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Preface

Dear Reader,

We invite you to travel in space with us! This will be a very peculiar space: the den-
dritic space of neurons that is the cosmos for neuroscientists. It is mysterious and
practically unexplored like the outer space we glimpse at in the sky. Curiously, we
can further extend this analogy: the tools of astronomy can be turned from the sky
to the microscope stage to explore shining brain stars, the neurons radiating their
dendrites into the surrounding space. This was performed in the pioneering work
by Paul Gogan and co-workers using a modified astronomical camera to image the
microstructure of the dendritic membrane during the excitation of single live neu-
rons in culture (see references in Chapter 14). The explorers of the dendritic space
still have to invent the appropriate spacecrafts and technologies. As in cosmology,
experimentation is limited, and mathematical and computer models are the only
way of gaining insight into the nature of the dendritