The windings on a linear transformer are wound on an air core, and the 
magnetic coupling coefficient between the windings usually has a low 
value. The linear transformer is widely used in electronic and communica­
tions circuits, possibly with both primary and secondary circuits being 
tuned or resonant. 

Figure 9.1O(a) shows a two-winding linear transforrner, having primary 
and secondary winding resistance together with a load impedance. Using 
the dot notation, outlined in chapter 4, the equivalent circuit of diagram 
(a) is shown in diagram (b). The mesh equations are 

VI = (R1 + jwL1)II - jwMI2 

o = - jwMII + (R2 + jwL2 + ZL)I2 

R, R, R, R, 

iWL~ 
I, 

Zl 

'V tiwM1' 

(a) (b) 

Figure 9.10 (a) A linear trans/ormer, (b) an eleetrieal equivalent cireuit. 
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Using the notation adopted for mesh analysis, we may say that 

Zn = RI + jwL I and Z22 = R2 + jwL2 + ZL 

The mesh equations can therefore be re-written in the form 

hence 

VI = Zn I I - jwMI2 

o - jwM/I + Z2J2 

12 = - jwM/I/Zn , or 

VI = Zn/l + w2~/2/Zn 
That is to say, the input impedanee of a linear transformer is 

VI w2M 2 

Zin = - = Zn + --
II Z22 

The input impedance clearly consists of the primary winding self­
impedance, Zn, in addition to an impedance w2M 2/Zn , known as the 
refleeted impedanee, which is inversely related to the total impedance of the 
secondary circuit. Writing 

Z22 = R22 + jX22 

then we may rationalise the denominator (see chapter 15 for details) of the 
reflected impedance term as follows 

That is, if the secondary circuit has a net inductive reactance, it re fleets a 
capacitive reactance into the primary circuit. However, Zn has a sufficient­
ly large inductive reactance for Zin to remain inductive (this is illustated in 
worked example 9.8.1). Similarly, it may be shown that if the secondary 
circuit has a net capacitive reactance, it reflects an inductive reactance into 
the primary winding. 

The reader should note that when an 'ideal' transformer is loaded with a 
reactance of any kind, the reflected reactance is of the same kind. 

Worked example 9.8.1 

The circuit values for a linear transformer of the type in figure 9.1O(a) are 
LI = 75 mH, L 2 = 150 mH, M = 80 mH and R I = R 2 = 10 Q. Calculate 
the input impedance of the circuit at a frequency of 1000 radis for a load of 
(a) 0.4 H inductance, (b) a 2.5 I-lF capacitance. 
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Solution 

The self-impedance of the primary circuit is 

Also 

Zn = R 1 + jwL1 = 10 + j(1000 X 7.5 X 10- 3) 

= 10 + j75 Q 

(a) Inductive load 
The load impedance is 

and 

hence 

ZL = jwL = j 1000 X 0.4 = j400 Q 

Z22 = R2 + jwL2 + ZL 
= 10 + j(1000 X 150 X 10- 3) + j400 
= 550.1 L88.96° Q 

Zin = Zn + (WM)2/Zn 
= (10 + j75) + 6400/550.1 L88.96° 
= 10.21 + j63.38 Q 

(b) Capacitive load 
The load impedance is 

hence 

giving 

Zc = lIjwC = 1Ij(1000 X 2.5 X 10-6) = - j400 Q 

Zn = (10 + j 150) - j400 = 10 - j250 
= 250.2L-87.7° Q 

Zin = Zn + (wM)2/Zn 
= (10 + j75) + 6400/250.2L-87.7° 
= 11.03 + j100.6 Q 
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The reader will note that, in both cases, the resistance of the secondary 
circuit is reflected into the primary circuit as an increase in the resistance 
element of the input impedance, that is, the input resistance is higher than 
the 10 Q resistance in the primary circuit. 

In case (a), the effect of the inductive load is to reduce the input 
inductive reactance below the j75 Q reactance of the primary circuit alone, 
while in case (b) the capacitive load has the opposite effect. 
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(c) 

(b) L,L,-M' 

" 
-M-

" 

v'l 
L,L,-M' L,L,-M' Iv, 

L,-M L,-M (d) 

Figure 9.11 (a) Idealised linear transformer, (b) an equivalent circuit, (c) the electrically 
connected T-equivalent circuit and (d) the TT-equivalent circuit. 

9.9 T - and :n:-equivalent circuit of a linear transformer 

Although a linear transformer has two magnetically coupled, but electrical­
ly isolated windings, it is sometimes convenient to view them as though 
they are electrically coupled. 

If our coupled circuit has the dot notation in figure 9.11(a), its equiv­
ale nt circuit is shown in figure 9.11(b), whose mesh equations are 

VI = jwLl l - jwMI2 = jw([L1 - M] + M)/I - jwMI2 

V2 = - jwM/I + jWLJ2 = - jwM/I + jw([L2 - M] + M)/2 

If we look at these equations as though they refer to electrically coupled 
elements, we conclude that the circuit is the one shown in figure 9.11(c). 
The corresponding :n:-equivalent circuit is shown in figure 9.11(d). 

If the position of the dot on either of the windings in figure 9.11(a) is 
reversed, that is, the connections to any one winding are reversed, the 
T-equivalent circuit would have an inductance of - M in the common 
vertical branch, an inductance of (LI + M) in the top left-hand branch, 
and an inductance of (L2 + M) in the top right-hand branch. 

Unworked problems 

9.1. Calculate 12 in figure 9.12. The supply frequency is 100 rad/so 
[8.19L35° mA] 
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Figure 9.13 

Figure 9.14 
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v, - L R, /, 

M~ 
~ 

L, R, /, ---V, 

9.2. Calculate the input impedance of the circuit in figure 9.12. 
[296L41° Q] 

9.3. Deduce an expression for V, and V2 in figure 9.13. 
[(R, + jwL,)I, - jwMI2 ; jw(M - L 2)I2 ] 
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9.4. If the source in figure 9.14 is (a) a 5LO° V voltage source (positive 
terminal at the top), (b) a 5 L 0° A current source (current ftowing 
upwards), calculate VAB if the frequency is 1 rad/so 
[(a) 0.588L-101.3° V; (b) 3L-90° V] 

9.5. If a load of 20 Q is connected between A and B in figure 9.14, 
calculate V AB for both sourees. 
[(a) 0.584L -107° V; (b) 2.986L - 95.7° V] 

9.6. Calculate the total power consumed in figure 9.15 if / = 100 Hz. 
[0.41 W] 
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Figure 9.15 

Figure 9.16 

9.7. Calculate the current I in figure 9.16 if the supply frequency is 1000 
radis. 
[O.03LO° A] 

9.8. The primary winding of a coupled circuit has a resistance of 20 Q and 
a self-inductance of 6 mH. The corresponding values for the sec­
ondary circuit are 10 Q and 4 mH, respectively. If the mutual 
inductance between the two windings is 2 mH, and a pure resistive 
load of 40 Q is connected to the terminals of the secondary winding, 
calculate th~ input impedance if the supply frequency is 5000 radis. 
[36.49 L53S Q] 

9.9. Calculate the load current in problem 9.8 if (a) a voltage source of 10 
L 0° V, (b) a current source of 1 L 0° A is connected to the primary 
winding. 
[Ca) 5.09L14.74° mA; (b) 0.186L68.2° A] 

9.10. The primary inductance of a coupled circuit is 0.5 H, that of the 
secondary is 0.1 H, and the mutual inductance is 60 mH; the primary 
winding resistance is 12 Q and that of the secondary is 20 Q. If a 
capacitor of capacitance 1 IlF is connected in series with the primary 
winding, and a capacitor of 0.2 IlF is connected between the ter­
minals of the secondary winding, calculate the input impedance at 
(a) 5000 radis, (b) 800 radis. 
[Ca) 2478L89.2° Q; (b) 850L-89.2° Q] 
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9.11. A 50 kVA, 3300/250 V single-phase transformer has a primary 
winding resistance of 5 Q and a secondary winding resistance of 
0.03 Q. If the total leakage reactance referred to the secondary 
winding is 0.13 Q, calculate the voltage regulation of the transformer 
for full load at apower factor of (a) 0.8 lagging, (b) unity power 
factor. 
[(a) 10 per cent; (b) 4.7 per cent] 



10 
Transient Solution of 
Electrical Circuits 

10.1 Introduction 

In electrical circuits containing one or more energy storage elements, a 
transient state exists whenever the circuit conditions change. A circuit 
containing one storage element is described as a first-order circuit or a 
single-energy circuit, and one containing a capacitor and an inductor is 
known as a second-order circuit or double-energy circuit, which is character­
ised by a linear differential equation containing a second-order derivative. 

Transient analysis of circuits is probably one of the most difficult areas 
of work covered in a course and, by its nature, involves a higher mathema­
tical conte nt than many other topics. In many cases, transient analysis is first 
approached via c1assical mathematical methods and, later, by the D oper­
ator method. However, using these methods, many solutions are obtained 
via a 'back door approach', and one needs to know many special techni­
ques (or should they be called 'tricks of the trade'?) to obtain the correct 
answer. 

Moreover, with some forcing functions, solutions cannot be obtained 
using c1assical methods. Also, if initial conditions exist in the circuit, such 
as a charge on a capacitor or an initial current in an inductor, obtaining a 
solution using c1assical methods can be very tedious. 

If only to highlight some of the difficuIties wh ich may be encountered, 
we will take a brief look in sections 10.2 and 10.3 at the solution of first­
and second-order circuits, respectively, using classical methods. Following 
this we turn our attention to solution by the Laplace transform method, 
since this has a number of advantages from an engineering viewpoint. 

However, it should be pointed out that there is a small 'drawback' ofthe 
Laplace transform method, and this is that one has to traverse a basic 
mathematical 'fog' before one enters the calmer waters of electrical cir-

218 
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cuits. The reader is encouraged to understand the basic mathematics of 
Laplace transforms; in any event, he can refer back to the mathematics 
when studying the worked examples. Generally speaking the mathematics 
involves integral and differential calculus, but no more than is found in a 
first year subject covering these topics. 

10.2 C1assical solution of first-order systems 

The circuits in figures 10.1 and 10.2 contain a single energy storage element 
(see chapter 4), in which Vs is the supply voltage and i is the circuit current 
at time t seconds after closing the switch. At this time voltages VR , VL and Vc 

are across the components. 

---t = 0 Vs 

Figure 10.1 Simple first-order R-L system. Figure 10.2 Simple first-order R-C system. 

Inductive circuit 

For Figure 10.1, by KVL 

But 

and therefore 

or 

di 
V = L-

L dt 

V s = iR + L 
di 

dt 

V s . L di 
-=1+--
R R dt 

(10.1) 
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Capacitive circuit 

For Figure 10.2, by KVL 

Now, since 

then 

In general 

= iR + V c 

dt 

dv c 
V s = RC--+ v 

dt c 

dx 
F=x+r­

dt 

(10.2) 

(10.3) 

where F = driving function = steady-state value of x, in which x = circuit 
variable, r = circuit time constant and dx/dt is the first derivative. 

Using the 0 operator, where 0 = d/dt, then F = x + rOx. 
The solution of linear, first-order equations of this type, where the 

variables can be se para ted on the two sides of the equation consists of two 
parts 

where x t is the transient solution obtained by making F = 0, and x ss is the 
steady-state solution, that is, the value of x as t ~ 00. 

For the transient solution of the equation, 

dx t 
X t + T--= 0 

dt 

X t is always of the form Ae -tl" where A is a constant to be determined 
from the circuit's initial conditions, that is, the value of x at t = O. 

In general, the complete solution is of the form 

x = Ae-tl, + X ss (10.4) 
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Constant "Voltage source, v s = E volts, and the switch is closed at t = 0 

For the inductive circuit shown in figure 10.1, from equation (10.1) 

L di E 
i+--=-

R dt R 

or i + rDi = final current where r = UR 

Since the inductor has no voltage across it when the CUTTent is steady, 

E 
iss =-

R 

hence the complete solution for the current in the circuit in figure 10.1 is 

E 
i = Ae-t/~ +-

R 
(10.5) 

For the capacitive circuit shown in figure 13.2, from equation (10.2) 

dv c 
V c + RC-= E 

dt 

so 

v c + rDv c = final voltage 

Since the capacitor is fully charged in the steady state, no current ftows 
in it and V ss = E. 

The complete solution for the capacitor voltage in the circuit in figure 
10.2 is 

V c = Ae-tiT + E (10.6) 

Initial conditions 

Substitute the values of i and v at the instant the switches are closed in the 
two circuits. Let these be zero and VI volts respectively. 

Since the current through the inductor and the voltage across a capacitor 
cannot be changed instantly, then, at t = 0, in equation 10.5 for the 
inductive circuit in figure 10.1 

that is 

0= A + 
E 

R 

E 
A=--

R 
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Hence 

E 
i = -(1 - e-RtIL ) 

R 

In equation 10.6 for the capacitive circuit in figure 10.2 

V l = A + E 

then 

Hence 

v = E - (E - Vl)e-tIRC 

In both cases the solution is of the form: 

instantaneous value = final value - step size x e -tiT 

(10.7) 

(10.8) 

which is illustrated graphically for two cases in figure 10.3. In diagram (a), 
final value > initial value, while in diagram (b), final value < initial 
value. 

Initial value 

Initial 
value--" 

Circuit 
variable 

Final value 

Time 

(a) 

Time 
- - - - - _.=-::=-=.--__ -1 

Final value 

(b) 

Figure 10.3 Transients in a first-order system with an initial condition. 

Step 
size 
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While these solutions are relatively straightforward, circuit analysis 
becomes increasingly difficult if the network is 'excited by, say, a sinewave 
or a complex function, particularly when initial conditions are involved. 

10.2.1 The time constant 1: of a circuit 

In many first-order circuits, a quantity known as the time constant, r, gives 
an indication of the transient performance of the circuit, particularly when 
it is excited by a d.c. source. 

Where the response of a circuit is described by the expression 

J(t) = Ae -tiT 

the value of J(t) falls from a value equal to A at t = 0, to zero when t 
approaches infinity. More interestingly, J(t) reaches a value less than 0.01 
A when t = Sr. The period Sr is often described as the settling time of the 
transient and, beyond this time, we can assurne that steady-state conditions 
have been reached. Similarly, if the response is described by 

J(t) = A(l - e -tIT) 

the value of J(t) rises from zero when t = 0 to a final value of A when t 
approaches infinity. In fact, it can be shown to rise to a value greater than 
0.99 A when t = Sr. Once again, we can think of Sr as being the settling 
time of the transient. 

It is also useful to think of a time of 0.7r as the 'half-life' of the transient 
since, in both the above cases,J(t) changes by 50 per cent for each 0.7rtime 
change. Also, J(t) changes by 63.2 per cent (either a reduction or an 
increase) when t = r. 

In the case of a simple RC circuit 

r = lIRC s (R in Q, C in F) 

and in an RL circuit 

r = LI R s (R in Q, L in H) 

10.2.2 Circuits reducible to first-order format 

Circuits which have a single energy storage element may be solved by first 
obtaining Thevenin's equivalent circuit. The circuit time constants then 
become LlR Th or CR Th • 
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10.3 Classical solution of second-order systems 

The voltage equation for the series RLC circuit in figure 10.4 is given by 
KVL 

that is 

di 1 
iR + L - + - f idt = v s 

dt C 

Differentiating this equation with respect to time to give 

or 

di d 2i i dv s 
R-+L-+-=-

dt dt2 C dt 

d2i R di i 1 dv s -+--+-=--
dt2 L dt LC L dt 

R 

':J 
t = 0 

L C 

- Vs 

Figure 10.4 Second-order series RLC circuit. 

The highest derivative in the output variable, i, is second order and the 
solution is again made up of two parts: namely 

The steady-state solution iss is determined by single-phase theory. For 
example, when the source is a constant voltage, iss is zero because of the 
capacitor. 

The transient solution, i t is obtained by equating the left-hand side of the 
equation to zero. For convenience in interpretation, the coefficient of the 
highest derivative is reduced to unity. Hence, using the D operator for 
clarity 
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(10.9) 

The 'standard form' of this linear second-order differential equation is 

(10.10) 

where W n is the undamped natural frequency of the oscillations and ~ is the 
damping factor. 

Comparing equations 10.9 and 10.10, shows for the series circuit that 

W n =_1_ and ~ =_R_= ~dE 
VLC 2w nL 2 V L 

The condition ~ = 0 implies zero circuit resistance. 
The solutions to equation 10.10 are determined by the value of ~ as 

folIows: 

1. ~ < 1, damped oscillations 

i l = Ae-~wn' sin(wot + 8) 

2. ~ = 1, critical damping 

i l = (A + Bt)e -Wn' 

3. ~ > 1, overdamped response 

4. ~ = 0, no damping, continuous oscillation 

i l = A sin(wnt + 8) 

where A, B, and 8 are constants determined by the initial conditions of the 
circuit, and Wo is the frequency of the damped oscillations. This is given 
by 

Initial conditions 

With constant voltage e volts applied to the circuit in figure 10.4, by 
KVL 

Ri + LDi + v c = E 

Let the voltage across the capacitor be V land the circuit current be zero 
before closing the switch, hence at t = 0 

LDi + VI = E 

. (E - VI) 
Dl=~-~ 

L 
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Steady-state solution 

iss = 0, since the capacitor is fully charged to E. 
Hence the complete solution is given by i = i t . Substituting these values 

into 1, 2, 3 and 4 above gives: . 

(E - V) 
i= 'te-Wnl 

L 

. (E - V,) . 
1 = sm wnt 

wnL 

As with first-order systems, the solution can be very involved if the 
circuit is excited by a sinusoidal signal or complex wave, particularly when 
initial conditions are involved. 

10.4 The Laplace transform 

The Laplace transform, F(s), of a function of time f(t) is defined as 

F(s) =.!l'[f(t)] = [ f(t)e-S1dt 

The Laplace transform is a one-sided transform, which assumes that f(t) 
only exists for t ~ O. The variable s = a + jw (see also chapter 11) is also 
complex, and a restriction on its value is that its real part must be large 
enough to make the integral convergent. 

The lower limit on the integral is t = 0 but, because of possible 
discontinuities at t = 0 we should, strictly speaking, use a value of t which is 
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just less than zero. We generally denote this as t = 0 -. The integral then 
becomes 

F(s) = L~ f(t)e-S'dt 

Thus the operator2'[f(t)] transforms a functionf(t) in the time domain into 
a function F(s) in the s-domain or complex frequency domain. Also, given 
F(s), we can obtain f(t) by the inverse process as follows 

f(t) =2'-1 [f(t)] 

However, because the direct use of this method needs results from com­
plex-variable theory, we shall (at alm ost any cost!) avoid employing it. 
Instead, we will develop a table of Laplace transforms together with the 
functions from which they are derived, and use it whenever we need to find 
the inverse of a transform. Trust an engineer to find an easier solution! 

After investigating a number of special functions associated with electri­
cal circuits, we will devote so me time to the derivation of a few basic 
Laplace transforms before we move on to circuit analysis. 

10.5 Step, impulse and ramp functions 

Any one of many forms of signal may be applied to an electrical circuit, 
and we take a look here at three important forms, namely the step, the 
impulse and the ramp. 

The unit step signal, u( t) 

The simplest step signal is the unit step (u(t», which is illustrated in figure 
1O.5(a), and is mathematically described as follows 

(
0 for - 00 < t < 0 

u(t) = 
1 for 0 ~ t< 00 

(a) (b) 

Figure 10.5 (a) The unit step function, (b) a shifted unit step. 
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The function is not continuous at t = 0 and, in rigorous mathematical 
terms, the derivative of u(t) does not ex ist for t = O. 

We can time-shift the unit step function to cause the sud den transition 
from zero to unity to occur at some time T as folIows. We define the shifted 
unit step as follows 

jo for -00 < t< T 
u(t - T) = 

1 for T ~ t< 00 

This is illustrated in figure 1O.5(b) and, in this case, the function is not 
continuous at t = T. 

The unit step function can also be amplitude-scaled to represent a step 
of any magnitude merely by multiplying the unit step by a factor K, that is 
Ku(t) or Ku(t - t I). 

A forcing function frequently encountered in electrical circuits is the 
unit voltage pulse; this can be represented by two shifted unit steps as 
folIows. Consider the shifted unit step functions u(t - t l ) and -u(t - t 2 ); 

these are illustrated in figure 1O.6(a), and their sum (the unit pulse) 
(u(t - t l ) - u(t - t 2» is shown in figure 1O.6(b). The equivalent electrical 
circuit wh ich produces the unit pulse is illustrated in figure 1O.6(c). 

o I--...L---.---
j,-----,--O----L.-

t, t2 

Vu(t-t2 ) -1 
-u(t-t2 ) 

(a) (b) (c) 

Figure 10.6 (a) The shifted unit step junetions u(t - t l ) and u(t - t2) together generate the 
unit pulse jorcing funetion in (b). The eorresponding equivalent eleetrieal 
eireuit is shown in (e). 

The unit pulse is often used in electrical circuits as a sampling pulse. For 
example, if we wish to apply a burst of high-frequency oscillations to an 
electronic system for, say 0.2 !!S, we can represent the resulting wave as 

v(t) = [u(t - t l ) - u(t - t 2 )]V m sin rot V 

where t 2 = t l + 0.2 x 10 -6. A typical resulting waveform may be as shown 
in figure 10.7. 

We can also use the delayed step function to describe the operation of a 
switch which closes at time t = t l as folIows. If the voltage source KV 1 

shown in figure 1O.8(a) is connected to an external circuit when t = t l , the 
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t, t, + 0.2x 10-< 

Figure 10.7 A sinusoidal high-frequency burst. 

KV,t 
~' t = t, K"(~,)I( 

(a) (b) 

Figure 10.8 (a) Actual switching circuit, (b) its equivalent circuit. 

complete circuit can be replaced by its mathematical equivalent in diagram 
(b). 

The unit impulse function or delta function, ö( t) 

If we differentiate the unit step function, u(t), with respect to time, its 
value is zero for all time except at t = O. At the latter time u(t) is 
mathematically indeterminate, and its differential is infinity, that is, the 
differential is a pulse of infinite value and of zero width. However, all is not 
lost, for we can look more closely at the unit step function. 

A practical unit step cannot change its value from zero to unity in zero 
time, so let us assurne that its change in value occurs over the period -D./2 
to D./2 (see figure 1O.9(a». The derivative of the practical unit step function 
is shown in figure 1O.9(b), and we see that its amplitude is lID.. Clearly, as 
D. approaches zero, the amplitude of the pulse approaches infinity, thereby 
approximating to the ideal impulse. Moreover, the area of the impulse in 
diagram (b) is unity, hence mathematically 

and 

+ 

f _~ D(t) dt = J:- D(t) dt = 1 

d 

dt 
[u(t)] = D(t) 
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(a) (b) (c) 

o ~ 

m, 
_~ 0 ~ 

A 
~ -~ +~ +- - -
2 2 2 2 

Figure 10.9 (a) A praetieal unit step funetion, (b) the derivative of the praetieal unit step, 
(e) a triangular pulse with similar eharaeteristies to pulse (b). 

(a) (b) 

Figure 10.10 (a) The unit ramp funetion r(t), (b) the magnitude-sealed and time-shifted 
ramp funetion Kr(t - t1). 

The reader should note that, in many texts, it is assumed thafthe slope of 
the practical unit step function commences at t = 0, and completes the 
slope at t = ~. The overall result is the same as that outlined above, other 
than the unit step function is time shifted by ~/2. 

As with the unit step, we can scale the unit impulse to any magnitude 
simply by multiplying by the factor K, that is, it becomes Kc5(t). 

The unit ramp function, r( t) 

The unit ramp function r(t) in figure 1O.1O(a) is defined methamatically by 

( 
0 for - 00 < t < 0 

r(t) = 
t for 0 ~ t< 00 

As with the other 'unit' functions, we can both magnitude-scale and time­
shift the ramp function, as shown in figure lO.lO(b). 

Relationship between the unit step, unit impulse and unit ramp functions 

The mathematical relationship between the three functions is 
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d 
[r(t)] = u(t) 

dt 

d 
- [u(t)] = ö(t) 
dt 

r(t) = f ~o u(t) dt 

u(t) = f ~o ö(t) dt 

231 

The lower limit associated with the integral may be, in fact, any value less 
than zero. 

Worked example 10.5.1 

The voltage 

v(t) = -2u(t) + 4 r(t) - 4 r(t - 8) - 2u(t - 8) V 

is applied to a capacitor of 1.5 F capacitance. Determine an expression for 
the current in the circuit, and sketch its waveshape. 

Solution 

At this stage it is helpful to sketch the voltage waveform in order to 
appreciate wh at type of function we are dealing with. The step function 
-2u(t) corresponds to a step of -2 V which occurs at t = 0, as shown in 
figure 1O.11(a). Next, the function 4r(t) is a ramp of slope 0.5, commencing 
at t = 0 (see figure 1O.11(b)). The ramp function -4r(t - 8) is a ramp of 
slope -0.5 (that is, negative-going), commencing at t = 8 s (see figure 
10. l1(c)). Finally, the step function -2u(t - 8) is a step of -2 V, 
commencing at t = 8 s (figure 10. 11 (d)). 

The forcing function is the sum of these components, and is shown in 
figure 1O.11(e). The capacitor current is 

dv dv 
i = C- = 1.5 - A 

dt dt 

hence 

[ 
d d 1 

i = 1.5 -[ -2u(t)] +- br(t)] + 
dt dt 

d 1 d I - [-2r(t - 8)] + - [-2u(t - 8)] 
dt dt 

and, using the relationships deduced earlier 

= 1.5 [-2ö(t) + 4u(t) - 4u(t - 8) - 2ö(t - 8)] 

= -3ö(t) + O.75u(t) - 0.75u(t - 8) - 3ö(t - 8) 
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Figure 10.11 The build-up ofv(t). 
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l--3.\f t-8f 

(eI 07:1 ,I 
Figure 10.12 Construction of the current waveform through the 1.5 F capaeitor. 

The corresponding current waveform is constructed in figure 10.12. The 
sudden negative-going transition of current at the beginning and end of 
figure 10.12(e) would (theoretically at least) result in a current pulse of 
amplitude -oo! In practice, of course, this could never happen because the 
output resistance of the source would limit its magnitude. 
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10.6 Laplace transforms of some useful functions 

In the following we develop Laplace transforms of a number of the more 
useful functions in electrical engineering. These and other Laplace trans­
form pairs are given in table 10.1. 

Table 10.1 Short table of Laplace transforms 

f(t) =!i'-l [F(s)] 

1 or u(t) (unit step) 
A 
e-at 

ö(t) (unit impulse) 
t u(t) (ramp) 
u(t - 1) (delayed step) 
Rectangular pulse 

Lf(t) dt 

df(t) 

dt 

d 2f(t) 

dt 2 

sin rot 
cos rot 

e -at ( cos rot - : sin rot ) 

sin (rot ± lJ) 
cos (rot ± lJ) 
t 
tn (n is a positive integer) 
t sin rot 
t cos rot 
e -at(' 

sinh at 
cosh at 
e- at cosh ßt 
e -at sinh ßt 
e -at cos rot 
e- at sin rot 

Worked example 10.6.1 

F(s) =!i'[f(t)] 

1/s 
A/s 
lI(s + a) 
1 
lIs 2 

e -sT/S 
(1 - e -sT)/S 

F(s )/s 

sF(s) - f(O) 

s2F(s) - sf'(O) - f(O) 

ro/(S2 + r( 2) 
S/(S2 + r( 2 ) 

(ro cos lJ ± s sin lJ)/(S2 + r( 2) 
(s cos lJ ± ro sin lJ)/(S2 + r( 2) 
1/s 2 

nt/sn + 1 

2roS/(s2 + r(2)2 
(S2 _ r(2)/(S2 + r( 2)2 
n!/(s + a)n + 1 

a/(s2 - a 2) 
S/(S2 - a 2) 
(s + a)/«s + a)2 - ß2) 
ß/«s + a)2 - ß2) 
(s + a)/«s + a)2 + r( 2) 

ro/«s + a)2 + ( 2) 

Derive the Laplace transform of the unit step function u(t). 
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Solution 

The step function is defined as follows 

hence 

( 
0 for - 00 ::::; t ::::; 0 

u(t) = 
1 for 0::::; t::::; 00 

If the step has amplitude A, then 

A 
2' [Au(t)] = 

s 

Worked example 10.6.2 

Deduce the Laplace transform of f(t) = t n • 

Solution 

This expression can be integrated by parts (f u dv = uv - J v du), so that if 
u = tn and dv = e -S'dt, then v = -e -s'/s and du = ntn - ldt as follows 

[ 
ntn - 1 ]00 f 00 n(n - l)tn - 2 

= 0 + --- e-s, - e-s, dt 
S2 0 0 -S2 

n. f 
00 , 

= 0 + 0 + ... - --n e-s' dt 
o -s 

n! 
=--

Note: n is a positive integer. It also follows that 
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[ 
tn - 1] 1 

!i' --
(n - I)! sn 

and 

!i' [t] = l/s 2 

The above example allows us to write down the Laplace transform of the 
ramp voltage v(t) = kt. Its Laplace transform is 

!i' [kt] = k/s 2 

Worked example 10.6.3 

Evaluate the Laplace transform of /(t) = e at. 

Solution 

= [ - (s ~ a) e-(s-a)t 1: =-s -~-a 
This assumes, of course that the real part of s is greater than a. It also 
follows from the above that 

!i' [e-at] = 1/(s + a) 

The function e -at occurs frequently in electrical circuits where l/a is the 
time constant, 1', of the circuit. The function is a decaying exponential 
which falls to slightly less than 1 per cent of its initial value when t = 51' 
= 5/a. Similarly, the function (1 - e -at) is the equation of a rising 
exponential curve, which rises to slightly more than 99 per cent of its final 
value when t = 51' = 5/a. 

For exponential curves of this kind, the period 51' is known as the settling 
time, which is the time taken for the transient period to have practically 
settled out. 

Worked example 10.6.4 

Determine !i' [sin rot] and !i' [cos rot]. 

Solution 

1 
Writing sin rot as - (e irut - e-iwl) we get 

2j 
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5f' [sin rot] 

. . 1· . and smce cos rot IS "2 (e JWI + e - JWI) then 

2' [cos rot] = S/(S2 + ro 2) 

Worked example 10.6.5 

Evaluate 5f' [t sin rot). 

Solution 

If we differentiate e -sI sin rot with respect to s, we get 

d 
- (sin rot e -SI) = -t sin rot e -SI 

ds . 

and, using the result from worked example 10.6.4 

foo d d ro 
- (sin rot e-SI) dt = - ----

o ds ds (S2 + ro 2) 

or 

fOO -2ros 
- t sin rot e-sl dt =----

o (S2 + ro 2)2 

hence 

Worked example 10.6.6 

Determine the Laplace transform of f(t) = sinh at. 

Solution 

Since sinh at = ~(e al - e -al), then 

5f' [t sinh at] = ~ f ~ (e at - e -al) e -SI dt 

1( 1 1) a 
="2 s - a - s + a = S2 - a 2 
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Worked example 100607 

Determine 2 [sin (wt + e)] 0 

Solution 

Expanding sin (wt + e) as sin eocos wt + cos eosin wt, then 

2 [sin (wt + e)] = 2 [sin eocos wt + cos eosin wt] 

s sin e w cos e 
= +---

S2 + w2 S2 + w2 

s sin e + w cos e 

10.7 Properties of the Laplace transform 

237 

The Laplace transform has several properties of particular interest to 
electrical and electronics engineers, and we will look at a number of 
themo 

Scalar multiplication 

For ex am pie 

Addition 

For example 

2 [k J(t)] = kF(s) 

lOs 
2 [10 cos wt] = 10 2[cos wt] = --­

S2 + w 2 

2 [lOt + 3e -21 - 5 sin 4t] 

= 102[t] + 32[e -21] - 52 [sin 4t] 

10 3 20 
=-+------

S2 s + 2 S2 + 16 



238 Electrical Circuit Analysis and Design 

Time differentiation 

[ df(t) 1 fi' dt = sF(s) - f(O) 

where f(O) is the initial condition which exists in the circuit. 

Time integration 

ff [ [I\t) dt 1 ~ : F(s) 

Time shift 

The time-shift theorem states that if a time function is delayed by time a in 
the time domain, then the result in the frequency domain is multiplied by 
e _·as. 

fi'[f(t - a)u(t - a)] = e-asF(s) 

For example, the rectangular voltage pulse in figure 1O.13(a) can be 
described by the following expression. 

00 00 

24684 

-1 

v(t) 

Figure 10.13 (a) The rectangular pulse shown can be considered to be the sum of the unit 
step functions in (b) and (c). 

v(t) = u(t - 4) - u(t - 6) 

Since the Laplace transform of u(t) is 1Is then, since u(t - 4) is u(t) delayed 
by 4 s, the transform of the first delayed function is e -4o/S • Similarly, the 
transform of the second delayed step function is e -6s/S , hence the overall 
Laplace transform is 

e -40 - e-6s 

fi'[v(t)] = V(s) = ---
s 
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v~"1 I 0 [, 
OrT T+r 2T 

Figure 10.14 The Laplace transform of a train of rectangular pulses. 

This theorem can also be used to determine the Laplace transform of a 
periodic time function as follows. If Jet) is a function with aperiod of T for 
positive values of T, then 

F(s) = F I(s)/(l - e-ST ) 

where FI(s) = ([(t)e-ST dt, is the transform of the period of the time 
function. The (1 - e -ST) in the denominator accounts for the periodicity of 
the function. 

Consider the rectangular pulse train in figure 10.14. The Laplace trans­
form of the first period of the function is 

That is, the transform for the pulse train is 

Frequency shi[t 

V m (1 - e-ST) 

V(s)----­
s (1 - e-ST ) 

~ [e -at Jet)] = F(s + a) 

This theorem states that replacing s by (s + a) in the frequency-domain 
corresponds to multiplying Jet) by e -at in the time domain. Thus, making 
reference to table 10.1, we have 

s+a 
~ [e-at cos wt] = -----­

(s - a)2 + w 2 

By inference we can also say that 

Frequency differentiation 

~[eat Jet)] = F(s - a) 

dF(s) 
~[-tf(t)] =-

ds 
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This theorem states that differentiation with respect to s in the frequency 
domain is equivalent to multiplication by -t in the time domain. By 
implication, we may say that 

For example 

ff [tnf(t)] = (-l)n dnf(s) 
dsn 

ff [t sin rot] 

2ros 

Frequency integration 

ff[ f~)] = r F(s) ds 

For example 

[ sin rot] ff -- = 
t 

Frequency scaling 

For k ~ 0 

ff [f(ft)] = 1 F ( ~ ) 
This theorem allows us to obtain the frequency-scaled version of a function 
of time whose Laplace transform exists. For example, since the transform 
of a 1 radis sinewave is 

ff [sin t] = lI(s2 + 1) 

then the transform of a 2 kHz (4000n radis) sinewave is 

1 1 
ff [sin 4000t] =---------::---

4000n (_S_)2 + 1 
400ün 

400ün 
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Initial value theorem 

The initial value of a function is given by 

f(O+) = lim sF(s) 
s~'" 
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where f(O+) is the value of f(t) when t is zero (or, strictly speaking, 
marginally greater than zero!). This theorem states that the initial value of 
the function f(t) is obtained by putting s = 00 in the equation for sF(s). 

We shall illustrate this by using a function for wh ich the initial value of 
f(t) is known. One example is the cosine wave, where f(O+) = 1. In this 
case 

and its initial value is 

f(O+) = lim sF(s) = lim (s x S/(S2 + w2» = 1 
s---+ (Xl s--+ 00 

Final value theorem 

Provided that all the poles of sF(s) are completely within the left-hand part 
of the complex frequency plane (see chapter 11 for details), then the final 
value of the function is given by 

f( 00) = lim sF(s) 
s~o 

where f( 00) is the value off(t) when t approached infinity. That is, the final 
value of f(t) is obtained by letting s be zero in sF(s). 

If f(t) is a pure sinusoid, F(s) has poles on the jw axis, and use of the 
final value theorem would lead us to the conclusion that the final value is 
zero! However, we know that the final value of a sinusoid is indeterminate, 
so beware of poles on the jw axis. The only exception is a simple pole at 
s = O. 

Once again, to illustrate this theorem, we will consider a function of time 
whose final value we know. Such a function is f(t) = 1 - e-ar, whose final 
value is unity. In this ca se 

( 1 1) a sF(s) = s - --- =--
s s+a s+a 

hence 

a 
f(oo) = lim sF(s) = lim -- = 1 

s~o s~o s + a 
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10.8 Representation of circuit elements in the s domain 

So far, we only considered circuit elements which do not have initial 
conditions imposed on them, that is, an initial charge on a capacitor, or an 
initial current in an inductor. The Laplace transform allows us a fairly easy 
method of dealing with these conditions. However, we look at basic circuit 
elements before dealing with complete circuits. 

Resistors 

The v-i equation in the time domain for a resistor is 

v(t) = Ri(t) 

and the Laplace transform of this equation is 

.!l' [v(t)] = .!l' [Ri(t)] = R.!l' [i(t)] 

that is we may say 

V(s) = RI(s) 

The transfer function V(s)/l(s) = Z(s) = R is the s-domain impedance of the 
element, and the ratio l(s)/V(s) = Y(s) = 1/R is the s-domain admittance of 
the element. Clearly, the s-domain impedance and admittance are identical 
to the time-domain values. 

Inductance 

The time-domain v-i relationship for the circuit in figure 1O.15(a) is 

di(t) 
v(t) = L-

dt 

Hence 

i(t) L 
1(5) 

5L 
1(5) 

~')1 i(O) ~')1 ~')1 5L 
i(O) 

5 

(a) (b) (c) 

Figure 10.15 (a) Induetor L with initial eurrent i(O) in the time-domain, (b) s-domain 
Thevenin equivalent cireuit, and (e) the Norton equivalent cireuit. 
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[ di(t)] 
V(s) = 2' L dt = sLI(s) - Li(O) 

The resulting equivalent circuit for the inductor is shown in figure 1O.15(b). 
Re-writing the equation in the form 

V(s) i(O) 
I(s) = -+-

sL s 

gives the s-domain equivalent circuit in figure 1O.15( c). 
If no initial current ftows in the inductor then, in the case of figure 

1O.15(b), the initial condition generator is short-circuited and, in the case 
of figure 1O.15( c), it is open-circuited. 

Capacitance 

The time-domain v-i equation for the circuit in figure 1O.16(a) is 

dv(t) 
i(t) = C --

dt 

i(t) C 
o---l"--il 

~"l -v(o) 

(al 

Figure 10.16 (a) Time-domain circuit [or a capacitor with an initial voltage v(O) between 
its terminals, (b) the Norton s-domain equivalent circuit and (e) the s-domain 
Thevenin cireuit. 

that is 

I(s) = sCV(s) - Cv(O) 

from which the equivalent circuit in figure 1O.16(b) is drawn. Re-writing 
the equation in the form 

I(s) v(O) 
V(s) = -+-

sC s 

from which we may deduce the equivalent circuit in figure 1O.16(c). 
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10.9 Introduction to analysis of first-order circuits using the Laplace 
transform 

We will approach transient analysis of networks by considering systems 
containing a single energy storage element. The solutions provided are 
intended to give an indication of typical solutions, but are by no means 
exhaustive. 

Worked example 10.9.1 

Determine for figure 1O.17(a) an expression for i(t) and vL(t) if (a) EI = 0, 
(b) EI = -20 V. In both cases, calculate i(t) when t = 0.01 s. The blade of 
the switch changes from A to B when t = 0; in both cases it can be assumed 
that the switch is ideal, and the changeover occurs instantaneously. 

(a) (b) 

Figure 10.17 (a) Circuit [or worked example 10.9.1, (b) a s-domain equivalent circuit. 

Solution 

This example will illustrate how easy it is with Laplace transforms to insert 
initial conditions into the circuit. 

Assuming that steady-state conditions have been reached before the 
switch blade changes from A to B, the initial current in the circuit is 
i(O) = E/R. The circuit equation (see figure 1O.17(b)), when t ~ 0 in the 
s-domain, is 

lOu(t) + Li(O) = (R + sL)/(s) 

or 

lOu(t) = (20 + O.ls)/(s) - O.li(O) 

(a) In this case 1(0) = 0/20 = 0 and the s-domain equation for the circuit is 

10 -; = (20 + O.ls)/(s) 

hence 



Transient Solution of Electrical Circuits 245 

10 100 0.5 0.5 
I(s) 

s(20 + 0.1s) s(200 + s) s 200 + s 

= 0 5 ( -.l __ 1 _) 
s 200+s 

The penultimate step in the above equation is obtained by the method of 
partial fractions (see chapter 15 for details), but any other method can be 
used. 

Using the table of Laplace transforms we see that 

i(t) =2'-1 [/(s)] = 0.5(1 - e-2oo,) A 

so that when t = 0.01 s, the current is 

iool = 0.5(1 - e-200 x 001) = 0.432 A 

We can evaluate the initial and final value of the current as follows 

100 
initial value = lim s/(s) = = 0 

HOO 200 + s 

100 
final value lim s/(s) = 0.5 A 

HOO 200 + s 

Also vL(t) = L di/dt, then 

100 10 
VL(s) = L(s/(s) - f(O» = L 200 + s = -20-0-+-s 

hence from the table of Laplace transforms 

vL(t) = lOe-2OO! V 

The corresponding waveforms for i(t) and vL(t) are shown in figure 
1O.18(a) and (b), respectively. 
(b) In this case, the initial current (in the direction shown in the figure) is 
i(O) = -20/20 = -1 A. The s-domain equation for the circuit is 

or 

10 - = (20 + 0.1s)/(s) - 0.1( -1) 
s 

10 _ 0.1 
s 

I(s) =---
20 + 0.1s 

10 

s(20 + 0.1s) 

0.1 

20 + 0.1s 
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ill) 

0.5 

0.4 8 

0.3 6 

0.2 4 

0.1 2 

0 +----.-----.-----.----.---.-- 1 Ims) 0 +----.----.--...,..::::::::;::==r-- 1 Ims) 
0 5 10 15 20 25 o 5 10 15 20 25 

la) Ib) 

Figure 10.18 (a) i(t) and (h) vL(t) [ar part (a) o[ worked example 10.9.1. 

100 1 

s(200 + s) 200 + s 

0.5 0.5 1 0.5 1.5 
------

s 200 + s 200 + s s 200 + s 

henee 

i(t) =g>-l [fes)] = 0.5 - 1.5e-2OOt A 

and the eurrent when t = 0.01 s is 

iO.01 = 0.5 - 1.5e-2 = 0.297 A 

Onee again we ean ealculate the initial and final value of the eurrent as 
follows. 

initial value 
1.5s 

lim sF(s) = 0.5 - -1 A 
...... 00 200 + s 

1.5s 
final value = lim sF(s) = 0.5 - = 0.5 A 

...... 0 200 + s 

The s-domain expression for the voltage aeross the induetor is 

( 1.5s ) VL(s) = L(sF(s) - t(O» = 0.1 0.5 - - (-1) 
200 + s 
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= 0.1 ( 1.5 - 1.5s ) = 0.15 ( 1 _ __ s_) 
200+s 200+s 

30 

200 + s 

hence 

VL(t) =!i'-l [VL(s)] = 30e-2OOt V 

A diagram showing i(t) and vL(t) for the initial condition in the problem is 
given in figure 1O.19(a) and (b), respectively. 

i(tl 

0.5 

O+--...J7fI.:.....-...1..-_...1..--....L... __ .t (msl 20 

-0.5 10 

-1 --+--,---,---,--=-r--t (msl 
5 10 15 20 

(al (bi 

Figure 10.19 (a) i(t) and (b) vL(t) for part (b) of worked example 10.9.1. 

Worked example 10.9.2 

Determine an expression for the voltage across the capacitor in figure 
1O.20(a) if the capacitor is initially charged to 40 V with the polarity shown. 
Also evaluate an expression for i(t). 

Solution 

In this example we will illustrate the use of the parallel-connected initial 
condition source. The s-domain circuit is drawn in figure 1O.20(b), in which 

i(t) 10 n 

100 ""'I[]40y 
(a) 

10 
s 

Figure 10.20 Figure for worked example 10.9.2. 

(b) 
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the initial. voltage across the capacitor is converted to its initial current 
source. The latter corresponds to a current source of Cv(O) = 80 A. The 
nodal equation for diagram (b) is 

or 

therefore 

5L' [lOu(t)] + 80 = ( lo + 2S)V((S) 

10 + 80 __ 1 + 20s --- V((s) 
s 10 

100 800 
V((s) = s(1 + 20s) + 1 + 20s 

5 40 
-----+----
s(0.05 + s) 0.05 + s 

=100(~- 1 )+ __ 4_0_ 
s 0.05 + s 0.05 + s 

Hence the voltage across the capacitor is 

vl(t) = 100(1 - e-{)05') + 40e-{) 05, V 

= 100 - 60e-{) 05, V 

The resulting graph is shown in figure 1O.2l. 
Since i(t) = C dvc(t)/dt, the current in the capacitor can be calculated 

using the time-differentiation property 

I(s) = C(svtCs) - t(O)) 

v(t) v 

..... -,,-/ 

/<100(1-e-005t) v 
/ 

/ 
40 'f. / 40e-005' V 
20 I '-....c ----+----r-----:;:=-=--.---..,......----I_ t(5) 
o 20 40 60 80 

Figure 10.21 Time variation of the vo/tage across C for t > O. 
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( 5 40s ) 
=2 + -40 

0.05 + s 0.05 + s 

2 
= (5 + 40s - 40(0.05 + s» 

0.05 + s 

6 

0.05 + s 

that is 

i(t) = 6e-D05t A 

10.10 Sinusoidal excitation of first-order systems 

Here we open our account with systems excited by an alternating current 
source. We illustrate this by means of an RC circuit in wh ich the capacitor 
carries an initial charge. 

Worked example 10.10.1 

Determine an expression for i(t) in the circuit of figure 1O.22(a) 

Solution 

The equivalent s-domain circuit is drawn in figure 1O.22(b) in which the 
alternating voltage source is expressed in the form 

2' [20 sin 2t] = 20 x 2/(S2 + 22) = 40/(S2 + 4) 

and the initial charge on the capacitor has the value 

20 sin 2t.u(t) 

(a) 

t15 V 40 
5'+4 

Figure 10.22 (a) Electrical circuit, (b) s-domain circuit. 

10 

(b) 
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v(O)/s = 15/s 

The loop current equation for the circuit is 

I(s) ( 10 + 10 ) = ~ _ 15 
s r + 4 s 

where (10 + lO/s) is the s-domain impedance of the circuit. The first part of 
the right-hand side of the above equation is the result of the a.c. source, 
and the second part is produced by the initial charge on the capacitor. We 
will keep the two parts separate during the early section of the solution so 
that we can study the individual results. 

s 40 
I(s) =---- ----

(lOs + 10) (S2 + 4) 

s 15 

(lOs + 10) s 

4s 1.5 
---------
(s + 1)(r + 4) s + 1 

= [_~+ 0.8s + 3.2]_~ 
s+1 r+4 s+1 

The bracketed part of the solution was obtained by partial fractions (see 
chapter 15 for details), and relates to the effect ofthe a.c. source. From the 
table of Laplace transforms, the solution is 

i(t) = (-0.8e-t + 0.8 cos 2t + 1.6 sin 2t) - 1.5 e-t 

= (-0.8e-t + 1.789 sin(2t + 26.57°» - 1.5 e-t 

At this point, the reader will observe that the action of connecting the a.c. 
source appears to produce a 'd.c.' transient current (-0.8e-t) with a time 
constant of 1 s, which will decay to zero in about 51' = 5 s. The time 
constant is the natural time constant of the circuit (liRe), and the initial 
'd.c.' current of -0.8 A just compensates for the value of 1.789 sin(2t + 
26.57°) A when t = 0; the net result is an initial a.c. current of zero! The 
complete equation is therefore 

i(t) = -2.3e-t + 1.789 sin(2t + 26.57°) A 

The reader should note that the steady-state a.c. component of i(t) can be 
predicted quickly using conventional theory as folIows. The impedance of 
the circuit is 

Z(jw) = R - j/wC = 10 - j/(2 x 0.1) = 10 - j5 

= 11.18L-26.57° Q 
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l(jw) = V(jw)/Z(jw) = 20/11.18L-26.57° 

= 1.789L26.57° A 
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The value of current calculated here is the peak value because we have 
used the peak value of the alternating voltage. 

10.11 Solution of series second-order circuits using Laplace transforms 

A second-order or double-energy circuit is one containing two different 
types of energy storage element, such as Land C. The series circuit in 
figure 10.23 is typical of this kind; initial conditions may, of course, exist in 
the circuit. The s-domain impedance of the circuit is 

--­V,(t) 

Figure 10.23 Double-energy series circuit. 

Z(s) = R + sL + 1/sC 

and the current in the circuit is determined from the expression 

l(s) = !l' (Vl(t)]/Z(s) 

The s-domain expression for the current depends, of course, on the nature 
of the supply voltage. For the moment, we will assume that a step function 
of voltage is applied to the circuit, that is !l'(Vl(t)] = V/s; in this cast;, the 
equation for l(s) is 

V/s V/L 
l(s) = ---=---- = ---=----

R + sL + s~ r + f s + lc 
V/L 

(10.11) 

The denominator of the final expression represents the characteristic equa­
tion in what is known as the standard form, in which wn is the undamped 
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natural frequency, and , is the damping factor of the circuit, which may be 
zero or any positive value. From the denominator of the above equations 

Wo = l/\I(LC) 

and 2'wo = R/ L 

or ,= ~ V [ ~ ] 
The response of the circuit is generally described in terms of the value of , 
namely 

1. ,= ° (undamped response) 

2. ° < ,< 1 (underdamped response) 

3. ,= 1 (critically damped response) 

4. ,> 1 (overdamped response) 

For a step voltage applied at t = 0, the response is as shown in figure 10.24. 
The reader will note that the undamped and underdamped response are 
oscillatory, implying that the characteristic equation of the system has 
complex poles in the left-hand half of the s-plane (see chapter 11). 

The underdamped response is of particular interest to engineers because 
it corresponds to many practical systems. In this case ° < , < 1, that is 

~ V [ ~ ] < 1 or R < 2 \I(LlC). In this case, the coefficient of s in 

the equation for I(s) is finite. Completing the square in the donominator 
of equation (10.11) gives 

V/L 
I(s) = ------'----

(s + 'woY + (w~ - '2W~) 

If w~ = w~ (1 - '2) or Wo = Wo \1(1 - '2) where Wo is the damped 
oscillatory frequency or the oscillatory frequency, then 

VJL woVI/L 
I(s) = -----

(s + 'wo)2 + w~ wo[(s + 'woY + w~] 

and, from the table of Laplace transforms, we see that 

VI . 
-- e-~wnt sm w t 
woL 0 

i(t) = 

Also, from the equation for Wo, we see that when , = 1 then Wo = 0, that is, 
sin wot = 0. That is, when the damping factor is unity, the output variable 
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i(t) i(t) 

(a) (b) 

(c) (d) 

Figure 10.24 Response of the circuit in figure 10.23 to a step change in applied voltage for 
(a) undamped response, (b) underdamped response, (c) critical response, 
(d) overdamped response. 

(i(t) in this case) just reaches its steady-state value without either over­
shoot or undershoot (see also figure 1O.24(c)). 

We will look at each of the four types of response in worked exarnple 
10.11.1. 

Worked example 10.11.1 

For aseries circuit of the type in figure 10.23, in which L = 2 H, C = 2 F 
and V 1(t) = 10 V, determine expressions for i(t) if the resistance R is (a) 
zero, (b) 1 Q, (c) 2 Q and (d) 3 Q. 

Solution 

(a) R = 0 (undamped response) 
In this case 

C = ~ V [ Z ] = 0 and Wn = lIV(LC) = 0.5 radis 

hence 
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V/L 
I(s) =-­

r + w~ 
10/2 

----= 
r + 0.25 0.5 (S2 + w~) 

From the table of Laplace transforms we see that 

i(t) = 10 sin 0.5t A 

That is, the current has a peak value of 10 A, and it oscillates at a 
frequency of 0.5 radis. 
(b) R = 1 Q (underdamped response) 

~ = ; V [ ; ] = 0.5 and wn = 0.5 radis 

consequently 

10/2 5 
I(s) = r + (2 x 0.5 x 0.5s) + 0.52 r + O.5s + 0.25 

Completing the square in the denominator gives 

5 
I(s) - --------­

(s + 0.25)2 + (0.25 - 0.252 ) 

5 

(s + 0.25)2 + 0.1875 

5 0.433 
=-- --------

0.433 [(s + 0.25)2 + 0.4332] 

= 11.55 
[(s + a)2 + w~] 

where Wo = 0.433 and a = 0.25. The table of transforms gives 

i(t) = 11.55 e~·25r sin 0.433t A 

(c) R = 2 Q (critically damped response) 

~ = ; V [ ; ] = 1, wn = 0.5 radis and Wo = 0, that is 

no oscillations. The s-domain expression for the current is 

V/L V/L 
I(s) = =---=---

r + 2wns + w~ (s + Wn)2 (s + 0.5)2 

10/2 

I! 
=5 

(s + a)l+l 
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and from the table of Laplace transforms we see that 

i(t) = 5te -D5t A 
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The general form of response is shown in figure 1O.24(c). This is a case 
where we should be rather careful when using the concept that 'the tran­
sient has decayed in about 5 time constants'. In this case, apparently 'l' = 
1/0.5 = 2 s; if we use this length of time in the solution, we will find that the 
current is 0.34 A, which is not insignificant when compared with the peak 
current of about 3.7 A (which occurs after about 2 s). In fact, it takes about 
16 s for the transient to decay to an insignificant value. 
(d) R = 3 Q (overdamped response) 
In this case 

~ = ~ V [ ; ] = 1.5 and W n = 0.5 radis 

and the s-domain equation for the circuit current is 

10/2 5 
fes) = =-----

S2 + (2 x 1.5 x 0.5s) + 0.52 S2 + 1.5s + 0.25 

Completing the square in the denominator gives 

5 5 [ ß ] 
fes) = (s + 0.75Y - 0.3125 = 0.559 (s + aY - fP 

and, from the table of Laplace transforms 

i(t) = 8.945 e-D75t sinh0559t A 
While the solution has some mathematical merit, it does not present an 
engineer with amental picture of what is happening. More information can 
be obtained by converting the result into its exponential form as follows 

i(t) = 8.945 e-D75t ~ [(e0559t _ e-D559t)] 

= 4.4725 ( e-D·191t - e-l.309t) A 

The longest of the two time constants is 1/0.191 = 5.24 s, so that it will take 
5 x 5.24 = 26.2 s for the current to have fallen to zero (or nearly so). 

The reader should note that it takes much longer for the overdamped 
circuit to settle than does the critically damped circuit. 

Worked example 10.11.2 

We will look in this worked example at the operation of an electro­
mechanical system, namely a conventional contact-breaker ignition system 
of an automobile. 
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t = 0 

Figure 10.25 Figure for worked example 10.11.2. 

The basic circuit is shown in figure 10.25, in which a resistor, a capacitor 
and an inductor are connected to the 12 V battery in the vehicIe. The 
resistor is merely a current-limiting device; the capacitor is connected 
across a switch (known as the 'points'), and the voltage developed across 
the ignition coil is applied to the sparking plugs. 

The points open and dose periodically (depending on the speed of the 
engine) and, in this problem, we need to calculate the maximum voltage 
across the coil (assuming, that is, the sparking plugs have not broken 
down). 

Solution 

We can assume that the points are dosed long enough for the current to 
have reached its steady-state value of 12 V/2 Q = 6 A, before the points are 
opened. 

The s-domain equivalent circuit is shown in figure 10.26, in which the 
initial condition source has a value of U(O) = 1 x 6 = 6 V (assisting the 
battery) and the corresponding mesh current equation is 

or 

I(s) 

12 - + 6 = l(s)(2 + s + 106/s) 
s 

12 
-+6 
s 

106 

s+2+­
s 

s+2 

12 + 6s 

6---------
(s + 1)2 + [(103)2 - 1] 

s + 1 
6 ------ - 6 X 10-3 ------

(s + 1)2 + (103)2 (s + 1)2 + (103)2 
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Figure 10.26 Automobile ignition circuit in the s-domain. 

s + a 

~ Li(O) = 6 

t VL(s) 

w = 6 - 6 X 10-3 - ___ _ 

(s + a)2 + w2 (s + a)2 + w2 

Taking the inverse transform gives 

i(t) = 6e-t cos loo0t - 6 x 1O-3e-t sin l000t 

For all practical purposes we may ignore the second term, hence 

i(t) = 6e-t cos loo0t 

The voltage across the ignition coil is, therefore 

di(t) 
vL(t) = L -- = 6 x (-1000) x 6e-t sin 1OO0t 

dt 

= -6000 e-t sin 1000t V 
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The periodic time of the sinusoid is T = 2rrJw = 2nll000 s or 2n ms. The 
maximum voltage occurs when the sinusoid is maximum, or when t = n/2 
ms, at which point sin 1000t = 1. Hence 

vL(max) = -60ooe-ltI2OOO = -5990 V 

10.12 s-Domain transfer functions 

A transfer function is the ratio of the response of the circuit to the forcing 
function applied to the circuit. Having obtained the transfer function of the 
circuit or system, it is a matter of applying circuit analysis to obtain the 
output. 

The technique for obtaining the s-domain transfer function follows the 
same general lines as in the frequency domain, and worked example 
10.12.1 illustrates the general method. 

Worked example 10.12.1 

Determine the s-domain transfer function H(s) = Vo(s)IV)(s) for the circuit 
in figure 10.27. Assume that the operational amplifier is ideal. 
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c 

i,(t) 

V,(t) I R, 

Figure 10.27 Figure tor worked example 10.12.1. 

Solution 

Since the op-amp is ideal we may assurne, for the purpose of analysis, that 
vx(t) = O. That is 

and 

also 

i1(t) = vl(t)/R I or 

or 

I.(s) = V.(s)/R I 

Iz(s) = I.(s) 

Now, since Iz(s) = I.(s), then 

Vo(s) -Iz(s)Ri(l + R2Cs) 
H(s) = --= --'--'-----'-----'-

V.(s) I.(s)R2 

10.13 Transients in magnetically coupled circuits 

The time-domain equations for the coupled circuit in figure 1O.28(a) are 

di1(t) di2(t) 
v1(t) = LI d(+ Md( 



(a) 
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V,(s) 

L,i,(O) + Mi,(O) --
1,(s) 

(b) 

L,i,(O) + Mi,(O) ---
1,(s) 
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V,(s) 

Figure 10.28 (a) Basic two-winding magnetically coupled circuit, (h) s-domain equivalent 
circuit with isolated windings. 

Taking Laplace transforms of these equations gives 

V1(s) = L1[sI1(s) - il(O)] + M[slz(s) - i2(0)] 

VZ<s) = M[sll(s) - il(O)] + L2[slz(s) - i2(0)] 

or 

V1(s) = L1sl1(s) + Mslz(s) - [L1il(0) + Miz(O)] 

Vz(s) = Msl1(s) + L2s1z<s) - [L2i2(0) + Mil(O)] 

where i l (0) and i2 (0) are initial currents in LI and L 2 , respectively. The 
s-domain equivalent circuit in figure 1O.28(b) is modelled on these equa­
tions. Worked example 10.13.1 illustrates how these equations can be used 
to solve for the transient solution in a magnetically coupled circuit. 

Worked example 10.13.1 

Derive expressions for the current in the primary and secondary winding of 
the transformer in figure 1O.29(a). There are no initial conditions in the 
circuit. 

Solution 

We should note in figure 10.29(a) that (1) theprimary winding is excited by 
a step function of direct voltage and (2) the current is assumed to leave the 
dotted terminal of the secondary winding. The second point means that the 
s-domain equivalent circuit appears as shown in figure 10.29(b). The mesh 
equation for the primary circuit is 

10 
- = (20 + O.ls)ll(s) - 0.051z(s) s 
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(a) (b) 

Figure 10.29 Figure for worked example 10.13.1. 

and for the secondary is 

0= -0.05sI1(s) + (20 + [0.1 + O.Ol]s)Iis) 

= -0.05sI1(s) + (20 + O.11s)Iis) 

The equation for the secondary circuit shows that 

20(20 + O.11s) 
Il(s) = 12(s) 

S 

Substituting this expression into the primary circuit equation yields 

or 

10 [(20 + 0.lS)20s(20 + O.11s) ] 
S = Iis) - 0.05s 

[ 0.17s2 + 8
s
4S + 8000] 

12(s) 

10 

0.17s2 + 84s + 8000 

58.82 

S2 + 494s + 47 059 

whence W n = V47 059 = 216.9 radis, and 2Cwn = 494 or C = 1.14. That is, 
i2(t) has an overdamped response. Completing the square in the denomina­
tor of the equation gives 

58.82 0.498 X 118.2 
I(s) - =------

2 - (s + 247)2 - 118.22 (s + 247)2 - 118.22 
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= 0.498 ß 
(s + a)2 - {f 

The table of transforms gives 

iit) = 0.498e-247t sinh 118.2t 
= 0.498e-247t(e118.21 - e-118•21)/2 
= 0.249(e-I28.8t - e-36S·2t) 

The longest time constant is 1/128.8 = 7.76 ms, andthe transient will have 
died away in 5 x 7.76 = 38.8 ms (say 40 ms). 

The transform of the primary current is obtained by inserting the ex­
pression for 11(s) into the mesh equation of the secondary as follows 

() 20(20 + O.l1s) () 
I 1 S = 11 S 

S 

20(20 + O.l1s) 58.82 
= -'------'- -------

S S2 + 494s + 216.92 

= 1176.4 [ 20 + 0.11 ] 
s(r + 494s + 216.92) r + 494s + 216.92 

The first expression inside the brackets is reduced into partial fraction form 
(see chapter 15 for details) to give the following 

20s 494 x 20 
--+----

1764[ 20 216.92 216.92 0.11] 
Ms) = 1 . 216.92s - s(r + 494s + 216.92) + r + 494s + 216.92 

= 0.5 _ 0.5 s + 494 + 1.095 118.2 
s (s + 274)2 - 118.22 (s + 274)2 - 118.22 

For simplicity, we will write (s + 274)2 - 118.22 = [D], giving 

1 (s) = 0.5 _ 0.5 s + 247 _ 0.5 247 + 1.095 118.2 
1 s [D] [D] [D] 

= 0.5 _ 0.5 s + 247 + 0.05 118.2 
s [D] [D] 

= 0.5 _ 0.5 s + a + 0.05 ß 
s (s + a)2 - W (s + a)2 - W 

The inverse transformation gives 

i1(t) = 0.5 - 0.5e-247t cosh 118.2t + 0.05e-247t sinh 118.2t 
= 0.5 - O.225e-128.8t - O.275e-365.2t A 
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The primary steady-state current is 0.5 A (as could be observed from the 
d.c. conditions in the Circuit) and, once again, the longest time constant in 
the expression for i1(t) is 1/128.8 = 7.76 ms so that the transient part of i1(t) 
will have died away after 38.8 ms (say 40 ms). 

Unworked Problems 

10.1. A voltage given by 

v(t) = u(t) - 4u(t - 2) + 3u(t - 4) V 

is applied to a 2 Hinductor. Deduce an expression for the current 
in the inductor. 
[0.5r(t) - 2r(t - 2) + 1.5r(t - 4) A] 

10.2. Deduce the Laplace transform of (1 - e-at) , where ais a constant. 
[a/(s(s + a))] 

10.3. Evaluate the Laplace transform of f(t) = u(t) - u(t - a). 
[(1 - e-sa)/s] 

10.4. A cyclic sawtooth waveform whose first cycle is described by 
f(t) = (t) for 0 :s;; t:s;; 1, after which it instantly becomes zero again. 
Determine the Laplace transform of the wave. 
[(1 - (s + l)e-S)/( (1 - e-S)s2)] 

10.5. Determine the Laplace transform of the function 
(a) (t - a)e-a(t - a)u(t - a) 
(b) ö(t) + (a - b)e-btu(t). 
[(a) e-as/(s + a)2; (b) (s + a)/(s + b)] 

10.6. A voltage E is applied at t = 0 to aseries circuit containing a 
resistor R, an inductor Land a capacitor C, with no initial condi­
tions in the circuit. Derive an expression for the current, i(t), if the 
circuit is (a) underdamped, (b) critically damped, (c) overdamped. 

(a) ~ e-\;Wnt sin w t· (b) E te-wnt. 
woL 0' L ' 

(c) ~ e-\;Wnt sinh at, where a = WO V({; - 1) 
aL 

10.7. A capacitor is charged through a pure resistor by a battery of 
constant voltage E; derive an expression for the instantaneous 
charge on the capacitor if it is initially uncharged. If C = 10 IlF and 
R = 1 MQ, calculate the time taken for the capacitor to receive 85 
per cent of its final charge. 
[CE(l - e-tIRC); 18.97 s] 
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i(t) 

20u(t) t 

Figure 10.30 

10.8. Calculate the time taken for i(t) in figure 10.30 to fall to 4 mA. 
[0.035 s] 

10.9. A direct voltage, VI' is applied to a coil of resistance 10 Q and 
inductance 1 H, and is maintained constant until all transients have 
settled out. At this time the voltage is changed to V2 • (a) Derive an 
expression for the current in the coil after the voltage has changed 
to V2. If (b) VI = 200 V and V2 = 100 V, (c) VI = 100 V and 
V2 = 200 V, calculate the current in the coil at (i) 0.1 s, (ii) 0.3 s 
after the voltage has changed. 
[(a) (V2 + (VI - V2)e-Rt'L)/R; (b) (i) 16.32 A, (ii) 19.5 A; 
(c) (i) 13.68 A, (ii) 10.5 A] 

10.10. A surge generator used for testing high-voltage electrical apparatus 
produces its voltage by initially charging a number of parallel­
connected capacitors to a very high voltage. To produce the voltage 
surge, the capacitors are connected in se ries giving, in this case, a 
total voltage across the series-connected capacitors of 300 kV .. 

The equivalent circuit of the surge generator is shown in figure 
10.31; the spark gap merely acts as a switch and, for the purpose of 
analysis, can be regarded as a short-circuit. The apparatus under 
test, connected between terminals A and B, can be regarded as 
having an infinite impedance. Determine an expression for the 
voltage across the apparatus under test. 
[242(e-O·02t - e-498t) kV (t in IlS)] 

Spark 
1 mH 

___ -oA 

~----------~---oB 

Figure 10.31 
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10.11. In problem 10.10, calculate the maximum voltage between A and 
B, and the time taken to reach the maximum value. 
[235.7 kV; 1.11 lAs] 

10.12. Aseries circuit contains a 10 Q resistor and a 0.1 Hinductor. If a 
voltage of lOe-50lu(t) is applied to the circuit, deduce an expression 
for the current in the circuit. 
[2( e-lOOI - e-50I)] 

10.13. A circuit containing a resistance of 20 Q in series with an induct­
ance of 0.2 H is energised by a voltage v(t) = 250 sin(300t + cf» V. 
Deduce an expression for the current in the circuit if the supply is 
connected when (a) cf> = 0°, (b) cf> = 90°. There are no initial 
conditions in the circuit. 
[Ca) 3.95 sin(300t - 71.57°) + 3.75e-lOOI A; 
(b) 3.95 sin(300t + 18.43°) - 1.25e-lOOI A] 

10.14. A magnetically coupled circuit similar to that in figure 10.29 has the 
following values: d.c. supply = 20 V, resistance in the primary 
circuit = 10 Q, L l = 0.2 H, L 2 = 0.4 H, M = 0.1 H. The load is a 
pure resistor of 10 Q resistance, and there are no initial conditions 
in the circuit. Derive an expression for the current in the primary 
and in the secondary windings. 
[il(t) = 2 - 0.292e-22 66/ - 1.708e-63061 A; i2(t) = 0.707(e-22 66/ - e-63(61) 
A] 

10.15. Calculate, for problem 10.14, the maximum value of i2(t) and the 
time when it occurs. 
[0.255 A; 0.025 s] 

10.16. Derive the transfer function v2(S)/V l (s) for the RC network in figure 
10.32. 

[ (s + 1/(Rl Cl) )(s + 1/(R2C2» ] 
s2RlR2ClC2 + s(RlCl + RlC2 + R 2C2) + 1 

R, 

Figure 10.32 
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R, R, 

Figure 10.33 

t = 0 t = 0 

Figure 10.34 

10.17. Derive v2(S)/V1(s) for figure 10.33. 
[1I(S2R1R2C1C2 + s(R1C1 + R1C2 + R2C2) + 1)] 

an 
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10.18. If both switches in figure 10.34 are closed when t ~ 0, and both 
capacitors are fully charged when t = 0, determine an expression 
for i(t) for t > 0 if both switches are simultaneously opened when 
t = O. 
[e-035t A] 



11 
Complex Frequency, the 
s-Plane and Bode Diagrams 

11.1 Introduction 

This chapter introduces an important aspect of circuit analysis, namely 
complex frequency. This is a unifying concept which ties together many 
analytical techniques into a ne at package. 

Complex frequency is introduced by looking at an exponentially 
damped sinusoidal function, for example the voltage 

(11.1) 

where ais areal quantity, and usually has a negative value. While the 
reality of the equation (11.1) is not easy to grasp we have, in fact, looked at 
it in other forms on several occasions. 

For example, in the case of a direct voltage, both a and ware zero, 
giving 

v(t) = Vm cos (J = Vdc 

In the general sinusoidal case, ais zero, giving 

v(t) = V m COS (wt + (J) 

If we allow w to be zero, then we have the exponential case as follows 

v(t) = V meot cos (J = Vdceot 

Thus the general expression in equation (U.1) includes the d.c. case, the 
general sinusoidal case and the exponential function. 

Initially in this chapter we look at the mathematical aspects of complex 
frequency and the s-plane, and then we transform the impedance of ele­
ments into the s-domain. This is particularly important when we study 
topics such as the frequency response of circuits and Bode diagrams. Once 
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we have mastered the concept of the s-domain 'impedance' of simple 
elements, it is a relatively simple step to determine the s-domain im­
pedance of complete circuits. 

11.2 The exponential form of a complex number 

Expanding eiß as a Maclaurin series we get 

( . ()2 ( . ()3 
eiß = 1 + j() + _J_+_J_ + ... 

2! 3! 

= (1 _!!.-+!!.-- ... ) + j (() -~+~- ... ) 
2! 4! 3! 5! 

= cos () + j sin () 

It mayaiso be shown that 

e- iß = cos () - j sin () 

That is to say, eiß is a complex number, and can be represented by a point 
which is unit distance from the origin and subtending an angle () with the 
real axis. Hence any point v, at distance V from the origin and subtending 
angle () with the real axis can be represented in the form 

v = Veiß = V(cos () + j sin () 

The reader should note that for any point v, there is an infinite number of 
other corresponding points, but differing from one another by an angle 
which is an integral number of 2Jt radians, that is their angle is «() + 2Jtn), 
where n is an integer. 

11.3 Complex frequency 

If () = rot, we may write 

ej9 = cos rot + j sin rot 

or if s = a + jro, where s is known as the complex frequency, then 

eS' = e(a + iw), = eoteiw' 
= eot( cos rot + j sin rot) 

If the magnitude of the expression is V, then 

ve' = Veot(cos rot + j sin rot) 

Let us consider the effect of various values of a and ro in the above 
expression: 
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(1) v(t) = 10 
(2) v(t) = 8e-51 

(3) v(t) = 4 cos 20t 

(4) v(t) = 7e-2tcos 40t 

(5) v(t) = 6e71 cos (9t + 30°) 

S = 0 + jO 
S = -5 + jO 
SI = 0 + j20 
S2 = sr = 0 - j20 
SI = -2 + j40 
S2 = sr = - 2 - j40 
SI = 7 + j9 
S2 = sr= 7 - j9 

Expression (1) corresponds to a 'd.c.' term in which there is no growth or 
decay of the function, nor is there any sinusoidal oscillation. Expression (2) 
is an exponentially decaying function in which u = -5; the larger the 
negative value of u, the more rapid the decay of the function. A positive 
value of u corresponds to a function which grows exponentially. 

The third expression is that of a sinusoid with no growth or decay in its 
magnitude. In this case, there is a pair of values of s, one being the 
conjugate of the other. Since each value of S possesses both real and 
imaginary parts, the sum of the two values identifies areal sinusoidal 
frequency; in this case the angular frequency is 20 radis. 

In a similar manner there are, in expression (4), a pair of conjugate 
values; in this case there is an exponential decay associated with the 
u = - 2 component. Finally, expression (5) is related to a sinusoid which 
grows exponentially with time. 

It is interesting to note that, in each conjugate pair of values, one has a 
negative value of w! Such a value does, in fact, exist. For example, if we 
look at the expression for the compound angle 

cos (- 40t + 4J) = cos (-40t).cos 4J - sin (-40t).sin 4J 
= cos 40t. cos 4J + sin 40t. sin 4J 
= cos (40t - 4J) 

This implies that it has the same frequency as the function cos (40t - 4J), 
but it has a different numerical value at time t. 

Where there is a product term such as 9 sin 8t.cos 5t, the roots contain 
the sum and difference of the frequencies. In this case the roots are SI = 
j(8 + 5) = j13, S2 = -j (8 + 5) = -j13, S3 = j(8 - 5) = j3, S4 = -j(8 - 5) = 
-j3. 

Generally speaking, the larger the value of u, the more rapid the rate of 
growth or decay of the quantity; the greater the value of w, the higher is 
the frequency. 

11.4 The s-plane 

We can map complex frequencies on the s-plane, as shown in figure 11.1, 
where U is plotted in the horizontal or 'real' direction, and w is plotted 
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c ___ \ _ 

s=:+ja>, V" 
-0, 

-o-.----~~--------__ ----~------------._---------4~+a 

" -ja> ---.r-
Figure 11.1 Waveforms for complex frequencies in the s-plane. 

in the vertical or 'imaginary' direction. At the origin of the graph, 
where s = 0 + jO, we get a unit step or 'd.c.' condition. At point A, the 
function decays with time constant of l/a; at point B, the function 
oscillates at a frequency of W t radis (note: the conjugate point is not 
shown in the figure). If 1- al > 1 wl, the rate of decay will is fairly smalI. 

The reader is reminded that a pair of conjugate points is necessary to 
give a sinusoidal oscillation. A complex pair of points in the right-hand half 
of the s-plane (see point D - note: the conjugate point is not shown in the 
figure ) gives rise to an oscillatory signal which grows exponentially to 
infinity. 

In general, a conjugate pair of points in the right-hand half of the 
s-plane represents an unstable condition. 

11.5 Transformation of impedance into the s-domain 

Just as we have associated the sinusoid I cos (wt + </J) with phasor I = lei</>, 
we can relate an impedance with its s-domain equivalent as folIows. 

Resistance 

The relation between the voltage applied to a resistor and the current 
through it is given by Ohm's law as follows 
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v = Ri 

If i = Ieutei(rut + 4» = Iei4>est, then the voltage aeross the resistor is 

v = Veutei(rut + 4» = Vei4>est 

That is 

or Vei 4> = Rlei4> 

therefore 

VL4> = RIL4> 

henee 

Z(s)=VL4>=RLO° 
R IL 4> 

and YR(s) = lIR 

Inductance 

In a pure induetor VL = L(dildt); if the eurrent is = Iei4>est and 
VL = Vei8est , the v-i relationship is 

or 

henee 

That is 

Vei8est = L~(Iei4>est) 
dt 

Vei8 

VL8 

= Lslei8est 

Lslei8 

LsIL 8 

v = LsI 

The s-domain impedanee of a pure induetor therefore is 

V 
ZL(S) =-= Ls 

I 

and YL(s) = l/Ls 

Capacitance 

Here the relationship is i = C(dvc/dt), and 

Iei4>et = C~ (Vei8est) 
dt 



or 

hence 

that is 
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IL cp 
I 

CsVe j9 

CsV L cP 

CsV 

and the s-domain impedance of a pure capacitance is 

and 

V 1 
Z (s) =-=­

C I Cs 

Series and parallel combination 0/ similar elements 

The reader should note that the usual rules apply to series and parallel 
combinations of similar elements. For example, if two resistors of resist­
ance Rare connected in series, then ZR(S) = 2R, and if connected in 
parallel then ZR(S) = R/2. If two inductors of inductance L are connected in 
series, then ZL(S) = 2Ls, and if connected in parallel then ZL(S) = Ls/2, etc. 

11.6 Frequency response as a function of w 

We now consider the forced response of circuits as the supply frequency w 
(or f) changes; during this section we assurne that a = 0, or S = jw. We can, 
therefore, either develop circuit equations in terms of S or in terms of jw. 
Generally speaking, the former is more useful since it is difficult, when 
terms have been multiplied, to convert an equation from the jw form to the 
s form beeause it is not always possible to know how many 'j' terms were 
involved (remember: j2 = -1, j3 = - j, j4 = 1, ete). 

Initially we consider the frequeney response of a fairly simple eircuit -
the RC parallel eircuit in figure 11.2 - in order to define some basic terms. 
We look at the way in whieh both the magnitude and the phase shift vary 
with frequeney. The impedanee of the circuit is 

z-3j 
Figure 11.2 A simple Re parallel circuit. 
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-w -----j---->t<~-t---- w 
1 

Re -450 

-w --+---t---+, - __ w -900 
-------

1 
Re 

o 

(a) 

1 
Re 

-q, 

(b) 

Figure 11.3 (a) Magnitude-trequency plot tor +00 and -w ot the impedance tor figure 
11.2, and (b) the phase-trequency plot. 

R R(lICs) 

R + lICs 1 + RCs 

Alternatively, we can evaluate Z(jw) simply by replacing s by jw as 
folIows: 

') R(lIjwC) R 
Z(Jw = =----

R + lIjwC 1 + jwRC 

= y' R L-tan-1(wRC) = IZILljJ 
(1 + [WRC]2) 

where both Izi and ljJ are functions of w. 
The curve showing how the magnitude of the impedance changes with 

frequency with both + wand - w is drawn in figure 11.3(a), and the 
corresponding phase-frequency plot is in figure 11.3(b). The two curves 
comprise the jrequency response of the impedance Z. It can be shown that 
the magnitude curve is symmetrical about the w = 0 axis; the phase angle 
has its sign reversed for w < O. For these reasons, we generally need only 
interest ourselves in the frequency response for positive values of w. 

Consider now the power consumed by the circuit at the frequencies 
w = 0 and w = lIRC; we williater refer to the latter frequency as w\. At 
w = 0, the capacitive reactance is Xc = lIwC = 00, and no current flows in 
it at this frequency. If the circuit is energised by a current source I, then all 
the current flows through the resistor, and the power consumed at zero 
frequency is 

Po = RI/12 

and is the maximum power consumed by the circuit. At frequency w\, the 
current in the resistor is 



Complex Frequency, the s-Plane and Bode Diagrams 273 

I 
1 1 --------

R + lIjw1C 1 + jw1CR 1 + j 

1 =_1_ L _ 45o 
V2L45° V2 

and the power consumed at frequency w1 is 

P = 1~12 R = 1l12R = Po 
1 V2 2 2 

That is, the power consumed when w1 = lIRC is one-half the maximum 
power. Consequently, we say that w1 is the half-power frequency, or the 
half-power point, or (for reasons given later) the cut-off frequency. In 
general, a frequency (and there may be more than one of these) which 
gives a power response which is one-half of the maximum response is 
known by one of the above names. 

In the above case, the phase shift at the half-power frequency is -45°. 
In general, depending on the circuit, the phase shift at a half-power point is 
±45no, where n is an integer. 

We will now look at two simple examples which are of particular interest 
when we study resonance (see chapter 12). 

Worked example 11.6.1 

Sketch the frequency response curve for the impedance of a two-branch 
parallel circuit which has a pure inductor, L, in one branch, and a pure 
capacitor, C, in the other. 

Solution 

Although this is an idealised situation (strictly speaking, there is no such 
thing as a 'pure' Land a 'pure' C), it will be very helpful in giving an 
overall view of the frequency response of this type of circuit. The complex 
frequency impedance is 

Z(s) 
Ls(lICs) Ls 

Ls + lICs 1 + LCs2 

or, replacing s by jw 

(. ) jwL wLL90° 
Z )w = 1 + LC(jwY = 1 - w2LC 

when w = 0, then Z(jw) = OL90°. As w increases in a positive direction, 
the magnitude of Z(jw) increases and the phase angle remains constant at 
90°. However, at some frequency Wo, the denominator has zero value; this 
is when olöLC = 1, or 
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-w~----,-----~'-----,---~~W 

-

o 
(b) 

900 -1------....., 

-W _--+-------+------+-____ (j) 
o 

'---____ -I - -900 

-rp 
(c) 

Figure 11.4 (a) Parallel LC eireuit, (b) the magnitude response and (e) the phase response. 

Wo = l/V(LC) 

This is shown in figure 11.4. 
At this frequency, which is known as the resonant [requency, Wo, the 

denominator of the impedance equation is zero, and the magnitude of the 
impedance is infinity. When W > Wo, then 01 LC > 1 and the magnitude of 
the impedance begins to diminish until, at W = 00, IZ(jw)1 = o. 

Also, when w2LC > 1 the sign of the denominator of Z(jw) becomes 
negative, resulting in the phase shift becoming - 90°. 

The corresponding values for - ware shown in figure 11.4. 

Poles and zeros 

At this point we will define two critical values of complex frequency s, one 
being known as a zero and the other as a pole, which determine both the 
transient and the steady-state behaviour of a circuit. A zero is a value of s 
which makes the value o[ a complex function equal to zero, and a pole is a 
value of s which makes the value o[ a complex function equal to infinity. 
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Figure 11.5 (a) Series resistaneeless LC cireuit, (b) the magnitude response o[ the 
impedanee o[ the cireuit and (e) the phase response. 

Zeros occur in the numerator of the expression, and poles occur in the 
den omina tor . Since the complex impedance in this problem is 

Ls 
Z(s) ----

1 + LC~ 
there is a zero at s = 0, and a pair of poles at s = Wo = lIv'(LC) and 
s = - Wo = -lIv'(LC). The two poles form conjugate points on the 
s-plane (see section 11.4). 

Worked example 11.6.2 

Repeat worked example 11.6.1 but for aseries circuit containing a pure 
inductor and a pure capacitor. 

Solution 

The circuit is shown in figure 11.5(a), and the circuit impedance is 
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1 
Z(s) =Ls+­

Cs 

or, replacing s by jw 

Z(jw) = jwL --j-= j (WL __ 1_) = _j(_1 __ WL) 
wC wC wC 

= (~C - wL ) L - 90° Q 

Clearly, when w = 0, IZ(jw)1 = 00 (see diagram (b», and the phase shift is 
-90°, as shown in diagram (e) of figure 11.5. As the frequeney (+ w) 
inereases, IZ(jw)1 deereases in value and the phase angle remains eonstant 
at -90° until some frequeney Wo, when woL = lIwoC. At this frequeney 
(wo = lIV(LC», whieh is the resonant frequency of the series cireuit, the 
modulus of the eireuit impedanee is zero. 

When w > wo, Z(jw)1 inereases with w, finally approaehing infinity as w 
approaehes infinity. At the same time, the phase shift beeomes +90°, as 
shown in figure 10.5. 

Corresponding values for -ware also shown in the figure. 

11.7 Transfer functions 

Often we need to look at the frequeney response of the ratio of the foreed 
funetion, for example, the output voltage or eurrent, to the foreing fune­
tion whieh produees it, whieh mayaiso be a voltage or eurrent. The ratio of 
the foreed funetion to the foreing funetion is known as the transfer function 
H(s) or H(jw). That is 

or 

or 

H(s) = response (s) = output (s) 
foreing funetion (s) input (s) 

( . ) response (jw) 
H JW = ---=---";';;""-'---

foreing funetion (jw) 

output (jw) 

input (jw) 

We ean, for example, look on impedanee as a transfer funetion in which 

V 
H(s) = Z(s) = - (s) 

I 

H(jw) = Z(jw) = ~ (jw) 
I 



Complex Frequency, the s-Plane and Bode Diagrams 277 

where V is the response and I the forcing function. In general, a transfer 
function may take on one of many dimensions. For example, it may be 
dimensionless, as is the case when we are considering the voltage gain of an 
operation al amplifier; it may have the dimensions of impedance, as in the 
case considered above; it may have the dimensions of, say, radians per volt 
where we are considering the operation of a voltage-driven position control 
system, etc. 

Worked example 11.7.1 

Evaluate the transfer function V1(s) for the circuit in figure 11.6. 
VI 

Figure 11.6 Figure for worked example 11.7.1. 

Solution 

Bearing in mind that the two 1 F capacitors are connected in series (giving 
an effective capacitance of 0.5 F), the transfer function is 

H(s) 
Vb) 0.8 + lIs = -- = -------
VI(s) 1 + 8s + 1I0.5s 

0.125(1 + 0.8s) 

S2 + 0.125s + 0.25 

0.125(1 + 0.8s) =---------'---"""'"-----
(s + 0.0625 + jO.5)(s + 0.0625 - jO.5) 

Worked example 11.7.2 

Derive an expression for H(s) = VO(s)/VI(s) for the operational amplifier 
circuit in figure 11.7. The operation al amplifier is ideal. This circuit is the 
basis of many active filter networks. 
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Figure 11.7 Figure for worked example 11.7.2. 

Solution 

The circuit is that of an active filter, and is applicable to a low-, a high- or a 
band-pass filter, according to the position of resistors and capacitors in the 
circuit (see also problem 11.11). 

At node 2 

11 = 12 + 13 + I. = (VI - V2 )YI 

The individual currents are 

12 = V2Y2 

I. = (V2 - Vo)Y. 

13 = (V2 - VS)Y3 

I s = (Vs - Vo)Ys 

Since the op-amp is ideal, Vs is practically zero, so that no current ftows 
into the amplifier, and 

13 = V2Y3 

I s = - VoYs 

Inserting the above expressions for current into thefirst equation gives 

V2Y2 + V2Y3 + V2Y. - VoY. = (VI - V2)YI 

and, after a little more algebraic manipulation we get 

H(s) = Vo = - YI Y3 

VI YS(YI + Y2 + Y3 + Y.) + Y3Y. 

At this stage we are dealing with an academic exercise, and the reader 
should note that the admittance values should be of an electrically accept­
able form. The reader should refer to problem 11.11 for typical values for a 
practical circuit. 
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V, V3 V. I. V. 
V, 

I, Z, 13 Z3 Z. I. 

Z. 

-

Figure 11.8 Figure tor worked example 11.7.3. 

W orked example 11.7.3 

Derive an expression for the input impedance, ZIn(s), for the generalised 
impedance convertor (GIC) in figure 11.8. The op-amps are ideal. 

Solution 

The purpose of a GIC is to convert an impedance of one kind into an 
impedance of another kind, that is, it makes a capacitor 'look' to the 
extern al circuit as though it were an inductor. This is particularly useful in 
integrated circuit applications where inductors are difficult to manufacture. 
The circuit layout in figure 11.8 looks fairly involved, but it is drawn in this 
way to make the analysis as simple as possible. 

Since the op-amps are ideal, the potential difference between the am­
plifier input terminals is practically zero. We may therefore say that VI = 
V3 and V3 = Vs; hence, we can use VI to represent both V3 and Vs. Also, 
since the op-amp input current is practically zero, we may say that 14 = I s, 

therefore 

or, using the above simplification 

V4 - VI = VI or 
Z4 Zs 

Also 12 = 13 , or 

that is 

V2 - VI 

Z2 



280 Electrical Circuit Analysis and Design 

v = V ( 1 _ Z;Z4 ) 
2 I Z;Zs 

The input impedance of the circuit is 

VI VI 
Zin(S) =1= (V - V)/Z 

I I 2 I 

ZI Z3ZS 

Z2 Z4 

ZI 

If ZI = Z2 = Z3 = Zs = Rand Z4 = lIsC, then 

RxRxR 
Zin(s) = R/sC = (R2C)s = Ls 

That is, the capacitor C in the Z4 position appears as though it were an 
inductor L at the input of the circuit, where L = R2C H. If R = 1 kQ and C 
= 1 IlF, then L = 10002 X 10-6 = 1 H. 

11.8 Bode diagrams 

In order to understand more fully the way in which the magnitude and 
phase shift of a transfer function of a given circuit changes with frequency, 
we need a simple method of estimating the shape of the curves. Accurate 
curves can be plotted after so me more-or-Iess frantic manipulations with a 
calculator (or a programmable calculator), or they can be obtained directly 
by an all-out assault using a computer (see also chapter 14, where the 
SPIeE package is described). However, in the short term, we need a fairly 
quick method of obtaining the response curves; one method has been 
provided by Hendrik Bode of the Bell Telephone Laboratories, and is 
described here. 

We have already met with frequency response in section 11.6, where 
simple frequency response diagrams were described. Here we look in a 
little detail at the frequency response of more general forms of transfer 
function in electrical circuits. 

Many transfer functions combine elements having an equation similar to 
the following 

H(s) = K (s + ZI)(S + ZI) .. . 
s"(s + PI)(S + PI) .. . 
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where K is a constant gain (or attenuation) factor which is independent of 
frequency, z is a frequency at which a zero occurs in the complex frequency 
plane, p is a frequency at which a pole occurs in the complex frequency 
plane and n is an integer. 

Finally: there may be quadratic terms in the denominator , similar to the 
one shown below, which can give rise to aresonant effect. 

First, we must look at the way in which we can estimate the overall 
magnitude and phase response from the many parts of the transfer function 
of the system. 

A Bode diagram is an asymptotic plot of the magnitude and phase of the 
transfer function to a base of frequency, so that we can write the above 
equation as a function of w in the following form 

H(jw) = IH(jw)1 LH(jw) 

IHI(jw)1 LHI(jw) X IHz(jw) I LHz(jw) .. . 

IH3(jw)1 LH3(jw) X IHljw)1 LHljw) .. . 

IHII X IHzl X . . . ( 
= I I I I arg LHI +LHz + ... - {LH3 +LH4 + ... }) H3 X H4 X ... 

The final expression teIls us that the overall magnitude is obtained by 
multiplying (or dividing) individual magnitudes of each part of the transfer 
function; the overall phase shift is obtained by adding (or subtracting) the 
individual phase angles of the different parts. 

This may see m a relatively complex procedure, but it can be reduced to 
aseries of simple steps when we look at the basic techniques for expres­
sions commonly found in electrical and electronic circuits. 

To simplify the process of drawing the diagrams, both the magnitude 
and phase curves are drawn to a logarithmic scale for the abscissa. The 
phase scale is drawn linearly; to simplify the multiplication and division of 
the magnitude values, the magnitude scale is in logarithmic units called 
decibels (dB), where the decibel is defined as follows 

H dB = 20 log IH(jw)1 

and logarithms to base 10 are used. 
The Bode diagram yields two graphs. One is the magnitude or gain 

expressed in dB plotted to a base of frequency (or to a function of 
frequency, which may be dimensionless) on a logarithmic scale. The other 
is a graph of phase shift (usually in degrees) plotted to the same logarithmic 
frequency base. 
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Figure 11.9 Bode diagram (a) magnitude plot, (b) phase plot tor H(joo) = K. 

Normally both graphs are drawn on the same sheet of log-linear paper. 
In this way it is possible, at a glance, to review the frequency response of 
the system. 

11.9 Bode diagram of H(joo) = K 

If K = 18, the decibel magnitude is 

H dB = 20 log 18 = 25.1 dB 

for all 00, and results in the graph in figure 1O.9(a). 
The phase shift for a simple numeric gain factor is zero for a11 00, as 

shown in figure 11. 9(b ). 

11.10 Bode diagram of H(jw) = (jWT)" 

In this case the dB gain is 

H dB = 20 log IjwTln = 20n logY(wT)2 
= 20n log WT 

If n = 1, the way in which the magnitude changes with WT is shown in table 
11.1. We see from the table that the graph is a straight line having a slope 
016 dB/octave (strictly speaking, it is 6.02 dB/octave), meaning that there 
is a change of 6 dB in the magnitude each time the frequency changes by a 
factor of 2. Altematively, the slope is 20 dB/decade (that is, a change of 20 
dB for each ten-fold change in frequency), as shown in figure l1.lO(a). A 
look at the mathematics shows that the slope of the magnitude plot, for any 
integer n, is 6n dB/octave (approx.) or 20n dB/decade. 

The phase angle associated with (jWT)" is 

L(jWT)" = L(j)" = 9On° 
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Table 11.1 

roT HdB Slope o[ graph 

0.1 -20 

} 6 dB/octave 20 dB/decade 
0.2 -14 (approx.) 

1.0 0 

} 6 dB/octave 20 dB/decade 
2.0 6 (approx.) 

10.0 20 ) 20 dB/decade 
100.0 40 

H •• n=2 LHUw) 

40 180· 

20 90-

0 w~ 0 
0.01 0.1 

-20 _90· 

-40 

(b) 
n =-1 

(a) 

Figure 11.10 (a) Magnitude plot ofH(joo) = (jOO't)D for n = -1, 1 and 2, 
(b) corresponding phase plot. 

10 

This is illustrated in figure 1l.10(b) for values of n of - 1, 1 and 2. 

11.11 Bode diagram of H(jw) = (1 + jWT) 

Gain-frequency plot 

The expression for the gain in dB of this expression is 

HdB = 20 log 11 + jWTI = 20 log V (1 + ah2) 

n=2 

n=l 

w~ 

100 

n =-1 

We will look at the value of this expression over two ranges of frequency, 
namely (1) when (WTY « 1 and (2) when (WT)2 » 1. 
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Figure 11.11 (a) Asymptotic magnitude-frequency plot lor H(jw) = (1 + jw'C), 
(b) a means 01 sketching the curve in the region 01 the corner frequency. 

1. (wr)2 « 1 
In this case HdB = 20 log v' (1 + w2r2 ) :::= 20 log 1 = 0 dB for all w within 
this frequency range. This results in the low-frequency asymptote in 
figure 11.11(a), which lies on the 0 dB axis. 

2. (wr)2» 1 
Here HdB = 20 log v' (1 + w2r 2 ) :::= 20 log wr, which is a straight line of 
slope 20 dB/decade cutting the 0 dB axis when wr = 1 (see also section 
10.11). This gives the high-frequency asymptote (see figure 11.11(a)) 
which cuts the Wi axis at Wi = 1 or where W = 1Ii. 

Clearly, the two asymptotes intersect when the high-frequency asymp­
tote has the value HdB = 0, that is, when wr = 1. This frequency is known 
as a corner frequency, wC ' 

Occasionally the asymptotes do not give sufficiently accurate informa­
tion to sketch the curve in the region of the corner frequency, and it is 
necessary to plot a few more points. In particular, values at the corner 
frequency together with frequencies which are one-half and double the 
corner frequency are usually sufficient to allow a fairly accurate curve to be 
sketched, as folIows. 
Magnitude at w = W c 
The actual gain at this frequency is 

HdB = 20 log v' (1 + 1) = 3 dB (strictly 3.01 dB) 

Magnitude at w = wc/2 and w = 2wc 
The dB gain at wc /2 is 1 dB (wh ich is 1 dB away from the low-frequency 
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asymptote), and at 2wc is 7 dB (which is 1 dB away from the high­
frequency asymptote). 
Magnitude at W ~ (wc/10) and W ~ 10wc 
The dB gain at these frequencies almost lie on the low- and high-frequency 
asymptotes, respectively. 

Taking these values into account, a plot of the gain curve in the region 
of the corner frequency is shown in figure ll.ll(b). 

Phase-frequency plot 

The phase-frequency response is calculated from the 

LH (jw) = L(1 + jWT) = tan-1wT 

This is a smoother curve than the magnitude-frequency asymptotic curve 
but, nevertheless, we can draw a simple asymptotic response as follows 
1. When WT is small 
Here, very approximately, we take this to mean 0 ~ WT < 0.1. 

LH (jw) ::::::: tan-1 0 = 0° 

2. When WT is large 

Here we can take this to mean 10 ~ WT < 00. 

LH (jw) ::::::: tan-1 00 = 90° 

3. When 0.1 < WT < 10 
The plot approximates in this region to a straight line which joins the low­
and high-frequency phase asymptotes. This is a line of slope 45°/decade. 

The resulting asymptotic phase-frequency curve is shown in full line 
figure 11.12. The actual phase curve is approximately 5° above the junction 
of the low- and mid-frequency asymptotes, and is 5° below the junction of 
the mid- and high-frequency asymptotes. The actual curve and the mid­
frequency asymptotic line intersect when WT = 1, whereLH(jw) = 45°. 

Worked example 11.11.1 

Aseries circuit contains a resistor of 25 n resistance and an inductor of 
0.25 H inductance. Write down an expression for the s-domain impedance 
of the circuit, and sketch the frequency response curve showing how the 
impedance varies with frequency. 



286 Electrical Circuit Analysis and Design 

LH(jw) 

90° 

45° 

Actual ~/ 
curve I 

I ~-- Asymptotic 
I plot 

o 
~~~-~~-r--~-~_wr 

0.01 0.1 10 100 

Figure 11.12 The simplijied asymptotic phase angle response tor H(joo) = (1 + joJ't). The 
actual curve is shown dotted. 

Solution 

The expression for the s-domain impedance is 

that is 

Z(s) = H(s) = R + Ls = 25 + 0.25s = 25(1 + O.Ols) 

Z(jw) = H(jw) = R + jwL = 25 + jwO.25 
= 25(1 + jwO.01) 

The final step in the impedance equations has been taken in order to 
convert the expression into the standard form developed in section 11.11. 

Initially, the equation is reduced to one containing the factors described 
earlier, namely a constant (= 25) and a term of the form (1 + jW'l'), that is, 
(1 + jwO.01). The magnitude in dB of each is drawn separately in figure 
1l.13(a) and, finally, the two are added to give the complete asymptotic 
magnitude plot, which is drawn in fulliine in figure 11.13(b). The K = 25 
factor gives a constant gain of 28 dB, and the (1 + jwO.01) term gives a 
break point at O.Olwc = 1 or W c = 100 radis. In this case, the Bode diagram 
has been plotted to a logarithmic base of frequency. The factor (1 + 
jwO.01) indicates that there is a simple zero at s = -100 on the s-plane. 

There is a correction of + 3 dB to be made at the corner frequency on 
the magnitude plot, and the corrected curve is shown in dotted line in 
figure l1.13(b). 

An inspection of the magnitude plot indicates that the impedance of the 
circuit changes from about 25 n (corresponding to 28 dB) at 10 radis (1.592 
Hz) to about 250 n (or 48 dB) at 1000 radis (159.2 Hz). 

Next we look at the phase plot. The constant term of 25 in the H(jw) 
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Figure 11.13 (a) Plot of the magnitude factors ofH(jw) = 25(1 + jwO.01), (b) the 
complete Bode magnitude plot. 

LH(jw) 

90° 
Linearised 
plot 

-+-r--='T---,---,,---"--W (radis) 
10 100 1000 10000 

Figure 11.14 The Bode phase plot for 25(1 + jwO.01). 

expression imparts zero phase shift, so that the overall phase shift is equal 
to that of the (1 + jroO.01) term. This produces corner frequency on the 
asymptotic phase plot (see figure 11.14) at 100 radis. If necessary, the 
asymptotic phase plot can be corrected to give an accurate curve, as shown 
in broken line in the figure. 

Normally, both the magnitude and phase plots are shown on one dia­
gram. 

11.12 Bode diagram of H(jm) = (1 + jmT)" 

As with the case of the H(jm) = (1 + jmT) response, the low-frequency 
gain is approximately zero dB up to a frequency of mT = 1, that is, m = 1fT. 
At this point the high-frequency asymptote assumes a slope of 20n 
dB/decade (or approximately 6n dB/octave), as shown in figure 11.15(a); the 
reader will find it an interesting exercise to verify the value of the slopes. 

Once again, the actual magnitude curve will deviate from the associated 
asymptotes, but in this case the deviation will be n times greater than in the 
case for the H(jm) = (1 + jmT) curve. That is, at the corner frequency, the 
deviation is 3n, dB, and at twice and one-half of the corner frequency the 
deviation is n dB from the associated asymptote. 
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n=3 n=2 
LHUro) 

270° 

180° 

90° 

ror 0 

_90° 0.01 

-180° 

-270° 

n =-3 n =-2 

(a) 

~--n=3 

._--n=2 

100 

--n=-2 

'----n=-3 

(b) 

Figure 11.15 (a) The magnitude-frequency and (b) the phase-frequency asymptotic 
response for H(jw) = (1 + jw"t)n. 

The phase shift (see figure 11.15(b)) is, as might be expeeted, n times 
greater at eaeh frequeney than it was for the H(jw) = (1 + jwr) eurve. 
Onee again, the angular deviation of the aetual eurve from the start of the 
low-frequeney phase asymptote, and the end of the high-frequeney asymp­
tote in figure 11.15 is 5n°. 

A reasonably aeeurate phase eurve (to within about 10 aeeuraey) ean be 
obtained with a little more trouble, by drawing straight-line segments 
between the points listed in table 11.2. 

Table 11.2 

(Ur 

0.01 
0.1 
0.5 
2.0 

10.0 
100.0 

Worked example 11.12.1 

Phase angle 

00 

5n° 
25n° 
65no 

85n° 
90n° 

The voltage gain, Vou/V1m of a transistor amplifier is 

Vout -2.5s 
H(s) = Vin (s) = (1 + sIlOO)(1 + silO 000) 

Draw the Bode diagram for the amplifier. 
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Solution 

The expression for the voltage gain can be written in the form 

. Vout . -0.5jw 
H(Jw) = Vin (Jw) = (1 + O.Oljw)(l + lO-Sjw) 

We can look at the solution in terms of the factors -0.5, JW, (1 + 
O.Oljw)-\ and (1 + 1O-5jw)-I, as follows: 

1. The gain associated with the constant factor is 

H dB = 20 log 1-0.51 = -6 dB 

and is shown as the broken li ne (1) in figure 11.16(a). The reader should 
note that the negative sign associated with the numerator is a 'phase' 
factor of 1800 rather than a 'gain' factor. 

2. The factor jw results in a gain which increases at a constant rate of 20 dB 
per decade, and passes through 0 dB at w = 1 radis, shown by broken 
line (2) in figure 11.16(a). 

3. The factor (1 + O.Oljw)-1 gives a corner frequency at w = 110.01 = 100 
radis, shown in broken line (3) in figure 11.16(a). 

4. The broken line (4) in figure 1l.16(a) corresponds to the factor 
(1 + 1O-5jw)-\ and has a corner frequency of 1110-5 = lOS radis. 

HdB /' 

40 / 

(a) //(2) 

(b) 

20 /' 
/' 

/' 
1 /' 10 100 103 10' 10' 10· 10' 

o / w (radIs) 
(1)· ---- -- ,---------...,.- -(1) 

/ ~ , 
~ , ' 

(3)~ (4)~ 

34dB 

20 

/-- ....... 

;.-", Actual curve /" 

Figure 11.16 The gain curve Jor worked example 11.12.1. 
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Figure 11.17 The phase curve for worked example 11.12.1. 

The overall magnitude response is the sum of the four separate elements, 
and is shown in figure 11.16(b). The corrections to the corner frequencies 
are shown in broken lines in figure 1l.16(b). The mid-band gain is seen to 
be 34 dB, corresponding to a numerical gain of 50. 

When dealing with the phase shift, we can divide the transfer function 
into three factors, namely (-0.5jw), (1 + O.Oljw)-l and (1 + lO-Sjw)-l, as 
folIows: 

a. The phase shift associated with the factor (-0.5jw) isL-j = -90°, 
shown as broken line (1) in figure 11.17. 

b. Tbe term (1 + O.Oljw)-l gives a phase lag which increases from zero (or 
thereabouts) to -90° (or thereabouts) over the range 10 radis to 1()3 
radis, shown as broken line (2) in figure 11.17. 

c. This is similar to (2), but the phase shift occurs over the frequency range 
1()4 to 1()6 radis, shown as broken line (3) in the figure. 

The total phase shift is the sum of the three phase shifts, and is drawn in 
full line in figure 11.17. The linearised phase plot can be corrected at the 
corner frequencies, as outlined earlier, and is shown in broken line in the 
figure. 

[ ~~o] + [~~O]2 11.13 Plot of H(jw) = 1 + 2~ <AI <AI 

This quadratic expression represents a conjugate pair of zeros (if it is in the 
numerator of a transfer function) or poles (if in the denominator) on the 
s-plane; these frequently occur in electrical and electronic circuits. The 
quantity ~ is the damping factor, imd Wo (as we shall see later) is the corner 
frequency of the asymptotic response for this'function; when ~ = 0, Wo is 
the resonant frequency of the system. 
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Figure 11.18 (a) Bode asymptotic magnitude plot for HdB = 20 log 11 + j2'r" [~ _ [~21 
(b) Details at the corner frequency for different values of damping factor. 

Magnitude Response 

The expression for the magnitude is 

1. When w/wo « 1 

H dB "'" 20 log 1 = 0 dB 

This gives the low-frequency asymptote, which is a straight line on the 0 
dB axis. 

2. When w/wo » 1 

HdB "'" 20 log 1- [ :0 ] 21 = 40 log : 

The resulting high-frequency asymptote is a line of slope 40 dB/decade. 
The two asymptotes intersect (which is the corner frequency of the plot) 
when (40 log (w/wo» = 0, that is when w/wo = 1 or w = Wo, as shown in 
figure 11.18(a). 

In order to get an accurate impression of the magnitude curve, we must 
make corrections at the corner frequency. To a first approximation we may 
say that, whatever the value of ein the range 0.1 to 1 (which is the range in 
which most engineers are interested), the actual magnitude curve begins to 
leave the low-frequency asymptote at about w/wo = 0.2, and rejoins the 
high-frequency asymptote at about w/wo = 2 (see figure 11. 18(b». We 
need one other cardinal point at a given frequency in order to sketch the 
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Table 11.3 

~ H dB 

0.1 -14 
0.25 -6 
0.5 0 
1 6 

magnitude curve for a given value of ~; an appropriate frequency is w/wo 
= 1, or w = WO' The value of HdB at this frequency is calculated from 

HdB = 20 log 11 + j2~ - 11 = 20 log Inl 
A list of values for various damping factors is given in table 11.3, and the 
associated magnitude curves are shown in figure 11.18(b). 

The reader should note that, when there is negative peak in the magni­
tude curve, it occurs at a frequency which is a little less than w/wo = 1. 

Phase response 

[ jw ] + [ ~~o ] 2 The phase shift associated with H(jw) = 1 + 2~ Wo LV is 

2~ w/wo 
LH(jw) = tan- 1 ---~ 

1 - (w/ WO)2 

1. When w/wo < < 1 

LH(jw) = tan- 1 (2~(w/wo» = 0° 

This gives the low-frequency asymptote, which lies on the 0° axis. Within 
reasonable accuracy, this can be through to span from a very low 
frequency up to about w/wo = 0.1. 

2. When w/wo > > 1 

LH(jw) = tan- 1 (-2~/(w/wo» = 180° 

That is, the high-frequency asymptote is a straight line at a phase shift of 
180°. This spans from about w/wo = 10 up to infinite frequency. 

3. When w/wo = 1 

LH(jw) = Lj2~ = 90° 

The asymptotic phase curve therefore consists of three straight lines, as 
shown in figure 11.19(a); the mid-frequency line which joins the low- and 
high-frequency asymptotes has a slope of 900 /decade, and has a phase shift 
of 90° when w/wo = 1. 

Finally, we need to calculate a few values of w/wo which will allow us, 
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Figure 11.19 (a) Linearised approximation to the phase response ofH(jw) = 

1 + 2~ [:::) + [:J2 
and (b) the estimated curves for a range of 

selected values of damping factor. 

100 

!!!. 
w, 

with a reasonable degree of accuracy, to sketch the phase curve for any 
selected value of ;;. We will seleet the values w/wo = 0.5, 1 and 2. 

1. When w/wo = 0.5, the overall phase shift is 

LH(jw) = tan- 1 (1.3333;;) 

2. When w/wo = 1, the overall phase shift is 90°. 
3. When w/wo = 2, the overall phase shift is 

LH(jw) = tan- 1 (-1.3333~) 

The corresponding values for various values of ~ are listed in table 11.4. 
The corresponding phase curves are drawn in broken Hne in figure 
11.19(b); the points in table 11.4 are shown on the curves as large dots. 

If the quadratic expression is in the denominator of the transfer function 
(see, for example, worked example 11.13.1), both the gain and phase 
curves are inverted or reversed. That is, the high-frequency asymptotic 
gain curve has a slope of -40 dB/decade, commencing at w/wo = 1; the 
asymptotic phase plot has a slope of -900 /decade, commencing at w/wo 

= 0.1, causing the phase to change from 0° to -180° by w/wo = 10. 
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Table 11.4 

Damping factar 

0.1 
0.25 
0.5 
1 

Electrical Circuit Analysis and Design 

Phase shift (deg.) at 

w/wo = 0.5 

7.6 
18.4 
33.7 
53.1 

w/wo = 2 

180 - 7.6 = 172.4 
180 - 18.4 = 161.6 
180 - 33.7 = 146.3 
180 - 53.1 = 126.9 

Worked example 11.13.1 

The transfer function of an operation al amplifier circuit is 

Vout -2000s 
H(s) - Vin (s) - 10 000 + 20s + S2 

Draw the Bode diagram for the amplifier. 

Solution 

This expression can be re-written in the form 

hence 

-0.2s 
H(s) - -------

1 + 2 X 1O-3s + 1O-4s2 

-0.2jw 
H(jw) = ------=-----

1 + 2 X 1O-3jw + 1O-4(jw2) 

The numerator contains a constant together with a simple linear function 
of w, and the denominator is a quadratic expression. The linearised gain 
curve is plotted as folIows. 
1. The decibel gain of the numerator constant is 

HdB = 20 log 0.2 = -14 dB 

which is shown in figure 11.20(a) as the broken line (1). The reader should 
note that the negative sign associated with the numerator term is a 'phase' 
factor of 180°, rather than a 'gain' factor. 
2. The gain associated with the numerator jw term is a line of slope 20 
dB/decade, crossing the 0 dB axis at w = 1 radis. It is shown as broken line 
(2) in figure 11.20(a). 
3. The quadratic term in the denominator has a corner frequency at w = 
\1(1110-4 ) = 100 radis. The damping factor is determined from the fact that 
2Clwo = 2 x 10-3 , or C = 0.1. The resulting curve is shown as broken curve 
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Figure 11.20 (a) Gain plots for the individual factors of the transfer [unction in worked 
example 11.13.1 and (b) the overall gain plot. 

(3) in figure 11.20(a). The maximum gain for a damping factor ofO.1 is + 14 
dB in the region of the corner frequency of 100 radis. 

The three asymptotic plots in figure 11.20(a) are combined to give the 
complete magnitude plot in figure 11.20(b). The maximum is 40 dB at the 
corner frequency of 100 rad/so 

The phase curve is plotted in two parts. The - j (= 1/j) term in the 
numerator contributes a constant phase shift of -90° (see broken line (1) in 
figure 11.21), and the quadratic term in the denominator gives a phase shift 
which increases from a low value (about _5°) to about -180° between the 
frequencies of 100 radis and 1Q4 radis (see broken line (2)). The overall 
phase shift is the sum of the two; the asymptotic phase curve is shown in 
fulliine in figure 11.21, and the actual phase curve is in broken line. 

LH(jw) 

0° -F"F"==t-----,r---,---,- w (radis) 

10 100', 103 10' 10' , 
-90° +---""'tO<:",-~------(l) 

" , 
\ " 

-180° 
'-_____ (2) 

\ . . 
\ __ Total asymptotlc phase 

-270° /'_::"---
Total phase 

Figure 11.21 Phase plot for worked example 11.13.1. 
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Unworked problems 

11.1. State the complex frequencies in the following time functions: 
(a) 5 cos 8t, (b) (5 + 4e-6t cos 8t, (c) 5 + 4e-6t cos 8t, 
(d) 4e-6t cos (8t - 20°), (e) 4 cos 3t - 5 sin 2t, (f) 8 cos 2t. sin 3t 
[(a) j8, -j8; (b) j8, -j8, -6 + j8, -6 - j8; (c) -6 + j8, -6 - j8; 
(d) -6 + j8, -6 - j8; (e) j3, -j3, j2, -j2; (f) j1, -j1, j5, -j5] 

11.2. Write down the function of time having the following complex 
frequencies: (a) -6, (b) 7, (c) 2, -3, (d) 0, -6 + j4, -6 - j4; (e) 
-5, 6, 7 + j2, 7 - j2. 
[(a) Ae-6t ; (b) Ae7t; (c) Ae2t + Be-3t; (d) A + Be-6t cos (4t + 111); (e) 
Ae-5t + Be6t + Ce7t cos (2t + 111)] 

11.3. A voltage VI is defined by 

(3 + 4s) 
200 = (2 + 3s)VI + VI 

s 

Determine an expression for VI> and calculate its value if s = 
-3 + j4. What is its value at t = 0.2 s? 
[2oos/(3s2 + 6s + 3); 16.67 V; 6.37 V] 

11.4. At what value of s is Z(s) zero in figure 11.6. At what value of s is 
Z(s) = 7.9 = jO.06 O? 
[-0.0625 ± jO.348; -5 - j5] 

11.5. Determine an expression for Zin of figure 11.22 as a function of a? 
Hence determine the frequencies of the poles and zeros. What is 
the circuit impedance at (a) 0 = 0, (b) 0 = oo? 
[2(0 + 3.732)(0 + 0.268)/(1 + 0); zeros at -3.732 and -0.268, and 
a pole at -1; Z(O) = 20; Z(oo) = 00] 

Figure 11.22 

11.6. The complex-frequency impedance of a circuit has simple zeros at 
s = -6 and s = -10, and a pair of poles at s = -4 ± j8. If its 
impedance at infinite frequency is 5 0, deduce an expression for 
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z, 

v, I 
Figure 11.23 

Z(s). If a forcing voltage v(t) = lOe-21 cos (5t + 60°) V is applied to 
the circuit, determine the current i(t) ftowing into the network. 
[5(s + 6)(s + 1O)/(s2 + 8s + 80); 1.57e-21 cos (5t + 1.6°) Al 

11.7. If the op-amp in figure 11.23 is ideal, deduce the transfer function 
H(s) = Vis)IV(s) as a ratio of two polynomials in s. Determine 
H(s) if (a) Z( = RB Zr = Rf in parallel with Cr. (b) Z( = R( in series 
with Cl' Zr = Rf • 

[-ZrCs)/Z(s); (a) -Rtf(Rl(sRfCf + 1)); (b) -sClRtf(l + sRlCl)] 

11.8. In problem 11.7, given that Rf = 10 kil, calculate values of R l and 
Cf so that H(s) is (a) -10, (b) -250/(s + 50). 
[Cf = 0 (open-circuit), R l = 1 kil; (b) Cf = 2 fJ.F, R l = 2 kil] 

11.9. The asymptotic magnitude-frequency Bode diagrams of a number 
of systems are described below. Draw the magnitude-frequency 
and phase-frequency diagrams, and deduce the transfer function 
for each. 
(a) Constant gain of 40 dB up to 2 radis, after which the gain falls at 
the rate of 20 dB/decade. 
(b) Constant gain of 6 dB up to 20 radIs, after which it increases at 
the rate of 6 dB/octave. 
(c) Constant gain of 10 dB up to 5 radis, after which it falls at the 
rate of 6 dB/octave up to 10 radis, after which the gain remains 
constant. 
(d) The gain falls at 6 dB/octave up to 4 radis, after which it falls at 
40 dB/decade. The gain at 1 radis is 60 dB. 
(e) The gain falls at 40 dB/decade up to 20 radis, when it falls at 6 
dB/octave up to 2000 radis, when it falls again at 12 dB/octave. At 2 
radis the gain is 60 dB. 
(f) The gain falls at 6 dB/octave up to 5 radis, after which the 
reduction in gain becomes 40 dB/decade. At 10 radis the fall in gain 
re duces to 6 dB/octave again until, at 100 radis, the gain reduction 
be comes 40 dB/decade again. The gain at 1 radis is 60 dB. 
[Ca) 10/(1 + 0.5jw); (b) 2(1 + 0.05jw); 
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R 
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v,1 

Figure 11.24 

(c) 3.162(1 + 0.1jw)/(1 + 0.2jw); (d) 1OO0/(jw(1 + 0.25jw»; 
(e) 4000(1 + 0.05jw)/«jW)2(1 + 0.0005jw»; 
(f) 1000/(1 + 0.1jw)/(jw(1 + 0.2jw)(1 + 0.01jw»] 

11.10. Draw the Bode diagram for each of the following transfer func­
tions: (a) 10(1 + 0.2jw), (b) 20(1 + 0.02jw)Z, (c) 1/(5 (1 + 0.2jw)2), 
(d) 1O/(jw(1 + 0.05jw», (e) 100(1 + 0.2jw)/(jw(1 + 0.05jw», 
(f) 20(1 + 0.1jw)/«jW)2(1 + 0.05jw))] 

11.11. Deduce the transfer function H(s) = Vis)/V1(s) for the amplifier in 
figure 11.24. Plot the Bode diagram for the circuit if R = 1 kn, 
C, = 2.388 X 10-3 F, CZ = 10.613 f.lF. 
[1/«R2C,C2)S2 + 3RC,s + 1); with the values given, the peak 
response on the gain curve occurs at a frequency of 1 Hz, when the 
phase shift is 90° and the gain is 14 dB. Note: the reader may find it 
advantageous to reler to worked example 11.7.2 



12 
Resonance 

12.1 Introduction 

It was shown earlier that as the frequency increases, inductive reactance 
increases and capacitive reactance reduces. Because of this change in the 
magnitude of the reactances, and of the opposing phase angle of the two 
forms of reactance, there may be a frequency at which XL and Xc in a given 
circuit are equal in magnitude and opposite in phase. When this occurs, we 
reach a condition of electrical resonance in the circuit. 

Depending on the circuit, this can result in a large current in the circuit 
and a large voltage across part of the circuit. This is of particular interest to 
electrical engineers. 

The resonance phenomenon is not limited to electrical engineering, and 
can exist in mechanical systems, as witness high amplitude vibrations at the 
natural [requency of mechanical systems. Perhaps the most famous of these 
was the destruction of the Tacoma Narrows Bridge in Washington State, 
USA, when the bridge was forced into astate of resonance by a pulsating 
gale. 

12.2 The resonant condition 

Resonance in a two-terminal network containing at least one inductor and 
one capacitor is defined as the condition which causes the input impedance 
at one jrequency to be purely resistive. At this frequency, the voltage across 
the circuit is in phase with the current through it. In some circuits there 
may be more than one resonant frequency. 

A wide variety of resonant conditions occurs in electrical circuits includ­
ing series resonance, parallel resonance, resonance with selected 
frequencies, resonance between magnetically coupled circuits, etc,. 

299 
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Resonance may or may not be desirable, depending on the circuit in which 
it occurs. 

We have briefty looked at resonance in chapter 11 (see worked 
examples 11.6.1 and 11.6.2) when we considered the frequency response of 
idealised parallel and series circuits. In this chapter we will analyse practi­
cal circuits which include resistance. 

12.3 Series resonance 

We will look at a number of points of significant interest to electrical and 
electronic engineers. 

12.3.1 Resonancefrequency andfrequency response 

The impedance of the series RLC circuit in figure 12.1 is 

Z = R + j(wL - lIwC) 

R jwL 1/jwC 

~-------4~r-------~ 

Figure 12.1 Aseries RLC eireuit. 

When wL = lIwC, that is, when XL = Xc, the impedance of the circuit is 
purely resistive. This occurs at the resonant Irequency, wo, when woL 
= lIwoC or 

Wo = l/'v'(LC) radis 

and 

10 = wcl2n: = lI(2n:v'(LC» Hz 

At resonance, the circuit impedance is 

Zo = R + jO = RLO° n 
and is the minimum impedance of the circuit. The current at resonance is 

10 = EJR A 
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Figure 12.2 The effect 01 frequency change in aseries circuit on (a) reactance and 
impedance, (b) phase angle and (c) cu"ent and modulus 01 admittance. 
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and is therefore the maximum current in the circuit. If R is reduced in 
value, the current at resonance is increased. At the re sonant frequency, the 
supply voltage is 

E. = loR 
The frequency response of the series circuit is shown in figure 12.2. 
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90° 

900 Es = VR 

Figure 12.3 Phasor diagram for aseries circuit containing ideal elements at resonance. 

At resonance XL = Xe, SO that the magnitude of the voltage across each 
reactive element is the same at resonance. That is 

foXL = foXe 

A phasor diagram for aseries circuit containing ideal elements at res­
onance is shown in figure 12.3. 

However, if the coil in the circuit has some resistance (as it will in 
.practice), then the voltage across the coil at resonance is not equal to the 
voltage across the capacitor (see worked example 12.3.2), and is not at 90° 
to the current. 

12.3.2 The quality laetor, Q., 01 the series eireuit 

The quality factor of aseries circuit may be defined in any one of several 
ways, including the following 

energy stored in a given time 
Qs = -----=~------==------

energy dissipated in the same time 

power in a reactive element 

power in the resistance 

A high value of Qs indicates a low level of energy dissipated for a given 
energy stored in a reactive element. If we use the inductor as the reactive 
element, then 

J2XL XL woL 
Q =-=-=-

s PR R R 

or, using the capacitive element 

J2Xe Xe 1 
Qs = PR = R = woCR 



Resonance 

Also, we may say that 

and 

or 

modulus of the voltage across L 
_ )(L _ III)(L _ at resonance 

Qs - R - IIIR - modulus of the voltage across R 
at resonance 

modulus of the voltage across C 
_ )(e _ III)(e ______ a_t_r_es_o_n_a_n_ce ____ _ 

Qs - R - IIIR - modulus of the voltage across R 
at resonance 

Ivoltage across either L or C at resonancel 
Qs = IEsl 

Now, for the series circuit at resonance 

woL 1 L 1 
Qs = R = V(LC) R = RV(LlC) 
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Typically, in a well-designed high-quality (high-Q) communications circuit, 
the value of Q may be 50 or greater. It has, of course, a much lower value 
in a power-frequency circuit. In power circuits, where resistance values are 
much lower than they are in electronic circuits, series resonance can give 
rise to dangerously high values of current. Moreover, these currents can 
produce very high values of voltage across the reactive elements, possibly 
causing damage to the insulation of the elements, and excessive heating in 
all the elements. 

Sometimes the only effective circuit resistance is in the winding of the 
coil, so that we can refer to the Q-factor of the coil, which is 

)(L woL 
QS=R=R 

Worked example 12.3.1 

Aseries circuit contains a resistor of 4 n resistance, a pure inductor of 0.1 
mH inductance, and a 111F capacitor. Calculate (a) the resonant frequency 
of the circuit, (b) the net impedance of the circuit at resonance, (c) the 
current in the circuit at resonance if E. = lOLO° V, (d) the voltage across 
each element in the circuit at resonance and (e) the Q-factor of the circuit 
at resonance. 
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Solution 

(a) The resonant frequency is 

Wo = 1/V(LC) = 1/V(0.1 X 10-3 X 1 X 10-6) 

100000 radis or 15 915.5 Hz 
(b) At resonance 

XL = wL = 100 000 X 0.1 X 10-3 = 10 n 
and 

Xc = 1/wC = 1/(100 000 x 1 x 10-6) = 10 n 
hence the impedance of the circuit at resonance is 

Zo = R + j(XL - Xc) = 4 + j(10 - 10) = 4 n 
(c) At the resonant frequency 

10 = Es/Zo = lOLoo/4 = 2.5LO° A 

(d) voltage across each element in the circuit is 

VR IR = 2.5 x 4 = 10 V = Es 
VL = IZL = 2.5 x lOL90° = 25L90° V 
Vc = IZc = 2.5 x lOL-90° = 25L-90° V = -VL 

(e) We can calculate Qs from any of the equations in section 12.3.2 as 
follows 

Qs = XLIR = 1014 = 2.5 

Note: IvLI = Qs x IEsl = 2.5 x 10 = 25 V 

Worked example 12.3.2 

If, in worked example 12.3.1, the whole resistance of the circuit is in the 
coil, calculate the voltage across the coil at resonance. 

Solution 

Since all the resistance is in the coil, the impedance of the coil is (4 + j 10) 
= 10.77 L68.2° Q. At the re sonant frequency the current is 2.5 A, and the 
voltage across the coil is 

10Zcoil = 2.5LO° x 10.77 L68.2° = 26.93L68.2° V 

That is, the voltage across the coil at resonance does not lead the current 
by 90°; this is due to the effect of the resistance of the coil. However, the 
quadrature voltage across the coil is 25L90° V, wh ich is of opposite phase 
angle but equal magnitude to the voltage across the capacitor. 
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12.3.3 The peak voltage across R, Land C 

One would imagine from the foregoing that, since the current rises to its 
peak value at Wo, the p.d. across R, L, and Cwould peak at this frequency. 
However, it is shown in the following that this is not quite the case. 

Since the voltage across R is proportional to the current then, in fact, VR 

does peak at Wo. However, since the capacitive reactance commences at a 
high value and reduces with increasing frequency, I rises at a faster rate 
than Xc falls. It can be shown that IVcl peaks just before resonance, and 
IvLI peaks at a frequency just above resonance (the reader will find it an 
interesting exercise to verify this fact). The two voltages are equal in value 
at Wo. 

For values of Qs greater than about 5, the frequency difference at which 
the peak voltage occurs across R, Land Cis generally insignificant. 

12.3.4 Bandwidth and selectivity 0/ aseries RLC circuit 

If we plot the variation in power consumed in aseries RLC circuit to a base 
of frequency, we get a graph of the type in figure 12.4. 

At frequencies wl and w2 , the power consumed is one-half the maximum 
power consumed (wh ich occurs at the resonant frequency), and these 
frequencies are known as the half-power frequencies or half-power points. 

The sharpness of the peak in the resonance curve is described by the 
bandwidth, B, and is given by 

The smaller the bandwidth, the 'sharper' the amplitude response. The 
values of (VI and W 2 can be calculated as folIows. At a half-power frequency 

Po I/ol2R [/0 ]2 [ Es ]2 
power consumed = '2 = -2- = v'2 R = Rv'2 R 

Power 

Bandwidth, B 

IL-_+-......... -t-___ w 

o 

Figure 12.4 Variation in power with frequency in aseries RLC circuit. 
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That is, the modulus of the impedance of the circuit at a half-power 
frequency is 

jzj = RV2 Q 

The impedance of the circuit at any frequency is 

Z = R + j( OlL - 1/wC) 

. [ woL 1 WoC] =R+J wLx----x--' 
woL wC woC 

Since jzj = RV2 at a half-power frequency, it is clear that at a half-power 
frequency the quadrature component must have a value of unity, or 

In the case where its value is -1 then 

Qs(w2 
- Wo) = -1 or Qsw + 00000 - QsWo = 0 

00000 

Solving the quadratic equation for 00 gives a positive value and a negative 
value. Selecting the positive value of 00 gives the half-power frequency 

In the case where its value is -1, we get 

Qsw - 00000 - Qs% = 0 

and the resulting half-power frequency is 

The bandwidth of the series resonant circuit is, therefore 

Wo 1 R 
B = 002 - Oll = - = -- = -

Qs CR L 

The selectivity of a circuit describes the sharpness of the response curve, 
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and defines the ability of the cireuit to diseriminate in favour of frequencies 
near resonanee. Its value is equal to the Q-factor of the cireuit, and is 

seleetivity = Q = wc/ B 

Worked example 12.3.3 

Calculate the half-power frequencies and the bandwidth of the series 
cireuit in worked example 12.3.1. Determine also complex impedanee (a) 
10 per cent below and (b) 20 per cent above the resonant frequeney. 

Solution 

The reader is reminded, in worked example 12.3.1, that Wo = 100 000 radis 
and Qs = 2.5. From the foregoing 

w\ = w\ [ - 2~s + V ( [ 2~J 2 + 1 ) ] 

[ 1 '\ /( [ 1 ] 2 ) ] =100000 +V +1 
2 X 2.5 2 X 2.5 

= 100 000 [-0.2 + V1.04] = 81 980 radis 

and 

= 100 000 [0.2 + V1.04] = 121 980 radis 

henee 

B = W 2 - w\= 40000 radis 

or B = wc/Q = 100 000/2.5 = 40 000 radis 

The reader should note at this point that the resonant frequeney is not 
midway between the two half-power frequencies (in fact, it is the geometrie 
mean of the two frequeneies, that is Wo = V(w\w2» . 

. The eomplex impedanee at any frequency ean be ealculated from the 
expression 

(a) When w = 0.9wo 

Z = 4 [1 + j2.5( 0.9wo - ~)] 
Wo 0.9wo 
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= 4[1 + j2.5 X (-0.2111)] = 4.52L-27.82° Q 

(b) When W = 1.2wo 

[ . ( 1.2wo Wo) ] Z = 4 1 + )2.5 -- - -- = 5.44L42S Q 
Wo 1.2wo 

12.4 Parallel resonance 

In this case, the attention of the reader is directed towards circuits contain­
ing G, Land C in parallel. 

12.4.1 Resonantfrequency andfrequency response of an ideal paraUel 
circuit 

An ideal parallel circuit contains a pure inductor, a pure capacitor and a 
pure conductance in parallel, as shown in figure 12.5. The admittance of 
the circuit is 

Figure 12.5 Parallel circuit containing ideal elements. 

Y G + j(Bc - BL ) 

= G + j ( wC - W~) S 

Once again, the circuit is resonant when the reactive element 01 the admitt­
ance is zero, wh ich occurs at the resonant Irequency Wo, when woC = lIwoL, 
that is 

Wo = 1/V(LC) radis or 10 = 1I(23tV(LC» Hz 

Since, at resonance, the reactive element of the admittance is zero, the 
current at resonance is 
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Clearly, G can have any value, induding zero (corresponding to an infinite 
resistance shunting the circuit), so that the current at resonance represents a 
minimum value 0/ current. 

Since, at resonance, Yo = G, then the circuit impedance at resonance is 

Zo = 1/G 

The value of Zo is known as the dynamic impedance or dynamic resistance 
of the circuit. 

At resonance, the parallel LC section of the ideal parallel circuit 
(known as a tank circuit) , behaves as though it were an open-circuit, that is, 
no current is drawn from the supply. The reason for this is that the 
magnitude of the current in both the Land the C branches has the same 
value (this is because they both have the same value of reactance at 
resonance), but are 1800 out of phase with one another. 

The frequency response for the circuit is shown in figure 12.6, and the 
phasor diagram at resonance is in figure 12.7 

+900 
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(a) 

w 

~ 0 r----~~-----w .. 
.c a.. 

-900 

(b) 

Figure 12.6 Frequency response diagram for a parallel GLC circuit. 

(c) 
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Figure 12.7 Phasor diagram tor a parallel GLC circuit at resonance. 

12.4.2 The quality /aetor, Q,. 0/ an ideal paraUel eireuit 

As with the series cireuit, the Q-faetor is defined as the ratio of the energy 
stored at resonanee in one of the reaetive elements to the energy dissipated 
in the eireuit (whieh is in the shunting eonduetanee). Alternatively, it is the 
ratio of the reaetive power in a reaetive element to the power dissipated in 
the shunting eonduetanee. Seleeting the induetive braneh gives 

E~X 
[2X X 2 L R R 1 Q =....!:........!=_L_=_= __ = __ 

P [iR E; R XL woL GwoL 

R2 

where R = lIG. Similarly, it may be shown that 

V(C/L) 
Qp = woCR = RV(C/L) = G 

Also at resonanee 
modulus of the eurrent in L or C 

Qp = -----~-------
supply eurrent 

If we seleet the induetor 

Similarly, seleeting the eapacitive braneh gives 

Qp = woCR 
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12.4.3 Bandwidth and seleetivity 0/ a parallel eireuit 

As with the se ries circuit, the ideal parallel circuit consumes maximum 
power at resonance (the reader will find it an interesting exercise to argue 
this point both quantitatively and qualitatively), and the bandwidth is 
equal to the band of frequencies between the two half-power frequencies. 

The admittance of the parallel circuit at any frequency is 

y =.!. + j (wc-1 ) = .!. [ 1 + j Qp (~ _ Wo)] 
R wL R Wo w 

where G = l/R, and at each half-power frequency Iyl = Y2JR, which occurs 

when the quadrat ure term has unity value, that is Qp (:0 - :0 ) = ± l. 
Considering the case for + 1 and - 1 separately, we obtain the two half­
power frequencies 

w1 Wo [ - 2~p + vi ([ 2~p r + 1 ) ] 

W2 = Wo [2~p + vi ([ 2~p r + 1 ) ] 

The reader should note that W1 and W 2 are given by the same formulas as 
for the series circuit (see section 12.3.4). The bandwidth of the circuit is 

B = W 2 - W1 = wo/Qp = woXL/R = woXe/R 

also 

selectivity = Qp 

12.4.4 Resonanee in a praetieal parallel eireuit 

A simple practical parallel circuit has two branches (see figure 12.8(a», 
each containing a reactive element and some resistance (the resistance in 
the capacitive branch may, alternatively, be shown as a leakage resistance 
in parallel with the capacitor). A typical phasor diagram at resonance is 
shown in figure 12.8(b). 

If we convert the circuit in figure 12.8(a) into the equivalent ideal circuit 
in figure 12.8(c), we can use the equations developed earlier to determine 
various factors associated with the circuit. 

Initially we will convert the capacitive branch of figure 12.8(a) into its 
equivalent parallel circuit. The admittance of this branch at frequency w is 

1 
y =-----

I Re + l/jwC 

jwC _......::...._--= 
1 + jwCRe 

jwC(1 - jwCRe 
1 + (WCRe)2 



312 Electrical Circuit Analysis and Design 

y--

(a) (b) 

y- G' 

(c) 

Figure 12.8 (a) A practical parallel circuit, (b) a typical phasor diagram at resonance and 
(c) the equivalent ideal parallel circuit. 

RdwCY wC __ :::..0...._"--_+ j = G~ + jwe 
1 + (wCRcY 1 + (wCRcY 

where e = C/[l + (WCRc)2] and G~ is the equivalent conductance in 
parallel with e. In the case of the inductive branch of figure 12.8(a) we get 

1 RL - jwL 
Y2 

RJ + jwL RL
2 + w2L2 

R L - j 
wL G' ,1 = = L - J WL' R~ + w2V R~ + w2L2 

where L' = (R~ + W 2V)/w2L, and G~ is the equivalent conductance in 
parallel with L'. 

The equivalent ideal parallel circuit in figure 12.8(c) comprises the two 
above branches in parallel, having an effective conductance of 

G' = G' + G' = Rc(wCY + RL 

c L 1 + (WCRc)2 R~ + w2L2 

We can therefore say that, for the circuit in figure 12.8(a), the re sonant 
frequency is 
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1 V[LlC - R2
] WO = 1/v'(L'C') = L radis 

v'(LC) LlC - R~ 

In the more usual case where Re = 0, the re sonant frequency is 

1 V L - CR~] 
radis 

v'(LC) [ L 
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and if, at the same time R~ « (WOL)2 (or QL » 1), the dynamic im­
pedance at resonance is 

W orked example 12 .4.1 

A transistor amplifier with an output resistance of 50 kQ is connected to a 
load comprising a two-branch parallel circuit wh ich is re sonant at 60 kHz; 
the parallel circuit contains a coil of inductance 1mH and resistance 15 Q. 
If the bandwidth of the complete circuit is to be 3 kHz, calculate the other 
components in the circuit (assurne that the capacitor has no leakage resist­
ance). 

Solution 

The Q-factor of the complete circuit is 

Q = frJ R = 60 000/3000 = 20 

Since the output impedance of the amplifier is 50 kQ, it is effectively 
connected across the resonant circuit as shown in figure 12.9(a). The 
idealised equivalent circuit is shown in figure 12.9(b), and we will calculate 
the value of L' and C' in the following. From the work in the section above 

Raut 

= 50 kO 

(a) 

~ 
Parallel 
circuit 

c 50 kO c 

(b) 

Figure 12.9 (a) The equivalent output circuit for worked example 12.4.1 and (b) the 
idealised circuit. 
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L' (R~ + w~U)/aroL) 
(152 + [2:rt X 60 oooy X 1 X 10-6) 

(2:rt X 60 000)2 X 1 X 10-3 

1.002 X 10-3 H or 1.002 mH 

or, at the resonant frequency 

X~ = woL' = 377.75 Q 

and 

G~ RL/(R~ + w~U) 
15/(152 + (2:rt X 60 oooy X 1 X 10-6) 

1.0537 X 10-4 S or 0.10537 mS 

The effective conductance shunting the L' C section of the circuit is 

G" = G~ + 1150 000 = 1.2537 X 10-4 S 

hence the Q-factor for the curcuit in figure 12.9(b) is 

Q 1/(G"X~) = 1/(1.2537 X 10-4 X 377.75) 

= 21.12 

This is larger than the required value of 20 (see the beginning of the 
solution), and we can reduce the overall Q-factor to the required value by 
shunting the circuit with another conductance. The total conductance 
needed to reduce the Q-factor to 20 is 

G = 1IQX~) = 11(20 X 377.75) = 1.324 x 10-4 S 

hence the extra shunting conductance is 

G - G" = (1.324 - 1.2537) x 10-4 = 0.0703 X 10-4 S 

which corresponds to a shunting resistance of 142.25 kQ. 
Finally we can calculate the value of the capacitor C from Wo = 

1IV(L'C) as follows 

C = 1I(%L' ) 

= 1I([2:rt x 60 000]2 x 1.002 x 10-3] 

= 7.02 x 10-9 F or 7.02 nF 

The resulting circuit is shown in figure 12.10. 
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Figure 12.10 The eomplete eireuit for worked example 12.4.1. 

12.5 Scaling electrical circuits 
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7.02 nF 

When analysing a particular circuit, the values used may be difficult to 
handle or to visualise. It may, for example, be easier to think in terms of a 
resonant frequency of 1 radis rather than 10367.6 radis, or an impedance 
level of 1 Q rather than 579.7 Q. Using standard equations, we can 'scale' a 
circuit so that it appears, initially, to have relatively simple values; after 
initial calculations, we can return the circuit to its original form by the 
inverse of the scaling process. 

Scaling is achieved in two stages, namely impedance scaling and fre­
quency scaling as folIows. 

12.5.1 Impedance or magnitude scaling 

To magnitude-scale an impedance by a factor Km, we need to multiply the 
impedance of the element by a scaling factor Km. Thus a resistor of R Q is 
scaled by Km to a value KmR Q. An L H inductance of impedance jwL is 
scaled to an impedance of jwKmL Q; that is, the scaled value of inductance 
is KmL H. A capacitor of C F capacitance has an unscaled impedance of 
l/jwC Q, and this is scaled to Km/jwC Q; that is, the scaled capacitance is 
CI Km. Thus, the magnitude scaling changes are 

R becomes KmR 
. L becomes KmL 
C becomes CI Km 

Similarly, it can be shown that voltage values are multiplied by Km, and 
current values are divided by Km. Ratios of similar quantities, such as the 
Q-factor of aresonant circuit, are unchanged by magnitude scaling. Other 
non-impedance factors, such as resonant frequency, are unchanged by 
impedance or magnitude scaling. 
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Consider the following values from worked example 12.3.1: R = 4 Q, 

L = 0.1 mH, C = I!lF. If we magnitude scale these by a factor of Km = 10\ 
then the scaled values are R' = 4 X 104 Q, L' = 1 H, C' = 1 X 10-10 F. The 
original values refer to aseries circuit having aresonant frequency of 
100000 radis, and a Q-factor of 2.5. The corresponding values for the 
scaled circuit are 

and 

w~ = 1/Y(L' ,C') = 1/Y(1 x 1 x 10-10) 

= 100 000 radis 

Q~ = w~L'IR' = 100000 x 1/(4 X 104 ) = 2.5 

both of wh ich are unchanged by magnitude scaling. 

12.5.2 Frequency scaling 

In this case, each frequency-dependent function is multiplied by a scaling 
factor Kf ; for example, the scaled frequency w becomes KtW. Consequent­
ly, the re sonant frequency and bandwidth of a tuned circuit are increased 
by K f • 

Clearly, the resistance of a resistor is independent of frequency, and its 
value is unchanged by frequency scaling. In the case of an inductor, its 
reactance is proportional to frequency, so that the frequency-scaled in duc­
tive impedance is re la ted to the original value by 

jwL = jKtWL' 

where L' is the frequency-scaled inductance; that is, the effective 
frequency-scaled inductance is L' = LI Kf • Similarly, a frequency-scaled 
capacitance C' is ClKf • That is, the frequency scaling changes are 

R be comes R 
L becomes LI Kf 

C becomes CI Kf 

Since XL = wL = KtW x LlKf = wL (and similarly for a capacitive react­
ance), impedance levels are unchanged by frequency scaling. Following 
this line of discussion, it will be seen that the Q-factor of aresonant circuit 
is unchanged by frequency scaling. 

Suppose we were to frequency scale the values in worked example 
12.3.1 by Kf = 10-S, then 

L' = LlKf = 0.1 x 10-3/10-5 = 10 H 

C' = CI Kf = lQ-6/10-5 = 0.1 F 



Resonance 317 

and 

W~ =1/Y(L'C') = l/Y(10 x 0.1) = 1 radis 

That is, the re sonant frequency has been multiplied by Kf = 10-5 • The 
Q-factor of the circuit is 

Q' = XUR' = w~L'IR' = 1 x 10/4 = 2.5 

which is unchanged. 

12.5.3 Combined scaling 

Many problems involve both magnitude and frequency scaling, and the 
result involved both scaling factors. For R, Land C the effect is as follows 

R becomes KmR 
L becomes KmLl K f 

C becomes CI KmKf 

12.5.4 Universal resonant circuits 

Universal resonant circuits are scaled circuits with R = 1 Q and Wo = 1 
radis, that is, LC = 1. All conventional passive resonant circuits, that is, 
se ries RLC and parallel GLC circuits, can be designed from this type of 
circuit. 

Worked example 12.5.1 

Calculate the impedance and frequency scaling factors for a parallel res­
onant circuit, in which the resonant frequency is 10 000 radis, and the LC 
section is shunted by a 10 kQ resistor. 

Solution 

The resistance R' which shunts the resonant section is 

hence 

Also 

that is 

R' = KmR = Km X 1 = 10 000 

Km = 10 000 

w~ = KrWo = 10000 X 1 = 10 000 

K f = 10 000 
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Worked example 12.5.2 

Aseries RLC circuit containes the following elements: R = 100 Q, L = 1.6 
mH and C = 0.01 IlF. Scale the circuit so that it contains a 2 Hinductor and 
a 2 F capacitor. 

Solution 

From the above 

L' = 2 = 1.6 X 10-3 KmlKf 

C' = 2 = 0.01 x l~/KmKf 

Multiplying the two together gives 

L'C' = 4 = 1.6 x lO-11IK; 

or K f = 2 X 10-6 

From the expression for L' we get 

hence 

Km = 2K/1.6 X 10-3 = 2.5 X 10-3 

R' = KmR = 100Km = 0.25 Q 

L' = KmLlKf = 1.6 X 1O-3Km1Kf = 2 H 

C' = CI KmKf = 0.01 X 1~1 KmKf = 2 F 

12.6 Passive and active filters 

Passive series- and parallel-resonant circuits can be used in both band-pass 
and band-stop filters. A band-pass filter is a circuit which will transmit 
frequencies within adesignated range known as the pass-band, and attenu­
ates other frequencies. A band-stop filter attenuates frequencies within the 
stop-band, and allows other frequencies to be transmitted. 

Both passive and active filters are widely used. A passive filter is one 
using only R (or G), Land C elements. 

12.6.1 Passive band-pass filter 

The basic characteristic of a band-pass filter is shown in figure 12.11(a). 
This characteristic can be achieved by the series circuit in figure 12. l1(b) 
which, at resonance gives Vo = VI (that is if the resistance of the coil is 
small compared with the value of R). 
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~ R 
V, 

1.0 
Pass-band 

1 v. 

f, f, 

(a) (b) (c) 

Figure 12.11 (a) A band-pass filter characteristic, (b) and (c) simple passive circuits. 

The parallel circuit in figure 12.11(c) gives a similar frequency response 
since, at resonance, the dynamic resistance of the parallel circuit is much 
higher than the resistance of R. 

In fact, at resonance, both circuits have an output resistance of R Q 
(approximately). The frequencies 11 and 12 are the cut-off Irequencies of 
the filter. 

12.6.2 Passive band-stop filter 

The general characteristic of this type of filter is shown in figure 12.12(a). 
The se ries circuit in figure 12.12(b) can achieve this characteristic since, at 
resonance, the net voltage, Vo, across Land Cis zero (or nearly so); this, 
of course, assurnes that the resistance of the coil is sm all compared with 
that of R. 

Similarly, the parallel circuit in figure 12.12( c) gives a similar character­
istic because, at resonance, the impedance of the parallel circuit is very 
high (ideally infinite) when compared with R (which is low). 

~ 
R, L 

v, 

v11lv. 
1.0 

1/Y2 v'l Iv. 
o I 0 

f, f, 

(a) (b) (c) 

Figure 12.12 (a) Band-stop filter characteristic, (b) and (c) simple passive circuits. 
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12.6.3 Active RCfilters 

These are a dass of filters utilising operational amplifiers as active elements 
in conjunetion with passive resistors and eapacitors. They ean be used to 
provide almost any filter eharaeteristie, that is, low-pass, high-pass, band­
pass, band-stop, ete. and are the subjeet of many specialised texts. 

We will not dwell on their operation here, and it is sufficie,t to say that 
we have already analysed a cireuit whieh is the basis of mal:y forms of 
aetive filter. The reader should refer to worked example 11.7.2 and prob­
lem 11.11 for this type of eireuit. 

12.7 Selective resonance 

Aperiodie voltage whieh is non-sinusoidal ean be shown mathematieally to 
eontain sinusoids of many frequencies (see ehapter 13 for details). It may 
happen that a eireuit produees selective resonance with one of the frequen­
eies, whieh may result in a large value of voltage or eurrent at the seleeted 
frequeney in the eireuit. 

This is one reason why supply authorities diseourage eonsumers from 
eonneeting apparatus whieh generate high values of harmonie voltage or 
eurrent as, for example, may occur when high-power maehines are eon­
trolled by eertain types of thyristor-eontrolled equipment. 

Worked example 12.7.1 

A voltage of 100(sin wt + sin 2wt + sin 4wt) is applied to aseries eireuit 
eomprising a resistanee of 10 Q, a eapaeitor of 10 IJ.F, and a 0.625 H 
induetanee. If w = 200 radis, ealculate the eurrent in the cireuit due to 
eaeh harmonie frequeney. 

Solution 

For the 200 radis frequeney 

Z:zoo = 10 + j(200 x 0.625 - 1/(200 x 10 x 1ü-6» 

= 10 + j(125 - 5(0) == 10 - j375 = 375.1L-88S Q 

For the 400 radis frequeney 

Z_ = 10 + j(400 x 0.625 - 1/(400 x 10 x 1ü-6» 

= 10 + j(250 - 250) = 10 - jO = lOLO° Q 

For the 800 radis frequeney 
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Z_ = 10 + j(800 x 0.625 - 1/(800 x 10 x 1~» 

= 10 + j(500 - 125) = 10 + j375 = 375.1L88S Q 

Hence the current for the 200 radis frequency component is 

11.00 = 100/375.1L-88S = 0.267 L88S A 

The current for the 400 radis frequency component is 

1400 = 100/lOLO° = 10LO° A 

and for the 800 radis frequency component is 

1_ = 100/375.1L88S = 0.267 L-88S A 
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In this case, the circuit selectively resonates with the second harmonie 
frequency component, and passes a much larger current at that frequency. 

12.8 Tuned coupled circuits 

Many communications circuits contain a tuned band-pass filter comprising 
two parallel circuits, both tuned to the same frequency, in whieh the 
inductive elements in the two circuits are magnetically coupled. 

The general arrangement of the coupled circuit is as shown in figure 
12.13(a), and a corresponding equivalent circuit is in diagram (b). The 
individual resistance of each circuit is shown but, in practiee, the value of 
R1 and R2 are very much lower than the circuit reactance at the operating 
frequency. We can, to simplify calculations and without significant loss of 
accuracy, ignore the two resistance values at this stage. In this case, the 
mesh currents are 

o = j(wL1 - 1/wC)/J - jwM/2 

o = - jwMIJ + j(wL2 - 1/wC2)/2 

c, c, 

(a) (b) 

Figure 12.13 (a) Inductively coupled tuned circuits, (b) an equivalent circuit. 
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Substituting the value of 12 from the second equation into the first equation 
gives 

and since I. is not zero, then 

(wL I - l!wCI )(wL2 - l!wC2) - w2M 2 = 0 

Since each circuit has the same resonant frequency, it follows that 

giving, after some manipulation 

1 2 1 --- + - (1 - k2 ) = 0 
ww~ w~ 

where k = Mtv'(LIL2), and is the magnetic coupling coefficient between 
the two inductors. The above equation is a quadratic in (l!w), and solving 
gives 

w = w~lv'(l ± k) 

That is to say, there are two resonant peaks in the response, one being at 
frequency we/V(l + k) and the other at we/V(1 - k). 

Critical coupling 

When maximum power is transferred in figure 12.13(a) from the primary 
winding to the secondary winding, we say that critical coupling has been 
achieved between the two circuits. If the mutual inductance needed to give 
this coupling is Me then, at this coupling, the effective impedance of the 
secondary circuit at resonance is R2 , and this impedance referred to the 
primary winding is (woMe)2/R2. Maximum power is therefore transferred to 
the secondary winding when 

that is when 

Me = V(R IR 2)/wO 

If the magnetic coupling coefficient which gives critical coupling is ke , then 
Me = ke V(LIL2), hence 

ke = MdV(LIL2) = V(~ ~)= l!V(QIQ2) 
woLl woL2 
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Unworked problems 

12.1. Aseries RLC circuit contains R = 20 Q, L = 0.1 Hand C = 0.1 
IJ.F. Calculate the resonant frequency, the Q-factor, the bandwidth 
and the half-power frequencies. 
[10 000 radis; 50; 200 radis; 9900.5 rads/s; 10 100.5 radis] 

12.2. In problem 12.1, if the applied voltage is 100 mV, calculate the 
current in the circuit and the voltage across C at (a) 0.8wo, (b) 
1.3wo. 

[(a) 2.22 x 10--4 L87S A; 0.28L-2S V; (b) 1.88 x 10--4 L-87.8° 
A; 0.145L-177.8° V] 

12.3. If, in the circuit problem in 12.1, the resistor is shunted by a 
dependent current source of 0.02Vu where VL is the voltage across 
the inductor, calculate the new value of resonant frequency. The 
current in the dependent source ftows in the same direction as that 
in the original circuit. 
[12 910 radis] 

12.4. Calculate the impedance at resonance of the circuit in problem 
12.3, and determine the current in the circuit at 1.3 times the 
re sonant frequency if the r.m.s. supply voltage is 0.1 V. 
[(20 + jO) Q; 0.243L-87.2° mA] 

12.5. A 5 V a.c. source with an output resistance of 2 Q is connected to a 
se ries circuit which resonates at 1 MHz. What values of inductance 
and capacitance are connected in the circuit if the resistance of the 
inductor is 3 Q, and voltage across the capacitor at resonance is 
100 V? 
[15.9 IJ.H; 1.59 nF] 

12.6. An ideal parallel circuit of the type in figure 12.8(c) contains a 
resistance of 10 kQ in one branch, a 10 mH inductance in the 
second branch, and a 1 IJ.F capacitance in the third branch. Calcu­
late (a) the re sonant frequency of the circuit, (b) its Q-factor at 
resonance, (c) the bandwidth of the circuit and (d) the lower and 
upper half-power frequencies. 
[(a) 10 000 radis; (b) 100; (c) 100 radis; (d) 9950.1 radis, 10 050.1 
radis] 

12.7. Calculate the impedance of the circuit in problem 12.6 at (a) Wo, 

(b) 0.8wo, (c) 1.2wo• 

[(a) 10 kQ; (b) 222.2L88.7° Q; (c) 272.6L-88.4° Q] 

12.8. A coil of 10 Q resistance and 0.2 H inductance is connected in 
parallel with a capacitor of 100 IJ.F capacitance. Calculate the 
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resonant frequency of the circuit, and evaluate the current in each 
branch at resonance if the supply voltage is 1 V. What current is 
drawn from the supply? 
[34.7 Hz; I coi' = 0.0224L-77.1° A; Ie = 0.0218L90° A; 5 mA] 

12.9. Convert the circuit in problem 12.8 into a GLC parallel circuit 
containing the ideal elements of the kind in figure 12.5. 
[5 mS; 0.211 H; 100 !lF] 

12.10. A communications receiver circuit contains a 3-branch parallel cir­
cuit similar to that in figure 12.5. The circuit is tuned by a variable­
capacitance capacitor over a broadcast band from 0.5 MHz to 1.6 
MHz. If the value of Qp does not exceed 40 and R is 25 kQ, 
calculate the value of L, together with the maximum and minimum 
value of C. 
[198.9 !lH; 49.74 pF; 509.3 pF] 

12.11. If, in the circuit in problem 12.6, adependent voltage source is 
inserted in series with the capacitor so that the voltage genera ted 
assists the original current through the capacitor, determine an 
expression for the input admittance of the circuit if the magnitude 
of the dependent source is 1OO01R , where IR is the current in the 10 
kQ resistor. Calculate the re sonant frequency of the circuit. 
[1Q-4 + 1.1 x 1Q-6 jw + 100/jw; 1517 Hz] 

12.12. Scale the se ries RLC circuit in worked example 12.3.1 so that it 
contains (a) a 1 H inductance and a 1 F capacitance, (b) it contains 
a 1 nF capacitance and is resonant at 1 MHz. 
[(a) 0.4 Q, 1 H, 1 F; (b) 4 kQ, 1 nF, 23.3 !lH] 

12.13. In a band-pass filter of the type in figure 12.11(b), at a frequency of 
20 kHz XL = 2.513 kQ, Xe = 397.9 Q and R = 100 Q; calculate 
(a) the centre frequency Uo), (b) the half-power frequencies, (c) 
the Q-factor at resonance and (d) the Q-factor of the circuit if a 
resistance of 250 Q is connected between the output terminals. 
[(a) 7958 Hz; (b) 8366 Hz, 7570 Hz; (c) 10; (d) 14] 

12.14. In problem 12.13, calculate the two half-power frequencies and the 
pass-band if a load resistance of 100 Q is connected between the 
output terminals. 
[7761 Hz, 8159 Hz; 398 Hz] 

12.15. Two circuits tuned to a frequency of 1 kHz are magnetically cou­
pled as shown in figure 12.13(a). Each circuit has a resistance of 100 
Q, and the Q-factor of the primary and secondary circuits are 50 
and 100, respectively. Calculate (a) the critical coupling coefficient 
and (b) the lower and upper re sonant frequencies. 
[(a) 0.01414; (b) 0.993 kHz, 1.007 kHz] 



13 
Harmonics and Fourier 
Analysis 

13.1 Introduction 

Thus far we have thought almost exclusively of alternating waveforms as 
being pure sinusoids. However, there is a range of practical devices includ­
ing inductors, semiconductors, etc., which result either in the flow of 
non-sinusoidal currents or in the production of non-sinusoidal voltages. It 
is the analysis of these which interests us now. 

The Fourier series, developed by Baron Jean Fourier, is aseries of terms 
that represent a non-sinusoidal waveform. The simplest form is the trigo­
nometric series, in which the waveform is represented as the sum of a d.c. 
term together with a large number (theoretically infinity) of pure sinusoids. 
As a eonsequence of the principle of superposition, the effect of the 
waveform on circuits can be analysed using standard techniques. 

The exponential form of the Fourier se ries is more compact than the 
trigonometrie form, but is less easy to understand! 

13.2 Harmonics 

Sinusoids are, by far, the most frequent form in which periodie waveforms 
are met, that is, waveforms in which f(t) = f(T + t), where T is the 
periodie time of the wave. 

A waveform which is both periodic and non-sinusoidal is said to be a 
complex wave. A complex wave may be shown to be built up from a 
zero-frequeney term (or d.c. term) and aseries of sinusoids or harmonie 
waves whose frequency is an integral multiple of the fundamental frequeney 
(or first harmonic frequency). The fundamental frequency is the basic 
waveform which establishes the general periodic time of the complex wave. 

325 
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/ 
Complex waveform I Third harmonie 

-I 
Figure 13.1 A complex waveform which is the sum of the fundamental frequency and the 

third harmonic. 

Thus the second harmonie has a frequeney whieh is twice the fundamental 
frequeney, the third harmonie frequeney is three times the fundamental, ete. 
A complex wave whieh is the sum of a fundamental frequency and a third 
harmonie frequeney is shown in figure 13.1. In this ease the third harmonie 
is in phase with the fundamental, and has a lower amplitude. In general, 
harmonies frequeneies are not in phase with the fundamental, and do not 
have the same amplitude as the fundamental. 

Harmonics are gene rally produeed in eleetrical eireuits by equipment 
having a non-linear eharaeteristic. The simplest ease iS,for example, an 
iron-eored eoil whose B-H eurve is non-liriear. A more eomplex ease is a 
reetifier cireuit, whieh allows ftow of eurrent in one-half of the supply 
voltage wave, but prevents it in the other half-eyde. Eleetronic deviees 
sueh as thyristors and triaes give rise to even more eomplex waves. 

The resulting harmonies produee problems in eleetrieal cireuits ranging 
from meter-reading errors to seleetive resonanee. 

13.3 Trigonometrie Fourier series 

A periodic waveform for whieh f(t) = f(T + t), where T is the periodic 
time of the wave, ean be represented by the trigonometrie Fourier series of 
f(t) in the form 

f(t) = ao + a1 eos wt + a2 eos 2wt + .. . 

+ b1 sin wt + b2 sin 2wt + .. . 

or in the generalised form 
~ 

f(t) = ao + L (an eos nwt + bn sin nwt) 
n=l 

where w = 2rrJT radis, and nw is the nth harmonie frequeney. The eoef-
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ficients ao, an and bn are the trigonometric Fourier coefficients of f(t). 
Alternatively, the se ries can be written in the form 

or 

where 

~ 

f(t) = ao + L Cn sin (nwt + CPn) 
n=l 

~ 

f(t) = ao + L Cn cos (nwt + On) 
n-l 

cn = V(a~ + b~) 
CPn = tan- 1 (an/bn) 
On = tan- 1 (-bn/an) 
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We are not concerned here with the proof of Fourier's theorem, but we 
have a deep interest in evaluating the Fourier coefficients. In order to do 
this we need to know the value of certain integrals, which are given below. 
Firstly, the average value of a sinusoid over a complete cycle is zero. 

[ sin wt dt = 0 

[ coswtdt=O 

and the value of the following definite integrals is zero 

also 

[ sin kwt cos nwt dt = 0 

[ sin kwt sin nwt dt = 0 

[ cos kwt sin nwt dt = 0 

[ sin2 nwt dt = ; 

[ cos2 nwt dt = ; 

The reader should note that the integration period can be any range of T, 
for example, the integration could be over the range 0 to T (as it is above), 
or from - T/2 to T/2, or from - T/4 to 3T/4, etc. 
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We now turn our attention to a method of evaluating the Fourier 
eoeffieients. 

The value of ao 

If we integrate the Fourier series over one eomplete eyde we get 

[f(t) dt = [ao dt + [ ~1 (an eos nwt + bn sin nwt) dt 

and, sinee every term in the seeond expression is either a sine or a eosine, 
then 

or 

ao = ~ [f(t) dt 

That is, the eoeffieient ao is the average value of f(t) over one complete 
cycle. It is therefore the d.c. component of f(t). 

The value of an 

To evaluate this term, we multiply both si des of the Fourier se ries by 
eos kwt, and then integrate both sides over one eyde, as follows 

[f(t) eos kwt dt = [ao eos kwt dt + 

[ n~l (an eos kwt eos nwt dt + bn eos kwt sin nwt dt) 

Every term on the right-hand side of the equation is zero exeept for the 
ease where k = n, when 

[f(t) eos nwt dt = ; an 

or 

an = ~ [f(t) eos nwt dt 
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That is 

an = twiee the average value of (f(t) eos nwt) over one eyde 

The value 01 bn 

The proeedure for evaluating bn is generally similar to that for an> with the 
exeeption that we multiply both si des of the Fourier series by sin kwt 
before integration. The final result is 

bn = ~ [/(t) sin nwt dt 

or 

bn = twiee the average value of (f(t) sin nwt) over one eyde 

Using these relationships, we will take a look at the Fourier analysis of a 
reet angular wave and a reetified sinewave. 

Worked example 13.3.1 

Determine the Fourier series for the reetangular wave in figure 13.2. 

v(t) 

1 

0 ri2 i 
- -1 -

Figure 13.2 Figure for worked example 13.3.1. 

Solution 

In this ease the graph is plotted to a base of time, and the integral will be 
evaluated over a range of T seeonds. The equation of the wave is 

{
V rn for - T/4 < t < T/4 

v(t) = -Vrn for T/4< t< 3T/4 

By observation, the area above the axis in eaeh eyde is equal to the area 
below it, henee 
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The value of an can be calculated as folIows. Since wT = 2n, then 
w = 2n/T. Also, since the waveform repeats itself between T/2 and T, we 
shall analyse the wave from 0 to T/2 below. 

2 fT'2 
an = - J(t) cos nwt dt 

T/2 0 

fm fm 
= i{ Vm cos 2nnt/T dt + - Vm cos 2nnt/T dt} 

T 0 T/4 

f
T'4 fT'2 4Vm 2nnt 2nnt 

= --{ cos--dt - COS--dt} 
ToT TI4 T 

TI4 
= 4 V m { [~sin 2nnt] 

T 2nn T 0 

[ T . 2nnt ]TI2 } - --sm--
2nn T TI4 

4Vm . /2 = --sm nn 
nn 

If n is even, an = O. For odd values of n, an is finite. The value of bn can be 
calculated as folIows. 

2 fT'2 
bn = - J(t) sin nwt dt 

T/2 0 

4 JT/4 JTI2 = -{ V m sin (2nJrt/T) d( wt) + - V m sin (2nJrt/T) dt } 
Tom 

= 0 for all n 

That is, there are no sine terms in the series. Hence, the Fourier series is of 
the form 

( 4Vm( 1 1 v t) = -- cos wt - -cos 3wt + -cos 5wt 
n 3 5 

- ... ) 
Worked example 13.3.2 

Express the rectified current waveform in figure 13.3 as a Fourier series. 

Solution 

The waveform can be expressed over the range O~t~O.l as 

i(t) = {Im sin wt for 0 ~ t ~ 0.05 
o forO.05~t~0.1 
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r-----t------4~---_\. __ t (5) 
o 0.05 0.1 0.15 

1-- 1 cycle .. I 

Figure 13.3 Figure for worked example 13.3.2. 

Since T = 0.1 s, then! = 1rr = 10 Hz and w = 20re rad/so 
The d.c. component or zero-frequency component is 

1 fT 
ao = - !(t) dt 

T ° 

1 {JO.05 Jo.t} 
= - Im sin 20ret dt + 0 dt 

0.1 ° 0.05 
= Im/re 
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The reader should note that the integration is broken down into intervals 
for which the functional form of i(t) is known. 

The value of an can be calculated as folIows. 

2 fT 
an = - !(t) cos nwt dt 

T ° 

2 {f0005 foot } = - Im sin 20ret cos 20rent dt + 0 dt 
0.1 ° 0005 

= 101m f:05 
(sin (n + 1)20ret - sin (n - 1)20ret) dt) 

We break the calculation at this point to note that 

Joo 05 
a t = 101m ° sin (2 X 20ret) dt) = 0 

The calculation is continued below to include other values of n 

an = ~ - -- cos (n + 1)20ret + --cos (n - 1)20ret m[ 1 1 ]~ 
20re n+l n-1 ° 
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= ~ --(1 - cos (n + 1):rr) - --(1 - cos (n - 1):rr) 101 [ 1 1 ] 
20:rr n+1 n-1 

Points to note he re are that if n is odd (and =1= 1), then (n ± 1) is even, so 
that an = 0; that is a3 = a5 = a7 = ... = O. Ifn is even then (n ± 1) is odd 
and 

a = lOIm [_2 ___ 2_] 
n 20:rr n+1 n-1 (n + l)(n - 1):rr 

The coefficient bn is calculated as follows 

2 fT 
bn = - f(t) sin nwt dt 

T ° 

= ~ Im sin 20:rrt sin 20:rrnt dt + 0 dt { foo05 fool } 

0.1 ° 0005 

fOo05 

= 201m ° sin 20:rrt sin 20:rrnt dt 

Ifn=l 

fo o05 I 
b = 201 sin2 20:rrt dt = -2!!. 

1 m ° 2 

If n =1= 1, the calculation proceeds as follows 

Hence 

bn = 20Im [05 ~(cos(n - 1)20:rrt - cos (n + 1)20:rrt) dt 

=0 

i(t) = Im ( 1 + ~ sin 20:rrt - 3. cos 40:rrt 
:rr 2 3 

2 2 ) - - cos 80:rrt - - cos 120:rrt 
15 35 

13.4 Waveform symmetry 

Many waveforms exhibit symmetry either about a particular point or a 
particular axis. A knowledge of the type of symmetry involved may tell us 
that certain coefficients in the Fourier series may be absent, allowing us (in 
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certain cases) to simplify the calculations involved. If more than one form 
of symmetry exists, there will be more than one factor missing from the 
series. 

When investigating the symmetry of a waveform, and if a d.c. compo­
nent exists, the reader will find it useful to visualise the wave without its 
d.c. component. 

The two most readily recognisable forms of symmetry are evenjunction 
symmetry (or even symmetry) and odd-function symmetry (or odd sym­
metry). 

Even symmetry 

An even function is defined as one for which f(t) = f( - t), that is, it is 
symmetrical about the y-axis, as shown in figure 13.4(a). The Fourier series 
for the function contains only cosine terms (no sine terms exist): ao may 
exist, an exists and bn = 0. The series is of the form 

f(t) = ao + at cos wt + a2 cos 2wt + ... 

Odd symmetry 

An odd function is one in which f(t) = - f( - t), that is it is symmetrical 
about the origin (see figure 13.4(b». TheFourier series for this function 
contains only sine terms; to summarise, ao = 0, an = 0, bn exists, and the 
Fourier series is of the form 

f(t) = bt sin wt + b2 sin 2wt + ... 

Half-wave repetition 

This is a wave in which f(t) = f(t + T/2), as shown in figure 13.4( c). The 
Fourier se ries for this type of repetition contains only even terms; to 
summarise, ao may exist, and only even terms exist in an and bn as folIows. 
If the series has the general form 

f(t) = Co + Ct sin( wt + <Pt) + C2 sin(2wt + <P2) + C3 sin(3wt + <P3) + ... 

then 

f(t + T/2) = Co - Ct sin( wt + <Pt) + C2 sin(2wt + <P2) - C3 sin(3wt + <P3) 
+ ... 

Hence if f(t) = f(t + T/2), then the Fourier series for f(t) contains only 
even harmonics. 
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o TI2 T Time 

t- "' -t 

(a) 

y 

Time 

(b) 

y y 

.--

I f(t) ~ T/2 

f(t + T/2) Time 

• I T Time 
t I TI2 

(c) (d) 

Figure 13.4 Waveform symmetry. 

Half-wave inversion 

In this type of wave,f(t) = - f(t + T/2), as shown in figure 13.4(d). The 
Fourier series contains only odd terms; to summarise, ao = 0 and only odd 
terms exist in an and bn . 

If the series has the general form described in the Half-wave repetition 
section, it is clear that if f(t) = - f(t + T/2), neither the 'd.c.' component 
nor even terms exist (see also worked example 13.4.1). 

Worked example 13.4.1 

Identify the symmetry of the waveforms in figure 13.5. 
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v(t) i(t) 

2 

-...,f---------'l:-------;t-t- wt 

(a) 
o T/2 T 

(b) 

Figure 13.5 Figure [ar worked example 13.4.1. 

Solution 

The waveform in figure 13.5(a) eorresponds to the idealised magnetie flux 
distribution in the air gap of an alternator. The waveform has odd symmet­
ry and half-wave inversion. Consequently ao = 0, an = 0 and beyen = O. 

The wave in figure 13.5(b) has a 'd.e.' term whieh, by observation, has 
unity value, that is, ao = 1. If we visualise the 'a.c.' component without the 
'd.c.' term, we see that the wave is an even function and has half-wave 
inversion. That is bn = 0 and aeven = O. 

13.5 Line spectrum 

A popular method of presenting the results of Fourier analysis is in the 
form of a line spectrum of the wave. In any given problem, there may be 
either one or two line speetrum diagrams. One diagram shows the ampli­
tude of each frequency component in the form of a vertical line drawn at 
the corresponding frequency, the length of the line indicating the magni­
tude of the harmonic (this is the most usual form of line spectrum). 

In addition, there may be a phase speetrum, the length of each vertical 
line representing the phase angle of the partieular harmonie component 
(see worked example 13.5.1). 

For a partieular harmonie frequency nwt, we can combine the si ne and 
cosine terms in the Fourier series as follows 

an cos nwt + bn sin nwt = V(a~ + b~) sin (nwt + tan- 1(an/bn» 
or 

an cos nwt + bn sin nwt = V(a~ + b~) cos (nwt + tan- I ( - bn/an» 
Using the above relationships, the magnitude and phase spectra can be 
drawn. Depending on whether the sine or cosine version is chosen, the 
phase shift between the two will differ by 90°. 
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If we replaee the eosine and sine terms in the Fourier series by their 
exponential equivalent, we get the following simplified series (showing 
onlyao and the nth harmonie). 

f(t) = ao + ... + an eos nwt + ... + bn sin nwt + ... 

+ ... + ~j (e jnwt _ e- jnwt) + ... 

+ + 1 ( ·b ) jnwt + . .. - an - J n e ... 
2 

1 ( ·b ) jnwt + + - an - J n e ... 
2 

This series indieates that there is yet another version of the line speetrum, 
with speetrallines at frequeneies +nw and - nw, e'aeh of these lines being 
one-half the length of the original amplitude speetrum. The length of the 
d.e. term (ao) is unehanged. If, for example, the trigonometrie Fourier 
se ries of a wave is as shown in figure 13.6(a), the exponential se ries 
indieates that the alternative speetrum in figure 13.6(b) is also true for the 
wave. 

Amplitude 

10 10 

8 
6 

3 3 

I---+---,----t-<- w .. ~--,---~--~---+---.--~--~+w 
o 2 3 -2 -1 o 2 3 

(a) (b) 

Figure 13.6 Amplitude speetrum 01 a eomplex wave using (a) the trigonometrie Fourier 
series, (b) the exponential Fourier series. 

Worked example 13.5.1 

Draw the phase and magnitude speetra for a waveform with the following 
Fourier analysis 

v(t) = 10 - 3 eos t + 2 eos 2t - 5 eos 3t 
+ 4 sin t - 6 sin 2t + 2 sin 3t - 12 sin 4t 
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Solution 

The line spectrum values can be calculated as follows; it is assumed that 
each term in the series can be expressed in the form c,. cos(ncot + tP,.). 
d. c. component 
Amplitude = 10 

co = 1 radis component 
Amplitude = Cl = V(ai + bi) = V(32 + 42) = 5 
Phase shift = tPl = tan-l(-b/al) = tan- l(-4/-3) = -127° 

co = 2 radis component 
Amplitude = C2 = V(ai + bi) = V(22 + 62) = 6.3 
Phase shift = tP2 = tan- l(-b/a2) = tan- l(6/2) = 71S 

co = 3 radis component 
Amplitude = C3 = V(a; + b;) = V(52 + 22) = 5.4 
Phase shift = tP3 = tan- l(-bja3 ) = tan- l(-2/-5) = -158.2° 

co = 4 radis component 
Amplitude = C4 = V(a; + b;) = V(Q2 + 122) = 12 
Phase shift = tP4 = tan- l(-bia4 ) = tan- l(12/0) = 90° 
The Fourier series can therefore be expressed in the form 

v(t) = 10 + 5 cos(cot - 127°) + 6.3 cos(2cot + 71S) 

+ 5.4 cos(3cot - 159.2°) + 12 cos( 4cot + 90°) 

and the corresponding line spectra are shown in figure 13.7. 

10 

Q) 
"tJ 

5 

12 

6.3 
5.4 

a 'e: I---+---+---+----t- w 

:6'0 
~ 

2 3 4 

Figure 13.7 Figure Jor worked example 13.5.1. 

~ :.c ., 3 
~--+--+---+---+ __ w 
~ 0 
Q.. 4 2 

-158.2° 
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13.6 Circuit response to a non-sinusoidal forcing function 

A eomplex foreing voltage ean be thought of as a direet voltage in se ries 
with an infinite number of eosine and sine voltages, as shown in figure 13.8. 
We ean eonsider the response of a linear network to this voltage by 
ealculating the eurrent due to eaeh independent harmonie of the eomplex 
voltage. By superposition, the resulting eurrent is the sum of the individual 
terms, as shown in worked example 13.6.1. 

a, cos wt' 
a2 cos 2wt' 

I 
I 
I 

b,Sinwtt$ 
b2 sin 2wt'~ 

Figure 13.8 Circuit response to a non-sinusoidal forcing function. 

Worked example 13.6.1 

Determine an expression for the eomplex eurrent, i(t), in the cireuit in 
figure 13.9(a), when it is energised by a reetified sinewave of 100 V peak 
amplitude (see figure 13.9(b». The fundamental frequeney of the wave is 
1000 radis. 

Also determine the most signifieant terms in the Fourier series for the 
voltage vR(t) and vL(t) for the voltage aeross the resistanee and induetanee, 
respeetively. 

Solution 

Firstly we need the trigonometrie Fourier expression for the eomplex 
wave; fortunately we have already dedueed the first few terms in the series 
for half-wave reetified eurrent in worked example 13.3.2, and the eorres­
ponding series for a voltage wave is 
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0.01 H 

i(t) 100 v(t) b 
~" lB'oov ot------'1T'----2.J..P-..... W-t 

100 

(a) (b) ----31.53 V 15L 90° V 
2000 radis 

(c) 

Figure 13.9 Figure tor worked example 13.6.1. 

v(t) = V m( 1 + ~ sin wt - ~ eos 2wt 
:n: 2 3 

2 2 ) - -eos 4wt - - eos 6wt - ... 
15 35 

Sinee the terms in the series diminish rapidly as the order of the harmonie 
increases, we shall eonsider only terms up to and including the seeond 
harmonie. Converting the seeond harmonie cosine term into a sine term, 
the expression for v(t) is 

v(t) = 31.83 + 50 sin wt - 21.22 sin (2wt + 90°) V 

When the maximum a.c. values are converted into r.m.s. values, the eircuit 
diagram for the first three terms in the series is as shown in figure 13.9(e). 
We now consider each component in turn. 

d.c. term 

The current, 10 , produced by this term is 

10 = aJR = 31.83/10 = 3.183 A 

The p.d. across the resistor produced by this voltage is 

VRO = RIo = 10/0 = 31.83 V. 

and across the inductor (which has no resistance) is zero. 

Fundamental frequency term 

The r.m.s. voltage is 50/v'2 = 35.36 V, hence VI = 35.36 LO° V. The 
cireuit impedance at the fundamental frequency of 1000 radis is 

ZI = R + jw.L = 10 + j(l000 x 0.01) = 10 + jlO 
= 14.14L45° Q 
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hence 

11 = V';ZI = 35.36Loo/14.14L45° = 2.5L-45° A 

and 11max = 3.54 A. Hence 

VR1 = RI1 = 10 X 2.5L-45° = 25L-45° V 

and 

VLl = jX.Il = j10 X 2.5L-45° = 25L45° V 

Seeond harmonie term 

The r .m.s value of this component is 21.22/V2 = 15 V and, since cp = 90°, 
V2 = - 15 L 90° = 15 L - 90° V. The circuit impedance at a frequency of 
2000 radis is 

that is 

Z2 = R + jw2L = 10 + j(2oo0 X 0.01) = 10 + j20 
= 22.36L63.4° Q 

or 12max = 0.95 A. The voltage across the circuit elements is 

VR2 = RI2 = 10 x 0.67 L-153.4° = 6.7 L-153.4° V 

and 

VL2 = jXJ2 = j20 x 0.67 L-153.4° = 13.4L-63.4° V 

Hence, the first three terms in the Fourier series for i(t) are 

i(t) = 3.183 + 3.54 sin (lOoot - 45°) + 0.95 sin (20oot - 153.4°) A 

The first three terms in the Fourier series for vR(t) are 

vR(t) = 31.83 + 35.36 sin (loo0t - 45°) + 9.48 sin (2oo0t - 153.4°) V 

and the terms in the Fourier series for vL(t) are 

vL(t) = 35.36 sin (lOoot + 45°) + 18.95 sin (2oo0t - 63.4°) V 

At this point the reader will find it interesting to verify that v(t) = vR(t) 
+ vL(t). 

13.7 T.M.S. value of a complex wave and the power supplied 

The r.m.s. value of the complex wave 
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y(t) = ao + (al eos wt + ... + an eos nwt + ... ) 
+ (bi sin wt + ... + bn sin nwt + ... ) 

is given by 

Yrms = v' (a~ + t( ai + . . . + a~ + . . .) + t( bi + . . . + b~ + . . .)) 
or, if An is the r.m.s. value of an, and Bn is the r.m.s. value of bn, then 

Yrms = v'(A~ + (Ai + ... + A~ + ... ) + (Bi + ... + B~ + ... )) 
The reader may like to verify that the r.m.s. voltage aeross the resistor in 
worked example 13.6.1 is 41 V, and the r.m.s. voltage aeross the induetor 
is 28.37 V. Aeeordingly, the r.m.s. supply voltage is 

Vs = v'(4F + 28.372) = 49.86 V 

whieh is in elose agreement with the r.m.s. voltage of 49.88 V ealculated in 
worked example 13.7.1. 

If v(t) and i(t) are the respeetive voltage across and the eurrent in the 
eireuit, then the average power supplied by the nth harmonie is 

1 f2Jt 
= - VnIn sin nwt sin(nwt - cfJn) d(wt) 

2Jt 0 

= VnIn eos cfJn 

where cfJn is the phase angle between Vn and In. 
The average power supplied by a voltage of one frequeney (say nwt) and 

a eurrent of another frequeney (say mwt) is zero. Henee the total power 
supplied by a eomplex voltage (or eurrent) is 

PT = Po + PI + ... + Pn + .. . 
= VJo + VJI eos cfJI + ... + VnIn eos cfJn + ... 

00 

= VJo + ~ VnIn eos cfJn 
n=l 

where Vn and In are r.m.s. values. 
The power Jactor of a eireuit to which a eomplex wave is applied is 

defined as 

f power eonsumed 
power aetor = --........!--------­

r.m.s. voltage X r.m.s. eurrent 
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Worked example 13.7.1 

Calculate, for worked example 13.6.1, (a) the r.m.s. current in the load, 
(b) the r.m.s. voltage across the load, (c) the power supplied by each 
component of the complex wave, (d) the total power supplied and (e) the 
power factor. 

Solution 

(a) The r.m.s. value of the current is 

I = V ( I~ + I;m + I;m ) 

= V (3.1832 + 3.~42 + 0.~52) = 4.1 A 

(b) The r.m.s. value of the voltage across the load is 

V = V ( V~ + V~m + V~m) 

..J( 502 21.222) 
= V 31.832 + 2 + -2- = 49.88 V 

(c) We can calculate the power consumed by each component of the 
complex wave as follows. 
d.e. eomponent 

or, alternatively 
or 

Fundamental [requency 

Po = Volo = 31.83 X 3.183 = 101.3 W 

Po = I~R = 3.1832 X 10 = 101.3 W 
Po = V~(R/R = 31.8)2/10 = 101.3 W 

PI = Re(Vll~) = Re(35.36LO° X 2.5L-45°) 
= Re(62.5 - j62.5) = 62.5 W 

or PI = IiR = 2.52 X 10 = 62.5 W 
or PI = V'i(R/R = 252/10 = 62.5 W 

Second harmonie 

P2 = Re(VJ~) = Re(15L-90° X 0.67 L153S) = 4.5 W 

or P2 = PzR = 0.672 X 10 = 4.49 W 
or P2 = V;(R/R = 6.72/10 = 4.49 W 

(d) Total Power 
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PT = Po + PI + Pz = 168.3 W 

PT = PR = 4.F x 10 = 168.1 W 

(e) The power faetor of the eireuit ean be ealculated from 

power faetor = power/(r.m.s. volt-amperes) 
= 168.3/(49.88 x 4.1) = 0.823 

13.8 EtJect of harmonics in a.c. systems 
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Sinee resistanee is independent of frequeney, the voltage and eurrent will, 
for eaeh individual harmonie, be in phase with one another in a resistor. 

In the ease of an induetor, the reaetanee to the nth harmonie is n times 
greater than it is to the fundamental; eonsequently, the eurrent produeed 
(for eaeh volt) by that harmonie is n times sm aller than for the fun­
damental. 

For a eapaeitor, the reaetanee to the nth harmonie is n times sm aller 
than it is to the fundamental; eonsequently, the eurrent produeed (for eaeh 
volt) by that harmonie is n times greater than for the fundamental. 

Consequently, if measurements of impedanee are made in a eireuit 
eontaining reaetive elements using a eomplex supply frequeney, large 
errors ean arise unless allowanee is made for the individual harmonies. 

Harmonies ean also be produeed in 3-phase systems. It ean be shown 
that it is unusual for even harmonies to be present in these systems, but 
multiples of the third harmonie (ealled triple-n harmonics) ean produee 
serious problems. In some eases, odd harmonies have a positive phase 
sequence (see also chapter 7), and others have a negative phase sequence. 

13.9 Harmonic analysis 

If we are provided with numerical data for a waveform (as we may from an 
oseillogram) then, using the theory in section 13.3, we can ealculate the 
Fourier eoeffieients of the wave. The eoeffieients are ealculated from ordin­
ates taken at fixed intervals along the wave. 

However, the reader should note that this method ean, on oeeasions, 
give misleading results; for example, if the spacing of the ordinates is sueh 
that they are placed at the nodes of the nth harmonie, then the nth 
harmonie will apparently have zero value! Moreover, errors will arise if 
one tries to extend the theory to predieting high-order harmonies. 
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Worked example 13.9.1 

A eurrent waveform has the values in table 13.1 in its first half-eyde; they 
are repeated with a negative sign in the seeond half-eyde. 

Calculate the maximum value of the fundamental frequeney, together 
with the seeond and the third harmonies, and determine the phase angle 
between the fundamental and the third harmonie. 

Solution 

In this type of problem, the solution ean be obtained in tabular form (see 
table 13.2) and, in so doing, the risk or error is redueed. 

Table 13.1 

(f' 0 20 40 60 80 100 120 140 160 
i (A) -17.3 16.9 64.3 103.9 115.8 94.5 69.3 47 30.2 

Table 13.2 

(f' f(t) f(t)cos 0 f(t)sin 0 f(t)cos 20 f(t)sin 20 f(t)cos 30 f(t)sin 30 

0 -17.3 -17.3 0 -17.3 0 -17.3 0 
20 16.9 15.9 5.8 12.9 10.9 8.5 14.6 
40 64.3 49.3 41.3 11.2 63.3 -32.15 55.7 
60 103.9 52.0 90.0 -52.0 90.0 -103.9 0 
80 115.8 20.1 114.0 -108.8 39.6 -57.9 -100.3 

100 94.5 -16.4 93.1 -88.8 -32.3 47.25 -81.8 
120 69.3 -34.7 60.0 -34.7 -60.0 69.3 0 
140 47.0 -36.0 30.2 8.2 -46.3 23.5 40.7 
160 30.2 -28.4 10.3 23.1 -19.4 -15.1 26.2 

Sum 524.6 4.5 444.7 -246.2 45.8 -77.8 -44.9 

The ealculations for the first half-eyde are shown in table 13.2, and for the 
seeond half-eyde the eorresponding total values are 

f(t) f(t) eos 8 f(t) sin 8 f(t) eos 28 f(t) sin 28 f(t) eos 38 f(t) sin 38 
-524.6 4.5 444.7 246.2 -45.8 -77.8 -44.9 

The totals for the eomplete eyde are 

f(t) f(t) eos 8 f(t) sin 8 f(t) eos 28 f(t) sin 28 f(t) eos 38 f(t) sin 38 
o 9 889.4 0 0 -155.6 - 89.9 

Thus ao = mean value of l:.f(t) = 0118 = 0 
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and an = 2 X mean value of ~f(t) cos n8 
bn = 2 X mean value of ~f(t) sin n8 

hence 

a1 = 2 X 9/18 = 1 
a2 = 2 X 0/18 = 0 
a3 = 2 X (-155.6)/18 = -17.3 
b1 = 2 X 889.4/18 = 98.8 
b2 = 2 X 0/18 = 0 
b3 = 2 X (- 89.8)/18 = - 9.98 

that is, the Fourier series for the wave is 

f(t) = cos 8 + 98.8 sin 8 - 17.3 cos 38 - 9.98 sin 38 
= 98.8 sin (8 + 0.6°) + 19.97 sin (38 - 120°) 
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The reader should note that the - 120° phase angle of the third harmonie 
corresponds to a phase angle of - 40° at the fundamental frequency, so that 
the phase angle between the two sinusoids is 40.6°. 

Unworked problems 

13.1. A waveform has the following Fourier analysis: 

f(t) = 10 + 6 sin (20Jtt + 40°) + 8 sin (40Jtt + 70°) + 
2 sin (60Jtt + 90°) 

Calculate (a) the mean value off(t) , (b) the r.m.s. value off(t), (c) 
the periodic time of the second harmonie and (d) the value of f( t) at 
t = 0.1 s. 
[(a) 10; (b) 12.33; (c) 0.05 s; (d) 23.38] 

13.2. For the waveform in figure 13.10, evaluate (a) ao, (b) at> (c) b2 • 

[(a) -1.6; (b) - 0.75; (c) 0.88] 

fit) 

2 

-+--r--+--r-......--+---r-~_ t (s) 
2 4 

L:J 12 
-6 

Figure 13.10 
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o ~ t--rr+----:::-2rr--+-- wt 

Figure 13.11 

Amplitude 

1234567 

Figure 13.12 

,!k. /' 
I wt 

-rr 0 rr 2rr 

Figure 13.13 

13.3. Evaluate the trigonometrie Fourier series for the square wave in 
figure 13.11 and (b) draw the line speetrum for the wave. 

[(a) /(t) = 4~m (sin wt + ~ sin 3wt + ~ sin 5wt + .. .); 

(b) see figure 13.12] 

13.4. Determine the trigonometrie Fourier series for the tri angular wave­
form in figure 13.13. 

[ V m (1 +.! eos wt + _8_ eos 3wt + _8_eos 5wt + ... ) I 
2 Jt2 (3Jt) 2 (5Jt) 2 

13.5. A voltage waveform is defined by the following 
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:rt :rt 
v(t) = 200 eos rot for - - ~ rot ~-

2 2 

:rt 3:rt 
v(t) = 0 for -~ rot~-

2 2 

Deduee the Fourier series for the wave. 

I 200 ( :rt 2 2 
- 1 +-eos rot + - eos 2rot - - eos 4rot 

:rt 2 3 15 

+ :SCOS6wt- ... l] 
13.6. If the periodie frequeney of the wave in problem 13.5 is 300 rad/s, 

and is applied to aseries eireuit eontaining a 1 kQ resistanee and a 
0.8 IlF eapaeitanee, determine the Fourier se ries up to the 6th 
harmonie for the eurrent in the cireuit. 
[23.3 eos (rot + 76S) + 18.4 eos (2rot + 64.4°) + 
5.9 eos (4rot + 46.2°) + 3 eos (6rot + 34.8°) mAl 

13.7. For problem 13.6, ealculate (a) the r.m.s. value of the voltage and 
the eurrent, (b) the power supplied by eaeh harmonie, (e) the total 
power supplied and (d) the power faetor . 
[(a) 99.84 V, 21.5 mA; (b) d.e. power == 0, fundamental power = 
0.271 W, 2nd harmonie power = 0.169 W, 4th harmonie power = 
17 mW, 6th harmonie power = 4.5 mW; (e) 0.462 W; (d) 0.215] 

13.8. Write down the Fourier series for eaeh of the following pe rio die 
funetions, and determine the periodie time of the wave in eaeh 
ease: (a) 6 sin 2 20t, (b) 5 eos 2 lOt, 
(e) 5 + 4 sin 100t + 8 sin 2 100t + 10 eos 2 100t. 
[(a) 3(1 - eos 40t), 0.05:rt s; (b) 2.5(1 + eos 20t), 0.1:rt s; 
(e) 14 + 4 sin 100t + eos 200t, 0.02:rt s] 

13.9. The trigonometrie Fourier se ries for aperiodie wave is 

f(t) = 5 - 10 eos 4t + 5 eos 12t - 9 eos 20t + 4 sin 4t 

+ 15 sin 12t - 4.5.sin 20t + 8 sin 28t 

Produee a table showing the magnitude and phase angle for eaeh 
term in the se ries assuming that the expression for the nth harmon­
ie is Cn sin (nrot + cf>n). Calculate the r.m.s. value of the wave. 
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[The table is 

Order Modulus <p 

0 5 0° 
1 10.77 -68.2° 
3 15.81 18.4° 
5 10.06 -116.6° 
7 8 0° 

; 17.05] 

13.10. A Fourier series expressed in the form 

00 

J(t) = ao + L Cn eos (nwt + <p) 
n = 1 

has magnitude and phase angle speetrum for the first five terms as 
folIows. 

Order of harmonie 
Magnitude 
<po 

o 1 3 5 7 
10 8 10 4 3 
o 0 -45 135 90 

Deduce the Fourier se ries for the wave. 
[10 + 8 eos wt + 7.07 eos 3wt - 2.83 eos 5wt + 7.07 sin 3wt 

- 2.83 sin 5wt - 3 sin 7wt] 

13.11. The following values were obtained from measurements on a 
voltage wave. 

cJ>0 0 30 60 90 120 150 180 210 240 270 300 330 
voltage (V) -134-444 -326 -106 -94-144 -66 144 126 306 494 344 

Calculate the value of the parameters of the Fourier series up to 
and inciuding the third harmonie. 
[- 100 eos 2wt - 34 eos 3wt - 300 sin wt - 173 sin 2wt 

- 94 sin 3wt] 



14 
Computer Solution of 
Electric Circuits 

14.1 Introduction 

A range of software packages is available for the analysis of circuits using 
mainframe, mini and personal computers. The attention of the reader is 
directed here to one of the most popular of them, namely the Simulation 
Program with Integrated Circuit Emphasis or SPICE, developed at the 
University of California, Berkeley, which is widely available. 

With the space available, only an introduction can be given here; for 
more details, the reader should study a copy of the User Guide for the 
version of SPICE employed in his computer system. 

SPICE enables circuit analysis to be performed on d.c; and a.c. circuits 
(or a combination of the two) which include elements such as resistors, 
inductors, coupled circuits, capacitors, semiconductor devices, dependent 
and independent sources, transmission lines, etc. SPICE can also be used 
to perform frequency response analysis, Fourier analysis, transient analy­
sis, and can handle problems involving electronic noise, temperature 
effects, etc. 

The reader should note that some of these features may not be available 
in some versions of SPICE for personal computers. 

The circuit to be analysed is described using a text edi~or, which allows 
the user to create and modify the input file (one program line per circuit 
component). The first line of the file normally contains a title statement, 
and the file is terminated by a '.END' statement. Such element as voltage 
sources, current sources, resistors, inductors, transformers, capacitors, 
diodes, transistors, etc., can be included in the input file. 

Next, the input file is read by analyser, which checks the file for errors; if 
none are present, it performs the required analysis and supplies the results. 
On completion, control is returned to the editor. 

349 
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Depending on the type of analysis required, the results may either be in 
numerical form, or graphical form, or both. 

Abrief introduction to SPICE circuit elements is given in section 14.3, 
and greater detail can be obtained from section 14.4, where programming 
examples are described. 

SPICE provides a faster solution to circuit problems than can be 
obtained by hand or calculator, and is less error-prone than conventional 
methods. However, the reader is reminded that computer solution is not 
an aid to learning! Computer solution comes into its own when the solution 
of the problem is either tedious and/or complex, or when a range of 
solutions is needed for different circuit parameter values. 

All the PLOTs or graphs in this chapter are typical 'text' type displays 
produced by a printer. Most versions of SPICE have a graphics post­
processor option, which provides a very high quality output on a printer or 
plotter. 

We will, at this stage, look at a very simple circuit comprising two 
series-connected resistors, R1 and R2, supplied by a battery VI. An input 
file describing the circuit may be as follows. 

Simple Circuit 

V1 1 0 DC 10; 10 V d.c. source 

R1 1 2 5' , R1 connected between nodes 1 and 2 

R2 2 0 15; R2 connected between no des 2 and 0 

.END this line MUST be included 

Each input file MUST either commence with a 'title line' ('Simple Circuit' 
in this case), or a blank line; the purpose of this li ne is to enable the 
function of the file to be described in one line. This is followed by aseries 
of 'element' lines, which may be written in any order. In this case we have 
chosen the order V1, R1, R2; we could have chosen the order R2, R1, V1, 
or R1, V1, R1, etc. The finalline must be a '.END' line; the '.' at the 
beginning of the line teIls SPICE that this line contains a control function. 
Other controllines are introduced in sections 14.3 and 14.4 and, apart from 
'.END', controllines may be included at any stage in the file (but before 
'.END'). 

In-line comments can be added following a ';' at the end of each line. A 
complete line of comments can be included in the file by commencing the 
'comment' line with a ,*, (see worked example 14.1). 
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SPIeE symbolic values 

Value 

10- 15 

10- 12 

10-9 

10-6 

10-3 

10 3 

106 

109 

10 12 

14.2 Circuit description 

SPIeE symbolic form 

F 
P 
N 
U 
M 
K 

MEG 
G 
T 

Exponent form 

lE-15 
lE-12 
lE-9 
lE-ti 
lE-3 
lE3 
lE6 
lE9 
lE12 
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Each terminal of each element in the circuit being analysed is connected to 
anode, the nodes being numbered in the range 0, 1,2,3 ... n; the value 
of n is only limited by the version of SPICE being used. Node 0 is the 
reference (or ground) node. A two-terminal element, such as a resistor, an 
inductor, a capacitor, etc., is connected between two nodes, and a three­
terminal element such as a transistor is connected between three nodes. 

The value of a component, such as the resistance of a resistor, can be 
specified either by entering its actual value (usually a maximum seven 
figures), or by expressing the value in exponent form, such as 1.5E-6, or by 
writing it in symbolic form as shown in the table above. Thus, a resistance 
of a 1200 ohm resistor may be specified either as 1200, or as 1.2E3, or as 
1.2K. 

14.3 Element description 

In the following, the SPICE specifications of a number of the more 
important circuit elements are described. 

Resistors 

The general specification is of the form 

RXXXXXXX NI N2 VALUE 

in which RXXXXXXX is the designation of the resistor in the circuit being 
analysed; the XXXXXXX part of the designation is an alphanumeric string 
from one to seven characters. For example, this could be R2, R23, or 
R3AC4XY, etc. NI and N2 are the nodes between which the resistor is 
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connected, and V ALUE is the resistance of the resistor in ohms. A typical 
specification may be 

R2 1 2 3.5 

The reader should note that SPICE does not accept conductance values, 
and that a resistance of zero ohms is not allowed. 

Capacitors 

These are specified in the form 

CXXXXXXX N+ N- VALUE (IC = ICOND) 

where N + is the positive node, N - is the negative node, and V ALUE is 
the capacitance in farads. The ( ) brackets indicate that the contents are 
optional and, where present, give the initial charge on the capacitor 
between N + and N - in volts. 

Examples include 

C3 1 0 O.5E-6 

C29 4 5 O.7U IC = - 2.3 

In the case of C29, node 4 is charged to -2.3 V with respect to node 5. 

Inductors 

The general specification is 

LXXXXXXX N+ N- VALUE (IC = ICOND) 

where N + is the positive node, N - is the negative node, and V ALUE is 
the inductance in henrys. Where present, the initial current (in A) flows 
inside the inductor from N + and N - . 

Examples include 

L4 4 5 5.6M 

L6 2 3 4 IC = 1.5 

In the case of L6, an initial current of 1.5 A flows from node 2 to node 3 
through the inductor. 

Where an inductor is part of a coupled circuit (see the following 
section), node N+ is the end marked by a 'dot' using the dot notation (see 
chapter 9). 
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Coupled circuits 

A coupled circuit is presented as separate inductors with a specified 
magnetic coupling coefficient between the windings in the form 

KXXXXXXX LYYYYYYY LZZZZZZZ VALUE 

where XXXXXXX, YYYYYYY and ZZZZZZZ are alphanumeric strings 
from one to seven characters in length. KXXXXXXX is the designation of 
the coupled circuit, such as K8, while L YYYYYYY and LZZZZZZZ are 
the designation of the windings of the coupled circuit; the designation of 
each of the windings is given separately. If the transformer has two 
windings of self-inductance LI and L 2 , and a mutual inductance M, the 
coupling coefficient between the windings is k = Mtv'(L I L 2 ), where 0 < k 
~ 1; the value of the coupling coefficient is given in the V ALUE section of 
the transformer specification. A complete specification of a two-winding 
coupled circuit may be 

K3 L1 L2 0.65 

L1 4 0 2 

L2 5 0 4 

This represents a transformer with a coupling coefficient of 0.65, having 
a coil LI (of inductance 2 H) connected between no des 4 and 0, and coil L 2 

(of inductance 4 H) connected between nodes 5 and O. The 'dotted' end of 
coil LI is connected to node 4, and the 'dotted' end of L 2 to node 5. 

Independent voltage source 

The general specification of an independent constant (d.c.) voltage source 
has the form 

VXXXXXXX N+ N- (DC)VALUE 

for example V4 1 0 DC 7.5 
and for a sinusoidal a.c. source it has the form 

VXXXXXXX N+ N- (AC (ACMAG (ACPHASE) » 
for example VS 3 4 AC 6.7 
where VXXXXXXX designates the voltage source in the circuit, N + is the 
positive node, and N- the negative node. In the case ofthe constant (d.c.) 
source, V ALUE is the direct voltage produced by the source; in the a.c. 
case the voltage is given by ACMAG, and ACPHASE is the phase angle of 
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the source. If ACMAG is omitted, a value of one volt is assumed; if 
ACPHASE is omitted, a phase angle of zero is assumed. 

SPICE also allows a selected range of other independent sources such as 
a pulse, an exponential wave, etc., to be used. 

Linear dependent voltage sources 

The general form of a linear voltage-controlled (or voltage-dependent) 
voltage source is 

E~ N+ N- NC+ NC- VALUE 

where N + and N - are the positive and negative nodes, respectively, ofthe 
controlled source, while NC+ and NC- are the respective positive and 
negative nodes of the dependent (or controlling) voltage source. VALUE 
is the voltage gain from the controlling to the controlled source. 

The general form for a linear current-controlled (or current-dependent) 
voltage source is 

H~ N+ N- VNAM VALUE 

where N + and N - have the meaning given above, and VNAM is the name 
of the voltage source through which the controlling current flows. The 
direction of positive controlling current flow is from the positive node, 
through the source, to the negative node of VNAM. V ALUE is the 
transresistance (ohms) between the controlling current and the controlled 
voltage. 

Independent cu"ent source 

For a constant (d.c.) source the general specification has the form 

IYYYYYYY N+ N- (OC) VALUE 

for example 15 1 0 OC 5.3 
and for an a.c. source it has the form 

IYYYYYYY N+ N- (AC (ACMAG (ACPHASE) » 
for example 142 5 3 AC 5.6 

IYYYYYYY designates the current source within the circuit, and 
the arrow designating the direction of current flow through the source is 
from node N + to N -. V ALUE is the value of the current. In the case of an 
a.c. souree, if ACMAG is omitted a eurrent of 1 A is assumed, and if 
ACPHASE is omitted a phase angle of zero is assumed. 
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Linear dependent current sources 

The general form for a linear voltage-dependent (or voltage-controlled) 
current source is 

GXXXXXXX N+ N- NC+ NC- VALUE 

where N + and N - are the positive and negative nodes, respectively, of 
the controlled source, NC+ and NC- are the respective positive and 
negative nodes of the controlling source, and V ALUE is the transconduc­
tance (in S) between the two. Current flow is from N +, through the source, 
to N-. 

The general form for a linear current-dependent (or current-controlled) 
current source is 

FXXXXXXX N + N - VNAM VALUE 

where N+ and N- are as defined above, VNAM is the name ofthe voltage 
source through which the controlling current flows, and V ALUE is the 
current gain between the two. 

Print-out analysis 

The general form of statement is 

.PRINT PRTYPE V ARl (V AR2 ... V AR8) 

in which PRTYPE is the type of analysis to be performed, such as d.c., 
a.c., transient, noise, etc. For example 

.PRINT DC V(l) V(3, 4) 

In the above example, V(l) is the voltage at node 1 (with respect to 
node 0), and V(3, 4) is the voltage at node 3 with respect to node 4. 

In the case of an a.c. analysis, five forms of output can be obtained as 
folIows: 

VR - real part 
VI - imaginary part 
VM - magnitude 
VP - phase shift 
VDB - 20 X loglO (magnitude) 

As with the d.c. case, differential voltage can be printed, for example 

.PRINT AC VP(l, 2) VR(4,5) 

The current flowing in an independent voltage source can be specified as 
follows 
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I (VXXXXXXX) 

and the current in the voltage source can be printed, for example 

.PRINT AC IM(VS) IP(VS) 

A voltage source must be present in a branch before the current in the 
branch can be printed; it is sometimes useful to insert an independent 
voltage source of zero volts in a branch in order to determine the current in 
that branch. 

Plotting 

The general form of plot is produced by the .PLOT statement described 
below 

.PLOT PLTYPE OVl(PLOl, PHIl) (OV2) (PL02, PHI2) ... 
(OV8) 

Up to eight output variables (OVl to OV8) may be plotted; the type of 
analysis is specified by PLTYPE (wh ich may be DC, AC, or TRAN 
(SIENT». The low and high boundaries for the independent variables may 
be specified by the user (PLO, PHI), but if the plot limits are not specified, 
the SPICE program will automatically determine suitable minimum and 
maximum sc ale values. 

Table 14.22 shows a typical plot of two variables (gain in dB and phase) 
plotted against frequency. Both of the vertical seal es were chosen auto­
matically. Note also that the value of the first specified output variable 
(gain) has its values printed alongside the independent variable (frequency) 
values. There is no limit to the number of .PLOT lines specified for each 
type of analysis. 

Transient analysis 

The general form of statement is 

TRAN TSTEP TSTOP (TSTART) (TMAX) (UIC) 

where TSTEP is the plotting andJor printing increment of time for the 
output. TSTOP is the final value of time, and TSTART is the initial value 
of time used in computing the transient response; the default value of the 
latter is zero. Using TMAX enables the computing time step to be smaller 
than TSTEP. The option al parameter UIC means 'Use Initial Conditions', 
whose values are specified using IC = ... with inductors or capacitors, or 
a .IC line to specify initial node voltages. 
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.PRINT TRAN and .PLOT TRAN are two lines which are respectively 
used to print out a table of node voltages, and to plot a graph of these as a 
function of time. For example, the lines 

.TRAN O.lM 5M 

.PLOT TRAN V(4) V(l) 

produce a graph of the voltages at no des 4 and 1 in a network, starting at 
zero time and incrementing in steps of 0.1 ms for a duration of 5 ms. The 
graph abscissa points will be those of time, with the corresponding values 
of node 4 voltages at these times. The scales of both voltages will be 
calculated and marked automatically. 

14.4 Programming examples 

In the following we will consider aseries of worked examples associated 
with each chapter in the book as folIows: 

Worked example number 

14.1 
14.2 
14.3 
14.4 
14.5 
14.6 
14.7 
14.8 
14.9 
14.10 
14.11 and 14.12 
14.13 
14.14 

Chapter number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

The worked ex am pIes in this chapter solve examples which have been 
worked out manually in other chapters, and illustrate typical techniques for 
the solution of circuits. The reader should make reference to the circuits 
mentioned in the text. 

Worked example 14.1 

Calculate the value of 11> 12 , 13 and V p in figure 1.23 using the SPICE 
circuit analysis package (see also worked example 1.17.1, page 23). 
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Solution 

Since this is the first example of the use of SPICE, we will describe the 
program in a little more detail than usual. 

The input file in table 14.1 contains a description of the circuit; the first 
line in the input file is a title Une, which does not contain program data. 
Following the title line are aseries of comment lines which commence with 
a '*'; the purpose of these lines is to make the program readable. The 
reader should note that SPICE assurnes that current ftows inside any source 
from a '+' node to a '-' node. 

The reader should refer to figure 1.23 when studying the input file. 
SPICE does not include an 'ammeter' as a circuit element, but it does 

evaluate the current ftowing through each voltage source. We can there­
fore insert a zero-value voltage source at any point in the circuit where an 
ammeter is needed; voltage sources VI, V2 and V3 are used as 'ammeters' 
in this example. The reader will recall that the positive direction of current 
through such a source is from the '+' node to the '-' node inside the 
source. 

Each element line describes one element in the circuit; circuit elements 
can be given in any order. In this case, the circuit elements are taken from 
left to right as figure 1.23 is viewed. A current source is an 'I' element, a 
resistor is an 'R' element, and a voltage source a 'V' element. 

At the end of the input file, it is usual to specify the type of analysis 
required. Each analysis type is preceded by a 'dot', for example '.DC' or 
'.AC', etc. In this case we have not specified an analysis type, since the 
information provided in the input file will be sufficient to allow SPICE to 
give the required output, namely the voltage at each node and the current 
in the voltage sources VI, V2 and V3. 

The '.OPTIONS' controlline enables the user to specify one or more 
options which will apply to his circuit and/or input file. The .OPTIONS 
controlline is itself optional, and can be omitted. In this case (as in other 
cases in the book), we have included the NOPAGE option, which causes 
page ejects to be suppressed, concatinating the print-out, and saving 
considerable amount of waste paper being produced. Finally, the input file 
is terminated by a '.END' command line. 

The reader will find it an interesting exercise to draw the circuit using 
the nodes listed in the input file because, in fact, we have added the three 
voltage sources VI, V2 and V3 for the reason given earlier. 

Each independent current source is described as an 'I' element, and 
characters are added to the 'I' to describe the source, that is, 11 and 12. 
Each current source line is as follows 

IXXXXXX NI N2 DC VALUE 

where IXXXXXX is the circuit definition ofthe source, such as 11, etc. The 
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Tab1e 14.1 

*** Worked Examp1e 14.1 *** 
*** 14 A d.c. current source *** 
*source name 
* 1 (+) node 
* 1 1 (-) node 
*1 1 1 type of source 
*1 1 1 1 va1ue 
* 1 1 1 1 
I1 0 1 oe 14 
*** 2 ohm and 4 ohm resistors *** 
*e1ement 
*1 (+) node 
*1 1 (-) node 
*1 1 1 va1ue 
*1 1 1 1 
Rl 2 0 2 
R2 3 0 4 
*** 4 A d.c. current source *** 
I2 1 0 oe 4 
*** 5 ohm resistor *** 
R3 4 o 5 
* The fo11owing ZERO VALUE vo1tage sources act as ammeters * 
*source 
*1 (+) 

*1 1 
*1 1 
*1 1 
*1 1 
VI 1 
V2 1 
V3 1 

name 
node 

(-) 

1 
1 
1 
2 
3 
4 

node 
type of source 

1 va1ue 
1 

oe 0 
oe 0 
oe 0 

* The fo11owing 1ine saves paper 
.OPTIONS NOPAGE 
• END 
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current ftows within the source from node Nt to node N2. The 'De' 
statement is optional, but is included in this case to remind us that it is a 
d.c. source. If it is an a.c. current source, it would be defined as an 'AC' 
source, the 'AC' being mandatory. Finally, we include the VALUE of the 
current. 

Resistors are defined as 'R' elements, the two numbers following the 
element definition are the nodes between which the resistor is connected. 
For example, the line 
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R2 3 0 4 

teUs us that resistor R2 is connected between no des 3 and 0, and its value is 
4 Q. SPICE uses node 0 as the reference or zero-voltage node. 

Most versions of SPIeE do not have 'ammeters' , but they can give 
details of the current flowing in an independent voltage source. In this 
case, we insert zero-value voltage sources VI, V2 and V3 in series with 
resistors Rl, R2 and R3, respectively, in order to determine the current in 
each of the resistors. The independent voltage sources are defined as 'V' 
sources as foUows 

VXXXXXX N+ N- oe VALUE 

where VXXXXXX is the name given in the circuit to the source. Node N + 
is the positive terminal of the source, and N - is the negative terminal. 
Once again, 'oC' is optional and, in each ca se here, the value of the source 
is zero. When SPIeE was written, it was decided that positive current enters 
the positive terminal of an independent voltage source. If the reader draws 
the circuit using the node numbering in the input file, he will see that the 
current in each voltage source enters the positive node. Should the node 
numbering be reversed, the corresponding value of current printed in the 
output file has a negative sign! 

The output file in table 14.2 shows that the voltage at each node is 
10.526 V, which corresponds to the result in worked example 1.17.1 and, 
likewise, the current in resistors Rl, R2 and R3, corresponding to the 
current in voltage sources VI, V2 and V3. 

Table 14.2 

N:DE VOLTAGE N:DE VOLTAGE N:DE VOLTAGE N:DE VOLTAGE 
( 1) 10.5260 ( 2) 10.5260 ( 3) 10.5260 ( 4) 10.5260 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 
VI 5.263E+00 
V2 2.632E+00 
V3 2.105E+00 

Table 14.3 

.PARAM current = 10 
Il 0 1 DC {1.4*current} 
Rl 2 0 2 
R2 3 0 4 
I2 1 0 DC {0.4*current} 
R3 4 0 5 
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In many applications it is convenient to use a parameter instead of a 
numeric value, and the usefulness of parameters is greatly extended by 
allowing them to be combined into arithmetic expressions. The early part of 
the input file in table 14.1 is modified as shown in table 14.3 to include a 
parameter called 'current' , the parameter first being defined in a 
'.PARAM' control line; the value of 'current' is arbitrarily set at 10 A. 
Next, the parameter is included in an arithmetic expression enclosed in 
curly brackets { }, in the lines for 11 and 12. The value of 11 is 

'current' x 1.4 = 14 A 

and in the case of 12 it is 

'current' x 0.4 = 4 A. 

A salutary note must be given here about the use of computer software 
for circuit solution. While the software may give the solution quickly, it 
does not necessarily help the reader to understand the engineering pro­
cesses involved. 

Worked example 14.2 

Calculate the voltage at each node in figure 2.14 using the SPICE pro gram­
ming language (see also worked example 2.9.3 on page 46). 

Solution 

The input file describing the circuit is given in table 14.4 SPICE cannot 
accept conductance values, and each is converted into its equivalent 
resistance value. To specify each resistance in this case, each has been 
numbered by the nodes it is connected to. For example, the 4 S conduc­
tance in figure 2.14 is described as resistance RB of value a 0.25 Q (SPICE 
only accepts resistance values), connected between node 1 and 3. Similarly 
with the current sources; the 3 A source which drives current from node 2 
to node 3 is described as 123, etc. 

This problem introduces us to the SPICE version of the voltage­
controlled current source, which is a 'G' source. Using the above conven­
tion, we call it G 13, wh ich drives current from node 1 to node 3. The 
voltage-controlled current source is defined as follows 

GXXXXXX N + N - NC+ NC- V ALUE 

where GXXXXXX is the circuit 'name' of the source, and current is driven 
within the source from N + to N -, that is, current leaves terminal N -. 
Node NC+ is the positive controlling node, NC- is the negative control­
ling node and VALUE is the transconductance in Siemens of the 
source. 
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Table 14.4 

*** Worked Example 14.2 *** 
*** Resistance va lues *** 
R01 0 1 0.1667 
R12 1 2 0.5 
R23 2 3 0.3333 
R03 0 3 0.2 
Rl3 1 3 0.25 
** Independent current sources ** 
102 0 2 DC 2 
123 2 3 DC 3 
** Voltage-controlled current source ** 
*source name 
*1 N(+) N(-) 
*1 1 1 
G13 1 3 
.OPTIONS NOPAGE 
. END 

Table 14.5 

NODE 
( 1) 

VOLTAGE 
.0707 

NC (+) NC(-) transconductance 
1 
3 

1 1 
2 1.5 

NODE VOLTAGE 
( 2) .0174 

NODE 
( 3) 

VOLTAGE 
.3151 

The relevant part of the output file is given in table 14.5, and the voltage 
at each node is seen to agree with the results of worked example 2.9.3 

Worked example 14.3 

Determine V AB and the current in each generator in figure 3.11 (a ) (see also 
worked example 3.9.1 on page 71). 

Solution 

The circuit in figure 3.11 is described in the SPICE input file in table 14.6. 
The first three element lines specify the three independent direct voltage 
sources and the nodes to which they are connected. In this case we have 
chosen to enter the 'positive' direction of the voltage in the input file. That 
is, the positive terminal of V3 is listed in table 14.6 as being connected to 
node O. The next three element lines describe the value and circuit 
connections of each resistor. The reader should draw the corresponding 
circuit diagram, and note that the common point to which the resistors are 
connected is node 4 (corresponding to node Bin figure 3.11(a». 

Once again, it is not necessary to specify the type of analysis needed, 
because SPICE will perform an operating point analysis and will calculate 
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the voltage at eaeh node in the output file, whieh is given in table 14.7. 
The reader will note that the voltage at nodes 1, 2 and 3 eorrespond to 

the voltage of the respeetive independent sourees, and the voltage at node 
4 eorresponds to V BA in worked example 3.9.1. SPI CE also outputs the 
eurrent in eaeh voltage souree but, as deseribed in worked example 14.1, it 
is the eurrent jiowing into the positive terminal 0/ the corresponding voltage 
source. That is, we need to multiply eaeh eurrent in table 14.7 by -1 to get 
the eonventional eurrent. 

The eurrent ftowing in the voltage souree V3 is also given a negative 
value but, sinee the positive node of V3 is eonneeted to node 0, the eurrent 
ftows through this souree from node 0 to node 1. Onee again, we see that 
an engineering vision is neeessary when interpreting the results of 
SPICE. 

Table 14.6 

*** Worked Example 14.3 *** 
*** Independent Voltage Sources 
VI 1 0 DC 10 
V2 2 0 DC 20 
V3 0 3 DC 25 
*** Resistors *** 
R1 1 4 20 
R2 2 4 15 
R3 3 4 10 
.OPTIONS NOPAGE 
• END 

Table 14.7 

**** EM\LL SIGUlli BIAS SOllJrI(N 
1) 10.0000 ( 2) 20.0000 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 
VI -6.538E-01 
V2 -1.538E+00 
V3 -2.192E+00 

*** 

'IEM'ERA'IURE = 

3) -25.0000 ( 

TOTAL POWER DISSIPATION 9.21E+01 WATTS 

Worked example 14.4 

27.000 !)EX; C 
4) -3.0769 

Using SPICE software, plot the waveforms of voltage aeross and eurrent 
through the induetor in figure 4.11(a) (see also worked example 4.7.1 on 
page 86). 
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Solution 

In this example we will introduce some additional features of the SPICE 
language, the input file being shown in table 14.8. In order to plot a graph 
of a variable, we must first perform a transient analysis on the circuit and, 
in order to do this, we must excite the system with a time-dependent 
source. That is, we must describe a source to SPICE in terms of the value 
of the signal and the time at which it occurs. 

In this case the current source is described by me ans of a Piece-Wise 
Linear (PWL) function as follows 

IXXXXXX N+ N- PWL(Tl, VI TI, V2 ... Tn, Vn) 

where IXXXXXX is the name used to describe the independent current 
source, and the current flows inside the source from node N + to N -, that 
is, the current leaves node N -. Pairs of values inside the PWL brackets 
describe pairs of coordinates of the current waveform, Tn, Vn correspond­
ing to the nth value of time (seconds) and the nth value of current 
(amperes). Pairs of points are corrected linearly (the comma between the 
time and value for each point is optional). Thus the three points in the 
PWL wave describe a triangular current wave. 

Table 14.8 

*** Worked Example 14.4 *** 
*** 
*** 

The following current source is described by a 
Piece-Wise Linear function (PWL) *** 

*source name 
*1 N(+) N (-) T1,V1 T2,V2 T3, V3 
*1 1 1 1 1 1 
I1 0 1 PWL(O,O 3,3 6,0) 
* VZERO is used as an anmeter 
VZERO 1 2 0 
* 6 HInductor 
*inductor name 
*1 N (+) N(-) value 
*1 1 1 1 
LI 2 0 6 
.OPTIONS NOPAGE 
*transient analysis 
* 1 Tstep Tstop 
* 1 1 1 
.TRAN 0.3 6.6 
* PLOT the TRANsient analysis 
. PLOT TRAN V(2) I (VZERO) 
• END 

*** 
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As stated earlier, current ftows into the 'positive' pole of an independent 
voltage source, and SPIeE can evaluate the current ftowing in an inde­
pendent voltage source. Therefore, in order to measure the current in the 
circuit, we introduce the concept of a zero-value voltage source, VZERO, 
in this circuit. The purpose is to use the source as an 'ammeter' . Finally, a 
6 Hinductor is connected to the PWL current source and the 'am­
meter'. 

The '.TRAN' command line causes SPIeE to compute the transient 
response of the circuit every 0.3 s for aperiod of 6.6 s. Finally, the '.PLOT 
TRAN' line causes SPIeE to plot the TRANsient response showing not 
only the voltage across the inductor (V(2)), but also the current in the 
circuit (I(VZERO)). The reason that we ask for I(VZERO) to be plotted 
is that, in order either to print or plot a current, it must ftow through a 
voltage source. 

Table 14.9 

ux;;m: 
*: V(2) 

+: I(VZER» 

TnE V(2) 

(*)-­

(+)--

-l.OOOOE+Ol -5.0000E+OO O.OOOOE+OO 5.0000E+OO 1.OOOOE+Ol 

-4.121IE-30 1.OOOOE+OO 2.0000E+OO 3.0000E+OO 4.0000E+OO 

O.OOOE+OO O.OOOE+OO + * 
3.000E-Ol 6.000E+OO • + * 
6.000E-Ol 6.000E+OO + * 
9.000E-Ql 6.000E+OO • +. * 
1.200E+OO 6.000E+OO • + * 
1.500E+OO 6.000E+OO • + * 
1.800E+OO 6.000E+OO • + * 
2.100E+OO 6.000E+OO • .+ * 
2.400E+OO 6.000E+OO • + * 
2.700E+OO 6.000E+OO • + * 
3.000E+OO 6.000E+OO • + * 
3.300E+OO -6.000E+OO • * + 

3.60OE+OO -6.000E+OO • * + 

3.90OE+OO -6.000E+OO • * .+ 

4.200E+OO -6.000E+OO • * + 

4.500E+OO -6.000E+OO • * + 

4.800E+OO -6.000E+OO • * + 

5.100E+OO -6.000E+OO • * +. 

5.400E+OO -6.000E+OO • + * 
5.700E+OO -6.000E+OO • + * 
6.000E+OO -6.000E+OO + * 
6.300E+OO 5.673E-20 + * 
6.60OE+OO O.OOOE+OO + * 
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The corresponding section of the output file is shown in table 14.9. The 
reader will note that we have not specified the range over which the results 
are to be plotted, and we have left it to SPICE to decide. With the form of 
print-out used here, it is not possible to show the sudden transition in 
voltage across the inductor when the current changes in value, and the 
reader should not think that the current changes linearly between the 
points on the graph. Several suppliers of versions of SPICE offer a graphics 
post-processor to provide an accurate, high-quality graphics output. 

Worked example 14.5 

Solve the a.c. series circuit in worked example 5.10.1 (see page 112) using 
SPICE. 

Solution 

The input file is given in table 14.10, and it is left as an exercise for the 
reader to draw the corresponding circuit diagram. SPICE can accept 
voltages and currents in polar complex form, and can output data in either 
polar or rectangular form. The first element line in table 14.10 describes 
the voltage source as an a.c. source connected between node 1 and node 0, 
and having a magnitude of 10 V and a phase angle of 20°. 

Unfortunately, SPICE can only accept information about inductance 
and capacitance, and cannot accept reactance data. However, there are 
several ways round this problem, and one is as follows. If we use a 
frequency of 1 radis (or 0.1592 Hz), then we get the correct result ifwe let 
L = XL> and C = 1/Xc . This is done here. 

Consider impedance Zl, which comprises a resistance of 7.071 Q in 
series with an inductor Li == XLl = 7.071 H. We therefore show a 
resistance of 7.071 Q connected between nodes 1 and 2, and an inductor of 
7.071 H connected between nodes 2 and 3. The latter has a reactance of 
7.071 Q at the excitation frequency of 1 radis or 0.1592 Hz. Similarly for 
impedance Z3, where we have a resistance of 2.605 Q in se ries with 
a capacitive reactance of 14.77 Q. The corresponding 'capacitance' is 
C3 = 1/XC3 = 1/14.77 = 0.0677 F = 67.7 mF. Finally we use an indepen­
dent zero-value voltage source, Vam, as an ammeter. 

The method of dealing with the frequency of the source is shown in the 
'.AC' controlline, and is specified in the following line . 

. AC DIST NOPOINTS STARTFREQ ENDFREQ 

This control line is, strictly speaking, intended to deal with a range of 
frequencies for frequency response calculations; in this case we only need 
one frequency. Where the word DIST appears we enter the way in which 
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the frequencies are distributed between the STARTFREQ frequency and 
the ENDFREQ frequency (both in Hz). There are three options, namely 
LIN (LINear), ocr (OCTave) and DEC (DECade); we choose LIN. 
Where NOPOINTS appears we insert the number of points to be calcu­
lated. Thus the line 

.AC LIN 1 0.1592 0.1592 

implies that we need one frequency between 1 radis and 1 radis! 
There are two '.PRINT' command lines, each asking for the current 

through the 'ammeter' and the voltage of node 3 with respect to node 4 to 
be printed. The two lines do, however, ask for the data in a different form. 

Table 14.10 

*** Worked Example 14.5 *** 
*** Voltage Source *** 
*source name 
*1 N (+) N (-) type of source 
*1 1 1 1 magnitude phase (deg) 
*1 1 1 1 1 1 
VS 1 0 AC 10 20 
*** Inpedance Zl *** 
R1 1 2 7.071 
* Let LI = XLI 
LI 2 3 7.071 
*** Inpedance Z2 *** 
R2 3 4 10 
*** Inpedance Z3 *** 
R3 4 5 2.605 
* Let C3 = 1/XC3 
C3 5 6 67. 7M 
*** ArmIeter *** 
Vam 6 o AC o 
*analysis type 
*1 LINear number of frequencies 
*1 I I start freq end freq 
* 1 1 1 1 
.AC LIN 1 
.OPTIONS NOPAGE 
* magnitude of 

* 
.PRINT AC 

0.1592 

I (Vam) 
1 

IM (Vam) 

0.1592 

phase of 
1 

IP (Vam) 

I (Vam) 

VM(3,4) VP(3,4) 
* real part of I (Vam) imaginary part of I (Vam) 

* 1 1 
.PRINT AC IR (Vam) II (Vam) ~(3,4) VI(3,4) 
• END 
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The first of these lines asks for the data in polar form as follows 

IM(Vam) = current Magnitude through Vam 
IP(Vam) = current Phase angle, etc. 

and the second line asks for 

IR(Vam) = Real part of the current through Vam 
II(Vam) = Imaginary part of the current through Vam 

The relevant parts of the output file are given in table 14.11. 

Table 14.11 

FREQ IM (Vam) IP(Vam) VM(3,4) VP(3,4) 
1.592E-01 4.733E-01 4.136E+01 4.733E+OO 4.136E+01 

FREQ IR (Vam) 11 (Vam) VR(3,4) VI(3,4) 
1.592E-01 3.553E-01 3.128E-01 3.553E+OO 3. 128E+OO 

Worked example 14.6 

Use SPICE computer software to calculate the voltage gain of the transis­
tor amplifier equivalent circuit in figure 6.7(a) at a frequency of (a) 1 kHz 
and (b) 200 kHz (see worked example 6.8.1 on page 139). 

Solution 

The circuit is fairly straightforward, with the exception that the transistor is 
simulated by a voltage-controlled current source. The input file is shown in 
table 14.12, and the appropriate section of the output file in table 14.13. 
The reader will note that the results agree with those of worked example 
6.8.!. 

The reader is advised at this point of a difficulty which may arise in some 
a.c. problems, although it does not occur here, and that is SPICE is 
organised (for many types of solution) only to deal with angles which lie in 
the range ±180°. If the angle is (for example) less than -180°, it will 
be shown as the corresponding positive angle; similarly, positive angles 
greater than + 180° are shown as negative angles. That is, once again, 
engineering judgement must be applied to the results. 

Also, this analysis (and that of worked example 6.8.1) is based on 
sm all-signal analysis, and does not allow for practical features such as the 
effect of 'saturation' of the transistor if too large a voltage is applied to the 
input. 
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Table 14.12 

*** Worked Example 14.6 *** 
*** 10 mV a.c. voltage source *** 
VS 3 0 AC 10M 
*** Circuit components *** 
R31 3 1 100 
R10 1 0 lOK 
R12 1 2 lOOK 
R20 2 0 150 
C12 1 2 25P 
*** Voltage-controlled current source *** 
* name of source 
*1 (+) output node 

*1 1 (-) output node 

*1 1 1 (+) controlling node 

*1 1 1 
*1 1 1 
*1 1 1 
G20 2 0 
.OPTIONS NOPAGE 
.AC LIN 
.PRINT AC 
• END 

Table 14.13 

1 
1 
1 
1 

2 
VM(2) 

(-) controlling node 

1 transconductance 

1 
0 8 

1k 200k 
VP(2) 

FREQ VM(2) VP (2) 

1.000E+03 5.423E+OO 1.795E+02 
2.000E+05 2.741E+OO 1.204E+02 

Worked example 14.7 

369 

Solve the unbalanced three-phase system in worked example 7.9.1 using 
SPIeE software (see page 153). 

Solution 

In this case, using the techniques described earlier in the book, we specify a 
set of unbalanced voltages and unbalanced loads. The input file is given in 
table 14.14, and the first three lines specify the unbalanced phase voltages 
as follows 

V an = 200 L 100 V 

V bn = 220 L - 1400 V 



370 Electrical Circuit Analysis and Design 

V cn = 180 L 100° V 

where node 0 is the neutral point and lines a, band c are connected to 
SPICE nodes 1, 2 and 3, respectively. Three zero-value voltage sources 
Va, Vb and Vc are used as 'arnrneters' to measure the three line currents. 

As with worked example 14.5, we use a frequency of 1 radis (0.1592 
Hz), so that the 'inductance' in phase B is equal to the value of the 
inductive reactance in phase B, and the capacitance in phase Cis equal to 
lIX c. The '.AC' line specifies that we are using a single frequency of 0.1592 
Hz or 1 radis. 

Finally there is a set of '.PRINT' control lines causing the results 
obtained to be output; these are listed in table 14.15. Each '.PRINT' line in 
the input file is seen to produce its own set of results and, in the absence of 
the '.OPTIONS NOPAGE' line, each will generate a separate page of 

Tab1e 14.14 

*** Worked Examp1e 14.7 *** 
*** Unba1anced 3-phase supp1y *** 
Van 1 0 AC 200 10 
Vbn 2 0 AC 220 -140 
Vcn 3 0 AC 180 100 
*** Ammeters in 1ines a, band e *** 
Va 1 7 AC 0 
Vb 2 8 AC 0 
Ve 3 9 AC 0 
*** Z in phase A = Zas *** 
Ras 7 6 10 
*** Z in phase B = Zbs *** 
Rbs 8 4 14.77 
Lbs 4 6 2.605 
*** Z in phase C = Zcs *** 
Res 9 5 4.698 
Ces 5 6 0.5848 
.OPTIONS NOPAGE 
.AC LIN 1 0.1592 0.1592 
*** V(6) = Vsn *** 
.PRINT AC VM(6) VP (6) 

*** V(7,6) = Vas, V(8,6) = Vbs *** 
.PRINT AC VM(7,6) VP(7,6) 
*** V(9,6) = Ves *** 
.PRINT AC VM(9,6) VP(9,6) 
*** I (Va) = Ia, I (Vb) = Ib *** 
.PRINT AC IM (Va) IP (Va) 
*** I(Ve) = Ie *** 
.PRINT AC IM (Ve) IP(Ve) 
• END 

VM(8,6) VP (8, 6) 

IM (Vb) IP(Vb) 
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Tab1e 14.15 
FREQ VM(6) VP (6) 

l.592E-01 8.224E+01 1.028E+02 
FREQ VM(7,6) VP(7,6) VM(8,6) VP (8, 6) 

1.592E-01 2.200E+02 -l.193E+01 2. 678E+02 -l.241E+02 
FREQ VM(9,6) VP(9,6) 

l.592E-01 9.794E+01 9.764E+01 
FREQ IM (Va) IP(Va) IM (Vb) IP(Vb) 

1.592E-Ol 2.200E+Ol -l.193E+Ol 1.785E+Ol -1.341E+02 
FREQ IM (Vc) IP(Vc) 

1. 592E-Ol 1.959E+Ol 1.176E+02 

paper! When the results are compared with those ofworked example 7.9.1, 
the reader will note that they are the same and will, of course, appreciate 
that while the computer analysis is straightforward, it does not necessarily 
give a dear understanding either of the processes involved or of the 
practicability of the results. Only an experienced 'engineering eye' can give 
the latter. 

Worked example 14.8 

Using SPIeE software, caIculate the value of the parameter Y2t in the 
circuit in worked example 8.3.1 (see page 178). 

Solution 

Strictly speaking, SPIeE was not developed for this type of problem, but it 
is so versatile that it can be used to solve most problems. The only 
limitation to its use is in our own mind! The reader will recall that 

V 2 = 0 

All we need to do is to apply a 1 V source to the input, and measure 12 with 
the output short-circuited. This is a simple matter to implement with 
SPIeE. 

The input file is shown in table 14.16, in which node 0 is the node 
common to the input and the output, node 1 being the input node, and 
node 2 is the output node. In this case, V2 acts as an 'ammeter' , with 
'positive' current ftowing into node 2. The appropriate part of the output 
file is given in table 14.17. 

As with earlier SPIeE files, we do not need to specify the type of 
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Table 14.16 

*** 
*** 
*** 
V1 
*** 
R1 
R2 

R3 

Worked Example 14.8 *** 
Calculation of y21 = I2/V1 with v2 
Input source *** 

1 0 DC 1 
passive circuit elements *** 

1 0 600 
1 2 1.5K 
2 0 lOK 

*** Voltage-controlled current source *** 
G 2 0 1 0 0.04 
*** V2 = 0 is used as an ammeter *** 
V2 0 2 DC 0 

o *** 

*** Note: y21 = current in short-circuiting "ammeter" V2 *** 
.OPTIONS NOPAGE 
• END 

Table 14.17 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 
V1 -2.333E-03 
V2 3.933E-02 

analysis to be performed, since we only need the current flowing into the 
output node, which is 0.03933 A, hence Y21 = 12/V 1 = 39.33 mS. 

Worked example 14.9 

Using SPICE software, solve the linear transformer problem in worked 
example 9.8.1 (see page 212 and figure 9.1O(a» for the inductive load. 

Solution 

In this ca se we will drive the circuit with a 1 L 0° A a.c. source (11), whose 
current flows from node 0 to node 1; the magnitude and the phase angle of 
the source are given following the 'AC' expression. The default phase 
angle is zero and can be omitted, but is included in the specification of 11 

for completeness. 
The reason for selecting a 1 A current source is that the input impedance 

of the circuit is equal to the voltage at the input terminals. The SPICE 
primary circuit consists of a 10 Q res ist an ce R1, connected between nodes 
1 and 2, and a 75 mH inductance L1, connected between nodes 2 and O. 
The secondary circuit contains the following: a 10 Q resistance R2 between 
nodes 4 a.nd 5, a 150 mH inductance L2 between nodes 4 and 3 together 
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**** CIRCUIT DESCRIPTION 

* The following is an a.c. CURRENT source of 1 A 

11 0 1 AC 1 o 
* See figure 9.1O(a) for the circuit elements 

Rl 1 
R2 4 

2 
5 

10 
10 

* PRIMARY winding 

L1 2 o 75M 

* SECONDARY winding 

L2 4 3 150M 

* MAGNETIC COUPLING 
* name of coupled circuit 

*: name of first inductor 

* : name of second inductor 

* : magnetic coupling coefficient 

* I I 

K1 L1 L2 0.75425 

**** 

* Extra resistance to 'electrically' link the * primary winding to the 
secondary winding. 

Rextra 0 3 1MEG 

* Inductive load 

Llqad 5 3 0.4 

.OPTIONS NOPAGE 

* Calculate values at 500, 1000 and 1500 radis 

.AC LIN 3 79.58 238.7 

* Print the rectangular form of the input voltage 

.PRINT AC 

.END 

VR(l) VI(l) 

373 
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with the load. The latter is a 0.4 H inductance Lload connected between 
nodes 3 and 5. Coils L1 and L2 are magnetically coupled with a coupling 
coefficient of 

k = M/V(Ll x L2) = 80 x 1O-3/V (75 x 10-3 x 150 x 10-3) 

= 0.75425 

Since SPICE demands that all nodes must have a 'd.c. link' to node 0, a 
large value of resistance, Rextra, is used to connect the primary and 
secondary windings together. Since current does not flow in this resistor, it 
has no significant effect on the result of the analysis. 

The '.AC' controlline calls for calculations at three frequencies, namely 
500,1000 and 1500 radis, whose values are converted into Hz in the .AC line. 

In worked example 9.8.1, the results were presented in rectangular 
form, and this is wh at we have done here. The .PRINT control line 
requests the 'real' part of the voltage at node 1, i.e., (VR(l)), and the 
'imaginary' part (VI(l)) to be printed. The reader should compare the 
value of the input impedance at 159.2 Hz (1000 radIs) with that obtained 
above. It is, of course, a simple process to repeat the calculation for a 
capacitive load. 

The relevant part of the output file is as folIows. 

FREQ 

7.958E + 01 
l.592E + 02 
2.387E + 02 

Worked example 14.10 

VR(l) 

l.021E + 01 
l.021E + 01 
l.021E + 01 

VI(l) 

3.169E + 01 
6.337E + 01 
9.505E + 01 

Plot graphs of it(t) and ilt) in figure 1O.29(a) - see also worked example 
10.13.1 on page 259. 

Solution 

In this case we will choose to excite the circuit with a PULSE, as described 
in the V1line in the input file (see table 14.18). A reason for selecting this 
form of driving function is that we need to do a transient response (see the 
'. TRAN' controlline) on the output, and, for this purpose it is necessary to 
energise the system by a time-dependent function, the repetitive PULSE 
being one example. The PULSE function has the following variables 

PULSE (IV PV TD TR TF PW PP) 

where 
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IV is the initial value = 0 
PV is the pulsed value = 10 V 
TD is the delay time before the pulse is applied = 0 
TR is the rise time of the pulse = 1 Ils 
TF is the fall time of the pulse = 1 Ils 
PW is the pulse width = 50 ms 
pp is the pulse period = 51 ms 
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In this case, it is merely necessary to make the pulse width longer than the 
transient period involved in the problem, and the pulse period longer than 
the sum of TR, TF and PW. 

Perhaps, at this time, we should look at the '.TRAN' controlline. This 
calls for SPICE to evaluate the transient solution for 40 ms in steps of 2 ms. 
The reader will recall that we estimated that the secondary current would 
reach its steady-state value (zero) in about 40 ms. Consequently, a transi­
ent period of 40 ms is allowed for in the input file; a step period of 2 ms 
provides (40/2) + 1 = 21 results in this period. 

Returning to the circuit description, 'Vpri' and 'Vsec' act, respectively, 
as primary and secondary ammeters. The reader will note the ';' separator 

Table 14.18 

*** Worked Example 14.10 *** 
*** The input source is a PULSE *** 
*output nodes pu1sed va1ue fall time 
* I I initial va1ue I time delay pulse width 
* I I I I I rise time I I period 
* I I I I I I I I I 
V1 1 0 PULSE (0 10 0 1U lU 50M 51M) 
*** Ammeters *** 
Vpri 1 2 0 ;primary ammeter 
Vsec 4 7 0 ;secondary ammeter 
*** Primary circuit resistance *** 
Rpri 2 3 20 
*** Load *** 
Rload 7 6 20 
Lload 6 5 0.01 
*** Coupled circuit *** 
L1 3 0 0.1 
L2 4 5 0.1 
K L1 L2 0.5 
*** d.c. linking resistor *** 
Rlink 0 5 lMEG 
.OPTIONS NOPAGE 

40M • TRAN 

. PLOT 
• END 

2M 
TRAN I (Vsec) (0,0.1) I (Vpri) (0,0.5) 
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Tc:Ible 14.19 

IEGID: 
*: I(Vsec) 

+: I(Vpri) 

TnE 
(*)-­

(+)--

O. ()()()E+OO 
2.00CE-<l3 
4.()()()E-<l3 
6. ()()()E-<l3 
8.00CE-<l3 
1.00CE-<l2 
1.200E-<l2 
1.400E-<l2 
1.6OOE-<l2 
1.BO<E-<l2 
2.00CE-<l2 
2.200E-<l2 
2.400E-<l2 
2.6OOE-<l2 
2.BO<E-<l2 
3.()()()E-<l2 
3.200E-<l2 
3.400E-<l2 
3.6OOE-<l2 
3.8OOE-<l2 
4.00CE-<l2 
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I(Vsec) 

O. ()()()(E+OO 2 .5OQ(E-<l2 5. ()()()(E-()2 7 • 5OQ(E-<l2 1. ()()()(E-<l1 
O.()()()(E+OO 1.2SO<E-<l1 2.5OQ(E-<l1 3.7SO<E-<l1 5.()()()(E-<l1 

O.OOCE+OO X 
7.193E-<l2 • 
9.129E-<l2 • 
8.735E-<l2 • 
7.56lE-<l2 • 
6.229E-<l2 • 
4.996E-<l2 • 
3.95lE-<l2 • 
3.093E-<l2 • * 
2.41lE-<l2 • * 
1. 87lE-<l2 • * 
1. 452E-<l2 • * 
1.!23E-<l2 • * 
8.693E-<l3 • * 
6.717E-<l3 • * 
5.196E-<l3 • * 
4.013E-<l3 • * 
3.103E-<l3 • * 
2.396E-<l3 • * 
1. 853E-<l3 • * 
1.43OE-<l3 • * 

+ 
+ 

* 
* 

* 

* 

+. * 
* + 

+ 

* 

+ 
+ 
+ 
+ . 
+ . 
+. 
+. 
+. 
+. 
+ 
+ 
+ 
+ 
+ 
+ 

used between the circuit element field and the comment field. The electri­
cal circuit and the magnetically coupled circuit are defined in the input file 
in the manner described earlier in the book. Once again, all nodes must 
have a 'd.c.' link to node 0, so that a large value of linking resistor, Rlink, 
connects one point in the primary circuit to one point in the secondary circuit. 

Finally, we will take a look at the method of displaying the output data 
(see also table 14.19). The '.PLOT' controlline calls on SPICE to PLOT 
the current through the voltage source Vsec and through Vpri, in that 
order. However, the .PLOT controlline used here differs from that used 
hitherto, since we use it to set limiting values to the range over which the 
current is plotted. As a general rule, if the user does not know the range 
over which the results will appear, it is advisable to let SPICE itself make 
the decision. A dis advantage which sometimes occurs with this arrange­
ment is that the resulting graphs do not quite appear in the position that 
one would like! 
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In this case, we'have a general idea of the values involved, and we can 
specify them in the .PLOT line. The limits are quoted in parenthesis, with 
the minimum value first and the maximum value second. That is, the 
secondary current is to be plotted between values of zero and 0.1 A, and 
the primary current between zero and 0.5 A. The output from the printer is 
shown in table 14.19, with each point on the graph of the first named 
variable, namely I(Vsec), being plotted with a '*', and each of the points 
on the graph of the second named variable, I(Vpri), being plotted with 
a '+'. 

When I(Vsec) and I(Vpri) have the same value (as they both do 
initially), the point is marked with an upper-case 'X'. 

The table of results on the left of the graphs shows, in the first column 
the time in ms and, in the second column the value of the first named 
variable, namely I(Vsec). A print-out of all the values of all variables could 
have been obtained had we included a '.PRINT' control line in the input 
file. Once again, we see that the transients have practically reached their 
final value in about 40 ms. 

Worked example 14.11 

Plot the frequency response diagram of the circuit in worked example 
11.11.1 (see page 285) using SPIeE software. 

Solution 

The circuit is described in the input file in table 14.20 in standard SPIeE 
format. In this case we have chosen to drive the circuit using an a.c. current 
source of 1 L 0° A, so that the voltage at node 1 (the input) is equal to the 
input impedance of the circuit. The '.AC' controlline requests the compu­
ter to calculate the results in frequency decades, five points per decade, 
from 0.1592 Hz (1 radis) to 1592 Hz (10 000 radis), that is, over 4 
decades. 

The '.PRINT' and '.PLOT' controllines request the computer to output 
the magnitude in dB and the phase shift (in degrees). The relevant sections 
of the output file are shown in tables 14.21 and 14.22. 

The .PRINT controlline causes both the decibel value of the voltage at 
node 1 and the corresponding phase angle to be printed for each frequency 
(see also table 14.11). 

The .PLOT line does not specify the range over which the results are to 
be plotted and (see table 14.22) SPIeE chose the following 

VDB(1): 20 dB to 100 dB, and marks points with a ,*, 
VP(1): -50° to 150°, and marks points with a '+'. 

However, the .PLOT control line only results in the value of the first 
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named variable in the line to be printed, that is, VDB(l). The first column 
of results in table 14.22 corresponds to the frequencies at wh ich the 
calculations occur, and the second column contains the corresponding 
values of VDB(1). 

Tab1e 14.20 

*** Worked Examp1e 14.11 *** 
I 0 1 AC 1 
R 1 2 25 
L 2 0 0.25 
.OPTIONS NOPAGE 
.AC DEC 5 0.1592 1592 
* The vo1tage V(1) is equa1 to the circuit impedance * 
.PRINT AC VDB (1) VP (1) 
. PLOT AC VDB (1) VP (1) 
• END 

Tab1e 14.21 

FREQ VDB (1) VP (1) 

1. 592E-01 2.796E+01 5.731E-01 
2.523E-01 2.796E+01 9.083E-01 
3.999E-01 2.796E+01 1. 439E+00 
6.338E-01 2.797E+01 2.280E+00 
1.004E+00 2.798E+01 3. 611E+00 
1.592E+00 2.800E+01 5.712E+00 
2.523E+00 2.807E+01 9.008E+00 
3. 999E+00 2.822E+01 1. 410E+01 
6.338E+OO 2.860E+01 2. 171E+01 
1.OO4E+01 2.941E+01 3.226E+01 
1. 592E+01 3.097E+01 4.501E+01 
2.523E+01 3.342E+01 5.776E+01 
3.999E+01 3.660E+01 6.830E+01 
6.338E+01 4.023E+01 7.590E+01 
1.004E+02 4.407E+01 8.100E+01 
1.592E+02 4.800E+01 8.429E+01 
2.523E+02 5.198E+01 8. 639E+01 
3. 999E+02 5.597E+01 8.772E+01 
6.338E+02 5.996E+01 8.856E+01 
1.004E+03 6.396E+01 8.909E+01 
1.592E+03 6.796E+01 8. 943E+01 
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Table 14.22 

ImID: 
*: vrB(l) 
+: W(l) 

(*)-- 2 • ()()()(E+Ol 4.0000E+01 6.0000E+01 8. ()()()(E+01 1. ()()()(E+02 
(+)-- -5. ()()()(E+Ol O.OOOOE+OO 5. ()()()(E+Ol 1. ()()()(E+02 1.5OCXE+02 

1.592E-Dl 2.796E+Ol • * + 
2.523E:-Dl 2.796E+Ol • * + 
3. 999E-Dl 2.796E+Ol • * + 
6.338E-D1 2.797E+01 • * .+ 
1.004E+OO 2.798E+Ol • * .+ 
1. 592E+OO 2.8OCE+Ol • * .+ 
2.523E:+OO 2.807E+Ol • * . + 
3. 999E+OO 2.822E+01 • * + 
6.338E+OO 2.86OE+Ol • * + 
1.004E+Ol 2.94lE+01 • * + 
1. 592E+01 3.097E+01 • * +. 
2.523E:+Ol 3.342E+Ol • * . + 
3. 999E+Ol 3.66OE+01 • * + 
6. 338E+01 4.023E+01 • * + 
1.004E+02 4.407E+01 • * + 
1. 592E+02 4.8OOE+01 • * + 
2.523E+02 5.l98E+Ol • * + 
3. 999E+02 5.597E+Ol • * + 
6. 338E+02 5.996E+Ol • * + 
1.004E+03 6.396E+01 • * + 
1. 592E+03 6.796E+Ol . * + 

Worked example 14.12 

Using PSpice software, plot the gain and phase response of the generalised 
quadratic transfer function 

HUw) ~ I + n[~1 + [~r for, ~ 0.1 (see also section 11.13). 

Solution 

PSpice is aversion of SPIeE which can handle complex transfer functions 
which are expressed in the s-domain, that is as a Laplace transformation 
(see also chapter 10). For the purpose of the program, we allow the 
complex operator jw to be replaced by s, that is, s == jw. The input file in 
table 14.23 gives a solution to the problem. 
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PSpice deals with an s-domain transfer funetion as though it were 
the 'gain' of a voltage-dependent voltage source, or an 'E' source. This (the 
s-domain transfer funetion) has been given the name 'Equadratie' in the 
program. The output from the souree is between nodes 2 and 0, and the 
input is the voltage at node 1, that is, V(l). In the line defining the transfer 
funetion, the expression LAPLACE informs the computer that it must 
expeet a transfer funetion as a Laplaee transform for C = 0.1, whieh it 
expeets to find within a pair of { } braekets. 

As with most SPICE programs, the software expeets to find a 'd.e.' link 
between eaeh node and node 0, and a one megohm resistor is eonneeted 
between the input souree no des (node 1 and 0) and between the output 
nodes (nodes 2 and 0). 

The .PLOT eontrol line requests a plot of the output magnitude re­
sponse in dB, together with phase shift in degrees to a base of frequeney 
plotted to a deeade seale of frequency (10 points per deeade) - see also the 
'.AC' eontrolline. The resulting output is shown in table 14.24. The points 

Table 14.23 

*** Generalised Quadratic Transfer Function *** 
* H(s) = 1 + (2*zeta*s/omega 0) + (s*s/(omega O*omega 0»* 
*** where s replaces jw *** 
V 1 0 AC 1 
*** ZETA = 0.1, omega 0 = 1 *** 
*name of source 
* (+) output node 
* I (-) output node 
* I I LAPLACE trans form 
* I I I signal source 
* I I I I LAPLACE transform expression 
* I I I I I 
Equadratic 2 0 LAPLACE {V(l)} {1 + (2*0.1*s/1) + (s*s/(1*1)} 
* A high value resistor must be connected between node 1 and 0 * 
* and between node 2 and 0 * 
R1 1 0 1MEG 
R2 2 0 1MEG 
.OPTIONS NOPAGE 
*** 
*AC 
*1 

Logarithmic plot of frequencies between 0.1 and 10 radis *** 
sweep 

*1 
*1 
*1 
.AC 
. PLOT 
• END 

sweep in DECades 
1 10 points per decade 
I I start freq end freq 
1 1 1 1 

DEC 
AC 

10 
VDB(2) 

15.92M 
VP(2) 

1.592 
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corresponding to the gain in dB are plotted using '*', and the phase angles 
are plotted using '+'. The values on the left oftable 14.24 are, firstly, a list 
of frequencies (in Hz) and, secondly, corresponding gain values (in dB) of 
the transfer function. 

When evaluating phase angles using SPICE, the reader should be aware 
that some versions output angles for certain solutions only in the range 
± 180°. That is, if the phase angle associated with a given transfer function 
slowly changes from, say, -90° to -270°, then SPICE may convert phase 
angles in excess of -180° into their 'positive' phase angle equivalent, that 
is, - 190° becomes + 170°. 

The graph in table 14.24 should be compared with those in section 
11.13. 

'Iable 14.24 

IEJ:»l): 

*: Vffi(2) 

+: VP(2) 

Vffi(2) rnm 
(*)-­

(+)--
-2 • ()()()()E+<l1 O. OOOOE+OO 2. ()()()()E+<l1 4 • ()()()()E+<l1 6 • 0000E+<l1 

O. OOOOE+OO 5. 0000E+<l1 1. ()()()()E+<l2 1. SOOOE+<l2 2. 0000E+<l2 

1.592E-02 -8.557E-02 + * 
2. 004E-02 -1. 36<E-01 + * 
2.523E-02 -2.165E-01 + * 
3.176E-02 -3.456E-01 .+ * 
3.999E-02 -5. 54OE-01 • + * 
5.034E-02 -8. 943E-Ql . + * 
6.338E-Q2 -1.461E+OO .+ * 
7.979E-02 -2.437E+OO • + * 
1.004E-01 -4.226E+OO. + * 
1.265E-01 -7.927E+OO. + * 
1.592E-01 -1.398E+<l1 • * + 

2. 004E-01 -3. 909E+OO • * • + 

2.523E-01 3.785E+OO • * + 

3. 176E-01 9.57lE+OO • * + 

3. 999E-01 1. 455E+<l1 * + 

5.034E-01 1. 91lE+<l1 . * + 

6. 338E-01 2.345E+<l1 • * + 

7. 979E-01 2.766E+<l1 • * + 

1.004E+OO 3. 179E+<l1 * + 
1.265E+OO 3. 587E+<l1 * + 
1. 592E+OO 3. 992E+<l1 * + 
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W orked example 14.13 

Using SPIeE software, write a program which calculates the impedance of 
the se ries RLC circuit in worked example 12.3.1 (see page 303), in 10 per 
cent steps, from 20 per cent below to 20 per cent above resonance. 

Solution 

Not every implementation of SPIeE provides simple facilities for determi­
nation of impedance, but we can get around this by driving the circuit with 
an alternating current of 1LO° A. The complex value of voltage between 
the current source terminals is then equal to the complex input impedance 
of the circuit. An input file for the circuit in worked example 12.3.1 is given 
in table 14.25. 

To remind the reader, the series circuit contains R = 4 Q, L = 0.1 mH 
and C = 1 IlF. The resonant frequency is 100 000 radis, which we take to 
be 15 920 Hz (to an accuracy of four decimal places). 

SPIeE detects the capacitor as an open-circuit, and it is necessary to 
include an additional resistor, 'Rextra', to shunt the current source in order 
to provide a 'd.c.' path between node 1 and node O. The value of 'Rextra' is 
sufficiently high to have no effect on our calculation. 

The '.AC' control line causes the frequency to sweep from 12.73 kHz 
to 19.1 kHz, in five linear steps. This provides us with data at (approx.) 
80 krad/s to 100 krad/s in steps of 10 krad/s, which will include the resonant 
frequency of 100 krad/s. 

Table 14.25 

*** 
*** 
*** 
I 

R 

L 

C 

Worked Example 14.13 *** 
Input impedance calculation *** 
Circuit is driven by a constant current *** 
o 1 AC 1 
1 2 4 
2 3 O.lM 
3 0 1U 

** Rextra shunts the current source ** 
Rext ra 0 1 1MEG 

.OPTIONS NOPAGE 
** Calculate values in 10 per cent steps around resonance ** 
* Five LINEAR steps between 80 k radis to 100 k radis * 
.AC LIN 5 12.73K 19.1K 
** Input impedance is equal to V(l) ** 
.PRINT AC VM(l) VP (1) 
• END 
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Tab1e 14.26 

FREQ VM(1) VP (1) 
1. 273E+04 6.024E+OO -4.839E+01 
1.432E+04 4.524E+OO -2.785E+01 
1. 592E+04 4.000E+OO -8.898E-03 
1.751E+04 4.432E+OO 2.552E+01 
1. 910E+04 5.427E+OO 4.252E+01 

The '.PRINT' control line requests the magnitude (VM(l» and the 
phase (VP(l» of the voltage across the current source to be output. These 
values are, incidentally, the magnitude and the phase of impedance of the 
circuit at the respective frequencies. 

The reader will note that the results in table 14.26 (wh ich is the relevant 
part of the output file) at 1.432E+04 Hz (approx. 80000 radis) and 
1.91OE+04 Hz (approx. 120 000 radis) generally agree with the results 
obtained in worked example 12.3.3. The impedance at the re sonant fre­
quency of 1592 Hz (100000 radis) is seen to be 4 Q. 

Worked example 14.14 

Solve the Fourier analysis problem in worked example 13.3.1 (see page 
329) using SPIeE software. 

Solution 

Fourier analysis (that is, a '.FOUR' controlline appears in the input file in 
table 14.27) can be performed by SPIeE in conjunction with a transient 
('.TRAN') analysis of the waveshape; that is, a '.TRAN' controlline must 
appear in the same input file as a '.FOUR' control line. 

SPIeE performs FOURier analysis on waveforms which exist for t > 0, 
that is, the va lues exist only in positive time. The rectangular waveform is 
therefore described in this case for the time interval 0 < t< 1 s by means of 
a piece-wise linear stimulus 'Vpwl', which is applied to a resistor R of value 
1 Q. Each point on the waveform is defined by two values, namely by its 
time in seconds and its value, as follows (see also worked example 14.4) 

PWL(O,l 0.25,1 0.25001, -1 0.75, -1 0.75001,1 1,1) 

That is, at t = 0 the voltage has a value 1 V, and remains at that value until 
t = 0.25 s. SPIeE only accepts a practical waveform, that is it must have 
a practical value of fall time from 1 V to -1 V. A fall time of 0.01 ms 
has been assumed; similarly, a rise time of 0.01 ms has been adopted at 
t = 0.75 ms. The points specified on the waveform are joined linearly. That 
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is to say, the waveform is not an ideal square wave, but is trapezoidal. 
The transient response is computed by the .TRAN controlline, which 

requests the computer to evaluate the transient response every millisecond 
for aperiod of 1 s (this period is also referred to later). 

The .FOUR control line causes the computer to evaluate the d.c. 
component together with the amplitude and phase of the fundamental 
frequency and all harmonics up to the 9th harmonic. The fundamental 
frequency is specified by the user, and is the first value in the .FOUR 
controlline, that is, it is 1 Hz. Also written in this line is the output variable 
on which the Fourier analysis is to be performed, namely V(I). There can 
be several output variables in this line, but we only need one. The reader 
is asked to note that the transient analysis period must be at least 
1/(fundamental frequency) s long; in our case this is 1/1 = 1 s. 

The relevant part of the output file is listed in table 14.28. The reader 
will note that SPIeE reports a sm all d.c. component, which is due to the 
fact that the PWL waveform used in the program is not a true square wave, 
together with any mathematical 'noise' produced by the program. The 
table produced by the program lists not only each Fourier component and 
its associated phase angle, but also the 'normalized' values. The latter 
assurnes that the magnitude of the fundamental frequency is 1.000, and 
that its phase shift is 0.000°. 

One needs to look carefully at the table in order to decide wh at values 
are significant; in practice we can ignore any harmonie with a magnitude 
less than about 1 per cent of the normalised fundamental frequency 
component. Applying this as a general rule, we can ignore all the even 
harmonics. Looking at the PHASE (DEG) column, we see that the phase 
shift of the fundamental frequency is 90°, that is, it is a cosine term in the 
Fourier series. Similarly, the third harmonic is a -cos term, the fifth 
harmonic is a cos term, etc. The results in table 14.18 are in general 
agreement with the results of worked example 13.3.1. 

Once again, it is pointed out that a computer package may not provide 
all the answers needed for a particular problem. This example can be used 
to demonstrate that engineering judgement is often needed to make a final 
decision. If the . TRAN control line had been written '. TRAN 10M 1', 
that is, transient values to be calculated at 10 ms intervals rather than the 
1 ms period used here, the phase angle values would have differed by many 
degrees from the values in table 14.28, and the result would not have 
agreed very weB with the theoretical analysis. The result would, of course, 
be produced much more quickly, but not so accurately! 
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Table 14.27 

Worked Example 14.14 
*** Fourier analysis of a square wave *** 
*** Voltage is a Piece-Wise Linear (PWL) source *** 
Vpwl 1 0 PWL(0,1 0.25,1 0.25001,-1 0.75,-1 0.75001,1 1,1) 
R 1 0 1 
.OPTIONS NOPAGE 
*TRANsient analysis 
* I 1 InS steps 
* I I up to 1 s 
* I I I 
.TRAN 1Ms 1s 
*FOURier analysis 
* 11Hz fundamental frequency 
* I 
* I 
.FOUR 
• END 

analyse the voltage at node 1 
I 

1 V(l) 

Table 14.28 

roJRIER ~ CF 'lRI\NSIENl' RESPCNSE V(l) 
OC a:M'CNENI' = -l.OOlOOlE-03 
HAIMNIC ~ roJRIER NCFMALIZED PHASE 
~ (HZ) a:M'CNENI' a:M'CNENI' (Dm) 

1 1.000E+OO 1. 273E+OO 1.000E+OO 9.000E+Ol 
2 2.000E+OO 2.002E-D3 1. 572E-D3 9.000E+01 
3 3.000E+OO 4.244E-01 3. 333E-D1 -9.000E+01 
4 4.000E+OO 2.002E-D3 1. 572E-D3 -9.000E+01 
5 5.000E+OO 2.547E-D1 2.000E-01 9.000E+01 
6 6.000E+OO 2.002E-D3 1. 572E-D3 9.000E+01 
7 7.000E+OO 1. 819E-01 1. 429E-D1 -9.000E+01 
8 8.000E+OO 2.002E-03 1. 572E-03 -9.000E+01 
9 9.000E+OO 1. 415E-D1 1. lllE-D1 9.000E+01 
'IUl'AL HARM:mC DIS'I\:RI'ICN = 4.288100E+01 PERCENT 

NCFMALIZED 
PHASE (Dm) 

O.OOOE+OO 
-1.40lE-DS 
-1.800E+02 
-1.800E+02 
1.868E-DS 

-3.268E-D8 
-1.800E+02 
-1.800E+02 
3. 735E-D8 



15 
Complex Numbers, 
Matrices, Determinants and 
Partial Fractions 

15.1 Imaginary numbers 

The concept of imaginary numbers was introduced by mathematicians to 
allow them to express the square root of a negative number. For example, 
if x 2 = -9 the solution is given by saying 

x = imaginary operator x \19 

The imaginary number is useful to electrical engineers, who gave the 
imaginary operator the symbol j so that, in the above case 

x = j3 

(Mathematicians use the symbol i to represent the imaginary operator, but 
as this symbol is used by electrical engineers to represent electrical current, 
the symbol j is used.) 
Thus 

= V(-l) 

j2= (V(-1»2=-1 

p = j X j2 = -j 

j 4 = j 2 X j 2 = 1, etc. 

The reader should note that 

imaginary number = imaginary operator (j) X real number 

386 
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15.2 Complex numbers 

A complex number is the sum of areal number and an imaginary number, 
and is either written in bold Roman type (as in this book), or has a bar 
drawn over it (as is often the ease in hand-written material). Thus 

V = a + jb 

or 

v = a + jb 

It is important to note that both a and b are real numbers, but the 
eomponent jb is an imaginary number sinee b is multiplied by the im­
aginary operator j. 

15.3 Representation of complex numbers 

There are four ways of representing a eomplex number, namely 

reet angular or eartesian form V = a + jb 

polar form V = r L (J 

exponential form 

trigonometrie form 

V = r X eiß 

V = r(eos (J + j sin (J) 

The last three forms above are, from Euler's identity, generally the 
same form. The relationship between them is 

r = V(a 2 + b 2 ) (J = tan -l(b/a) 

The reetangular and polar forms are most widely used in eleetrieal 
engineering. The seven eomplex numbers V 1 to V, represented in figure 
15.1 are written in polar and reetangular form as follows. 

Vl = 3 = 3 + jO = 3LO° 

V z = 4 + j2 = 4.47L26.57° 

V 3 = j3 = 0 + j3 = 3L 90° 

V4 = -2 + j4 = 4.47L 116.57° 

V s = -2 = -2 + jO = 2L180° (or 2L-1800) 

V 6 = -4 - j3 = 5L216.87° (or 5L-143.13°) 

V, = 1 - j3 = 3.16L-71.57° 
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V2 

Figure 15.1 Representatian a[ camp/ex numbers. 

15.4 Conjugate of a complex number 

The conjugate, V*, of the complex number V = a + jb = r L8 is 

V*=a-jb=rL-8 

where r = V(a 2 + b 2 ) and 8 = tan ~I(b/a). 
If V = 3 + j4 = 5L53.13°, then V* = 3 - j4 = 5 L - 53.13°. Also 

(V*)* = V. A complex number and its conjugate are said to form a 
conjugate complex pair of numbers. Other useful praperties are 

(V,V 2 )* = VW~ 

(V, ± V 2)* = V~± V~ 

V* 1 

V* 2 

15.5 Sum and difference of complex numbers 

To perform addition (or subtraction) of complex numbers, the numbers 
must first be converted into rectangular form, and the real parts must be 
added together (or subtracted fram one another), and then the imaginary 
parts added together (or subtracted fram one another) as folIows. 

IfV, = 5 + j6 and V 2 = -3 - j8, then 

VI + V 2 = (5 + j6) + (-3 - j8) = 2 - j2 

V, - V 2 = (5 + j6) - (-3 - j8) = 8 + j14 
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15.6 Multiplication of complex numbers 

When the numbers are expressed in polar form, the multiplieation pro­
eeeds as follows 

r 1L8 1 X r2 L82 = r 1r2 L(8 1 + ( 2 ) 

In general, it is far more eonvenient to earry out multiplication of 
eomplex numbers using the polar form than it is using rectangular form. 
However, when numbers are expressed in reet angular form, the multipliea­
tion ean be earried out as follows. 

or 

(a + jb)(c + jd) = (ac + j 2bd) + j(ad + bc) 

= (ac - bd) + j(ad + bc) 

If VI = 3 + j4 = 5L53.13° and V 2 = -5 - j5 = 7.07L -135°, then 

VI x V 2 = 5L53.13° x 7.07L-135° = 35.35L-81.87° 

VI X V 2 = (3 + j4)(-5 - j5) = (-15 + 20) + j(-15 - 20) = 5 - j35 

The product of a conjugate complex pair of reet angular numbers is 

(a + jb)(a - jb) = a2 + b 2 

and the product of a conjugate complex pair of polar numbers is 

rL8 x rL-8 = r2L(8 -- 8) = r 2 

both giving areal number and no imaginary term. For example, if V 
= 3 + j4 = 5L53.13°, then 

V x V* = (3 + j4)(3 - j4) = 9 + 16 = 25 

or 

V x V* = 5L53.13° x 5L-53.13° = 25LO° 

15.7 Division of complex numbers 

If V and I are eomplex numbers then, using polar values, division is earried 
out as follows 

V r 1 L8 r1 
- = = - L (8 - cj» 
I r 2 Lcj> r 2 

In general, it is far more eonvenient to use polar values rather than 
rectangular values when performing division. 
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Using rectangular complex values, division is carried out as follows 

V V X 1* 

1 1 X 1* 

The product 1 X 1* gives areal number with no imaginary part (see 
section 15.6), and the process of dividing by (I X 1*) is known as rationalis­
ing the denominator. For example 

if V = a + jb and 1 = c + jd, then 

V (a + jb)(c - jd) (ac + bd) + j(bc - ad) 

1 (c + jd)(c - jd) c2 + d 2 

SlIppose V = 4 + j4 = 5.66L45° and 1 = 3 + j4 = 5L53.13°, then 

V 5.66L45° 
---- = 1.132L-8.13° 

1 5L53.13° 

or 

V (4 + j4)(3 - j4) (12 + 16) + j(12 - 16) 

1 (3 + j4)(3 - j4) 9 + 16 

28 - j4 . 
----'-- = 1.12 - JO.16 

25 

15.8 Powers and roots of complex numbers 

The Nth power of a complex number is calculated as follows 

(RL8Y = RN L N8 

For example 

(2L600)3 = 8L180° 

There are N roots of the complex number RL8 as follows 

I 8 + [n X 360] 
(RL 8) lIN = R lIN N 

where n has a value in the range 0, 1,2, .. , (N - 1). 
For example -{I(8L600) has the values 2L20°, 2L140° and 

2L260°. 
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15.9 Matrix representation 

Consider the equations 

VI = Z 1.1 1 + Z 12/l + Z 13/3 

V l = ZU/ l + Zn/l + Z13/ 3 

V 3 = Z 31/1 + Z 3l/l + Z 331 3 

These can be written in a matrix form of ordered rows and columns of 
elements of the same kind as follows 

or, alternatively, in the even more ordered form 

[V] = [Z][/] 

where [V] is a voltage matrix, [Z] is an impedance matrix and [I] is a 
current matrix. The formalised matrix representation is weIl suited to 
calculator and computer solution of equations. 

The double subscript notation is used to identify the position of an 
element within a matrix. The first subscript denotes the row in which the 
element is found, and the second denotes the column. Thus Zl3 is the 
element in the second row of the third column. A simple mnemonic to 
remember the order of the subscripts is Roman Catholic (Rows, Columns). 

Both the voltage and the current matrix, above, are written in the form 
of a column, and each is described as a column matrix or vector. These 
have only one column, but may contain any number of rows (in the case 
considered, both have the same length). Since there is only one column in a 
column matrix, only one subscript is necessary to define the position of an 
element within it. 

The impedance matrix is a square matrix, in which the number of rows is 
equal to the number of columns. 

The major diagonal of a square matrix is the diagonal line of elements 
going from the top leftmost element to the bottom rightmost element, that­
is, the elements Z 11' Z ll' Z 33 in the impedance matrix above lie on the 
major diagonal. 

A diagonal matrix is a rectangular matrix in which all the elements are 
zero except those on the major diagonal. 

An identity matrix or unit matrix is a diagonal matrix in which the value 
of each of the elements on the major diagonal is unity. 

Other forms include the following. A row matrix has only one row 
containing number of columns as follows 
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A rectangular matrix is one having M rows and N columns (M";: N), and 
is described as an M by N or M x N matrix, as shown below. 

all a 12 a lN 

a 21 a 22 a 2N 

aMI a M2 a MN 

A null matrix is one in wh ich every element is zero. 

15.10 Matrix addition and subtraction 

Two matrices can either be added together or subtracted from one another 
if they are of the same order. If A = [aij] and B = [biJ are two M x N 
matrices, their sum (or difference) is the matrix C = [c ij]' where each 
element of C is the sum (or difference) of the corresponding elements of A 
and B. That is 

A ± B = [a ij ± b ij] 

[ -3 4 ~ ] and B = [: 
4 -:] IfA = 0 then 

-6 -7 

[-3 + 3 4+4 
5-5]=[0 

8 1~ ] A+B= 
0+6 -6 -7 7 + 8 6 -13 

[-3 - 3 4-4 5 - (-5) ] = [ -6 0 10] A-B= 
0-6 -6 - (-7) 7 - 8 -6 1 -1 

15.11 Matrix multiplication 

The matrix product AB (which must be carried out in that order) can be 
computed only if the number of columns in A is equal to the number of 
rows in B. B is not necessarily conformable to A for multiplication, that is, 
the product BA may not be defined. The following should be observed: 

1. AB ,,;: BA generally . 
2. AB = 0 does not always imply A = 0 or B = O. 
3. AB = AC does not always imply B = C. 
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If matrices are conformable, multiplication is performed on a row by 
column basis; each element in a row is multiplied by the corresponding 
element of a column, and the products are summed. 

If A is a 1 x M row matrix, and B is a M x 1 column matrix, then 

= [ k ~ 1 a Ikb kl ] 

Note: BA is not defined. 

-6 
Suppose that A = [-1 2 3] and B = 0 then 

7 

AB ~ [-1 2 3] -~]~ [-1(-6) + 2(0) + 3(7)] ~ [27] 

a ll a 12 b l1 b 12 

If A = a21 a22 and B = then 
a 31 a 32 

a llb 11 + a l2b 21 a l1b 12 + a 12b 22 

AB = a2lb 11 + a22b 21 a 21b l2 + a 22b 22 

a 3lb 11 + a32b 21 a31b l2 + a 32b 22 

Note: BA is not defined. 

-1 0 4 5 
Suppose that A = 3 -4 andB = then 

5 6 -6 7 

-1(4) + 0(-6) -1(5) + 0(7) -4 
AB = 3(4) + (-4)(-6) 3(5) + (-4)(7) = 36 

5(4) + 6(-6) 5(5) + 6(7) -16 

-5] -13 
67 
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5 -3 0 I. 
Also, if R = -3 12 -5 andl = 12 then 

0 -5 11 13 

5/1 -3/z -0/3 
RI = -3/1 12/2 -5/3 

-011 -5/z 1113 

A matrix may be multiplied by a scalar k (which should not be confused 
with the 1 x 1 matrix [k]), to give 

kA = Ak = [ka;j] 

that is, each element in the matrix is multiplied by k. 

15.12 The determinant of a square matrix 

A matrix is simply an ordered array of elements, and has no numerical 
value. On the other hand, the determinant of a square matrix has a 
numerical value, which is given the symbol ~, or det A or lAI. This value 
can be used in the computation of the value of unknown variables in the 
equations represented by the matrix equations. 

The value of a determinant of order 2 is calculated as folIows. 

For example 

I-~ 41 = 2(-3) - 4(-5) = 14 
-3 

For a determinant of order 3 

all a 12 a \3 
a21 a 22 a23 = alla2Za33 + alZaZ2a31 + a\3a 2.a 32 - a\3a 22a 31 - a12a21a33 
a31 a 32 a 33 -allaZ3a3Z 

For example 

2 -3 4 2.6.7 + (-3).( -2).( -3) + 4.5.(-4) 
5 6 -2 = -4.6.(-3) - (-3).5.7 - 2.(-2).(-4) = -63 

-3 -4 7 
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15.13 Minors and cofactors 

The minor of the element a ij (row i, columnj) of a determinant is obtained 
by deleting row i and column j of the determinant; the minor of this 
element is given the symbol M ij' The value of the minor is multiplied by 
( -1) i + j to give the cofactor <;>f a ij; the cofactor is given the symbol ~ ij' 

For example, in the determinant of order 3 in section 15.12 

M 22 = I 
all 

a 13 1 
a31 a33 

and 

~22 = (_1)2+21 
a l1 a 13 

1=+ I 
a l1 a 13 

1= 
+ a Ha 33 - a 13a 31 

a 31 a 33 a 31 a 33 

15.14 Evaluating a determinant 

The value of a determinant of order N is the sum of the N products of each 
element in a selected row (or column) and its cofactor (great care should be 
taken in ensuring that the cofactor has the correct mathematical sign, see 
section 15.13). 

Consider the following determinant of order 3, which can be evaluated 
by (for example) selecting the elements in the first row as follows 

a 11 a 12 a 13 

a 21 a 22 a23 = al1~l1 + aI2~12 + a13~13 
a 31 a 32 a 33 

= a 11 I a 22 a 23 1_ a 12 1 a 21 a 23 1 + a 13 1 
a 32 a 33 a 31 a 33 

Alternatively, if the elements in the second column are selected, then 
the value of the determinant is calculated from 

a 12~ 12 + a22~22 + a32~32 
Both of the above calculations produce the result given earlier in section 

15.12. 
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15.15 The rule of Sarrus 

A determinant of order 3 can be evaluated using the rule of Sarrus as 
follows 

The determinant is written down, and the first two columns are repeated 
to the right of the determinant. Diagonal lines are drawn joining sets of 
three elements together; the product of the diagonally downwards terms 
are given a positive sign, and the product of the diagonally upwards terms 
are given a negative sign. The value of the determinant is the sum of these 
products. For example, by the rule of Sarrus 

5 6 7 
2 -3 4 = 5.(-3).3 + 6.4.1. + 7.2.(-2) -7.(-3).1- 6.2.3 - 5.4.(-2) 
1 -2 3 = -45 + 24 - 28 + 21 - 36 + .40 = -24 

15.16 Cramer's rule 

Linear simultaneous equations can be solved by Cramer's rule as follows. 
Consider the following matrix form of equation 

aMI a MZ 

a iN 

a ZN 

aMN 

The value of x K in the Kth row is obtained from the computations 

aMI 

a I(K - 1) Y 1 a I(K + 1) 

aZ(K-I) Yz aZ(K+I) 

aM(K-I) YM aZ(K+ 1) 

a iN 

aZN 

aMN 
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For example, solve for 12 in the following 

5 = 1011 - 312 - 513 

10 = -31 1 + 712 - 413 

-15 = -51 1 - 412 + 913 

The matrix form of the equation is 

5 
10 

-15 

From Cramer's rule 

10 
12 = -3 

-5 

and using the rule of Sarrus 

= [~~ -~ ~ 
-5 -4 9 

5 -5 

I 
10 

10 -4 -3 
-15 9 -5 

-3 -5 
7 -4 

-4 9 

10.10.9 + 5.(-4).(-5) + (-5).(-3).(-15) - (-5).10.(-5) - 5.(-3).9 - 10.(-4).(-15) 
12 =----------------------------------------------------

10.7.9 + (-3).(-4).(-5) + (-5).(-3).(-4) - (-5).7.(-5) - (-3).(-3).9 -10.(-4).(-4) 

60 
= - = 0.638 

94 

15.17 Matrices and determinants containing complex numbers 

Matrices and determinants containing complex numbers can be handled by 
the methods described above, but the reader must use the methods· 
described in sections 15.5 to 15.8 when dealing with complex numbers. 

15.18 Partial fractions 

Functions of s can be transformed directly using integral calculus but, in 
practice, it is easier to arrange the functions so that they fit one or more of 
the terms in a table of Laplace transforms. One method of doing this is by 
the use of partial fractions. 

Analysis of electrical problems by the Laplace transform method gener­
ally requires the derivation of the inverse transform from a result which, 
usually, is in the form of the ratio of two polynomials in s. 

If 
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N(s) 
F(s) =--

D(s) 

where N(s) and D(s) are polynomials in s, and the degree of N(s) is less 
than the degree of D(s), then: 

1. For every linear factor (As + B) in D(s) there is a corresponding partial 
fraction 

1 

As + B 

2. For every quadratic factor (As 2 + Bs + C)2 in D(s) which has real roots, 
there is a corresponding partial fraction 

Ps + Q 

As 2 + Bs + C 

3. For every repeated factor (As + B)2 in D(s) there is a corresponding 
partial fraction 

Q ---+----
P 

As + B (As + B)2 

4. For every repeated quadratic factor (As 2 + Bs + C)2 in D(s) there is a 
corresponding partial fraction 

Ps + Q 
------+ ------

Rs + T 

As 2 + Bs + C (As 2 + Bs + C)2 

5. For every thrice-repeated character (As + B)3 in D(s) there is a 
corresponding partial fraction 

P Q R 
---+ +----
As + B (As + B) 2 (As + B) 3 

6. For every cubic factor As3 + Bs 2 + Cs + D in D(s) there is a corre­
sponding partial fraction 

Ps 2 + Qs + R 

Worked example 15.1 

Determine the partial fraction expansion of 

200 

ses + 1)(s + 2) 
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Solution 

Applying the mIes laid down above 

200 ABC 
------=-+-'-+--
s(s + l)(s + 2) s s + 1 s + 2 

A, Band C in the above expression are known as the residues. 
The residues are quickly evaluated in this case by the cover-up rule as 
folIows. 

(i) Determine the value of s which makes the denominator of that particu­
lar term zero. 

(ii) Substitute this value into the full expression (both numerator and 
denominator) and, ignoring or 'covering up' the factor in question, the 
residue is the result of the calculation. 

The residue A is calculated by letting s = O. Substituting this value in the 
original equation whilst 'covering up' the factor s gives 

200 
A=------

(s + l)(s + 2) 
s = 0 

200 
------= 100 
«0) + 1)«0) + 2) 

The residue B is calculated by letting s = - 1, as follows 

200 200 
B = -200 

s(s + 2) (-1)«-1) + 2) 
s = -1 

and the residue C is calculated by letting s = - 2 as follows 

That is 

200 
C=--­

s(s + 1) 
s = -2 

200 
-----= 100 
(-2)« -2) + 1) 

200 100 200 100 
------= -- - --+--
s(s + l)(s + 2) s s + 1 s + 2 

Worked example 15.2 

Determine the partial fraction expansion of 

54 
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Solution 

This can be re-written in the form 

54 54 

(4s 2 - 5s + 1)2 (1 - s)2(1 - 4S)2 

Since there are repeated factors in the denominator , the partial fraction 
expansion is written as follows 

ABC D 
--+ +---+----
1 - s (1 - S)2 1 - 4s (1 - 4S)2 

Since (1 - s)2 and (1 - 4S)2 appear in the original equation, we can 
evaluate the residues Band D by the cover-up rule as follows 

54 
B=--­

(1 - 4S)2 

54 

s = 1 

D=--­
(1-S)2s~O.25 

54 
----=6 
(1 - 4(1»2 

54 
----=96 
(1 - 0.25)2 

The residues A and C are calculated by substituting the known residues, 
and multiplying both sides of the equation by the denominator of the 
polynomial as follows 

54 = A(1 - s)(1 - 4s)2 + 6(1 - 4S)2 + C(1 - s)2(1 - 4s) + 96(1 - S)2 

Equating coefficients of S3 gives -16A - 4C = 0, and equating co­
efficients of S2 gives 8A + 3C = -64. Solving for A and C yields A = 16, 
C = -64. That is 

54 16 6 64 96 
------= --+ - ---+ ----
(4s 2 -5s+1)2 1-s (1-S)2 1-4s (1-4s)2 
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Index 

ABCD- parameters 186-9 
Active element 8 
Admittanee 111 
Admittance parameters 176-80 
Alternating eurrent (a.e.) 100 
Angular frequeney 101, 102 
a-parameters 186-9 
Apparent power 116 
Average value 100 

Balanced polyphase load 147 
Balanced polyphase supply 147, 148 
Band-pass filter 318 
Bandwidth 305,311 
BASIC programs 36, 129, 130 
Bilateral element 30 
Bilateral network 30 
Bode diagram 280-95 
Braneh 29 

Capacitive reactance 110 
Capacitor 79 
Capaeitors in parallel 82 
Capacitors in series 82, 83 

voltage division between 83,84 
Cartesian· form of complex 

number 387 
Cireuit 28 
CIVIL, mnemonie 110 
Coefficient of magnetie coupling 93 
Complex eonjugate 112 
Complex frequeney 266, 267 
Complex number 106, 267, 387 

conjugate 388 
manipulation of 388-90 

Complex power 121 
Complex value 106 
Complex wave 325 

circuit response to 338-40 
power factor of 341 
power supplied by 340,341 

Conduetance 6 
Conduetance matrix 43 

Conduetor 5 
Conjugate complex pair 388 
Conjugate of complex number 388 
Controlled source 8 
Corner frequeney 284 
Cotree 50 

link in 50 
Cramer's rule 396, 397 
Critical damping 225, 252 
Current 1 
Current division in a parallel 

cireuit 22 
Current gain 175 
Current source 8 
Cut-off frequency 273 

Damping, eritieal 225,252 
Damping faetor 225 
Decibel 281 
Delta eonneetion 150, 155--60 
Delta funetion 229 
Delta-star transformation 74, 136, 

137 
Dependent souree 8, 138-40 
Determinant 394 
Distributed-eonstant element 29 
Dot notation 92, 93 
Double-energy cireuit 218 
Double-suffix eonvention 14 
Dual 54 
Duality 54, 90 
Dynamie impedance 309 
Dynamie resistanee 309 

Effeetive value 102 
e.m.f. 3 
Energy 7 

in eapacitor 81, 82 
in induetor 67 

Excitation eurrent 85 
Exponential form of complex 

number 387 
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Filter 
active 277, 278, 320 
band-pass 318 
band-stop 319 

Final value theorem 241 
First-order circuit 218 
Fourier series 326 
Frequency 102 

angular 101, 102 
Frequency response 272 
Frequency scaling 316, 317 
Fundamental frequency 325 

Generalised impedance convertor 
(GIe) 279, 280 

Half-power frequency 273, 305 
Half-power point 273, 305 
Harmonic 325 
Harmonic analysis 343-5 
h-parameters 183-6 
Hybrid parameters 183-6 

Ideal element 5 
Ideal source 8 
Ideal transformer 198-200, 207 
Imaginary number 386 
Imaginary operator 386 
Impedance 107-10 
Impedance (z) parameters 180-3 
Impulse function 229 
Independentsource 8 
Inductance 84 

mutual 91 
self 85 

Inductive reactance 109 
Inductors 

parallel 88, 89 
series 87, 88 

Initial ~ondition generator 242, 243 
Initial value theorem 241 
Input adrnittance 172 
Input impedlUlce 172 
Instantaneous value 1, 2 
Insulator 5 
Internal conductance 17 
Internal resistance 16 

lunction 29 

Kirchhoff's laws 11-14 

Index 

Laplace transform 226, 227 
final value theorem 241 
initial value theorem 241 
of periodic function 239 
properties of 237-41 
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Laplace transform pairs, table of 233 
Line spectrum 335-7 
Line voltage 147 
Linear circuit element 4 
Linearity 61 
Link, in cotree 50 
Loop, in circuit 29 
Loop analysis 49, 52-4, 130 
Lumped-constant element 29 

Magnetic coupling coefficient 93 
Magnetically coupled circuit, input 

impedance of 212 
Magnitude scaling 315-17 
Matrix 33, 391-4 

conductance 43 
determinant of 394-7 

cofactor of 395 
minor of 395 

manipulation of 392-4 
resistance 33 
square 33 

Maximum power transfer 
theorem 69,70,137,138 

Mean value 100 
Mesh 30 
Mesh analysis 31-4, 37-41, 130, 132 
Mesh connection 150 
Mesh current 31 
Millman's theorem 70-2, 135, 136 
Minor, of deterrninant 395 
Mutual inductance 91 

Negative phase sequence 146, 164 
Network 28 
Network topology 49--54 
Neutral conductor 152 
Neutral point 146 
Nodal analysis 41-9, 130, 131 
Node 29 
Non-linear element 5 
Non-planar network 30 
Norton's theorem 65-7, 133-5 

Ohm's law 5 
Open-circuit 28 
Operational amplifier 9, 277-80 
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Output conductance 17 
Output impedance 173 
Output resistance 16 
Overdamped response 225,252 

Parallel circuit 21, 113 
current division in 22 

Parallel generator theorem 70-2, 135 
Parallel resonance 308 
Parameters 

ABCD 186-9 
h 183-6 
t 186-9 
transformation between 189-91 
y 176-80 
z 180-3 

Partial fractions 397-400 
Pass-band 319 
Passive element 4 
Path, in circuit 29 
Periodic time 102 
Periodic waveform 325 
Phase angle 103-5 
Phase sequence 146 
Phase voltage 147 
Phasor 105 
Phasor diagram 105 
Pi-tee transformation 74,75 
Planar network 30 

non- 30 
Polar form of complex number 387 
Pole 274 
Polyphase circuit 144 
Port 171 
Positive phase sequence 146, 164 
Potential difference 3 
Power 4, 6, 115, 118-21 

apparent 116 
average 4, 102, 115 
complex 121 
instantaneous 102 
reactive 116 
symmetrical component 166, 167 
three-phase 160-4 

Power factor 116 
Power factor of complex wave 341 
Power gain 175 
Power supplied by complex wave 340 
Power triangle 116 
Practical current source 8, 17 
Practical element 5 
Practical voltage source 8, 16 
Primary winding 91 

Q (quality) factor 302, 310 

Ramp function 230 
Reactance 

capacitive 110 
inductive 109 

Reactive power 116 
Real part 387 
Reciprocity theorem 67, 68 
Rectangular form of complex 

number 387 
Rectangular pulse train, Laplace 

transform of 239 
Reference direction 104 
Reference node 14 
Reftected impedance 212 
Resistance 5 
Resistance matrix 33 
Resonance 299-322 

magnetically coupled circuit 321 
parallel 308-15 
selective 320 
series 300-8 

Resonant frequency 274, 276, 290, 
300, 308, 313 

Root-mean-square (Lm.s.) 
value 102, 103 

Rosen's theorem 72, 73, 136 

Sarrus, rule of 396 
Scaling 315 

frequency 316, 317 
magnitude 315-17 

Second-order circuit 218 
Secondary winding 91 
Selective resonance 320 
Se1ectivity 306, 311 
Self-inductance 85 
Semiconductor 5 
Series circuit 19, 112 

voltage division in 20 
Series resonance 300 
Short-circuit 29 
Simultaneous equations, so~ution 

of 34-6, 128-30 
Single-energy circuit 218 
Source 

ideal 8 
practical 16 
transformation of 17 

Source conductance 17 
Source resistance 16 
SPIeE 280, 349-85 
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circuit description using 351 
element description using 351-7 
programming example using 

357-85 
s-plane 268-9 
Star connection 145, 147-55, 159, 

160 
Star point 146 
Star-delta transformation 73, 74, 136 
Star-mesh transformation, general 

72-3 
Steady-state value 2 
Stop band 319 
Superconductor 5 
Supermesh 38 
Supernode 46 
Superposition principle 61-3, 132, 

133 
Susceptance 111 
Symmetrical components 164-7 
Symmetry, in waveform 332 

Tank circuit 309 
Tee-pi transformation 73 
Tee-wye transformation 73 
Thevenin's theorem 63-5,67, 133, 

134 
Three-phase system 144-67 
Time constant 223 
Time domain 106 
t-parameters 186-9 
Transfer function 257, 258, 276-80 
Transformer 198 

core construction of 203 
equivalent network of 203 
ideal 198-200, 207 
impedance matching with 204 
input impedance of 212 
leakage flux of 203 
leakage reactance of 204 
linear 211-15 
phasor diagram of 201-12 
n-equivalent circuit of 214 
reflected impedance of 212 
shell construction of 203 
T-equivalent circuit of 214 
transient response of 258 
turns ratio of 200 
voltage regulation of 208, 209 

Transient analysis 218-62 
classical solution 

first-order 219-23 
second-order 224-6 

Laplace transform solution 
first-order 244-51 
second-order 251-7 

magnetically coupled circuit 258-62 
Transmission parameters 186-9 
Tree, in network 50 
Trigonometric form of complex 

number 387 
Triple-n harmonics 343 
Tuned coupled circuits 321 
Turns ratio 200 
Two-port network 67, 171-94 

interconnection between 191-4 
transformer as 207 

Two-wattmeter method of power 
measurement 163, 164 

Underdamped natural frequency 225 
Unit-impulse function (delta 

function) 229 
Unit-ramp function 230, 231 
Unit-step function 227-9 
Universal resonant circuit 317 

VA (volt-amperes) 117 
V Ar (volt-amperes reactive) 117 
Voltage 3 
Voltage division in aseries circuit 20 
Voltage gain 174 
Voltage source 8 

dependent 8 
ideal 8 
independent 8 
practical 63 

Waveform symmetry 332-5 
Wye-delta transformation 74, 75 

Y-connection 145 
y-parameters 176-80 

Zero, on s-plane 274 
Zero phase sequence component 164 
z-parameters 180-3 




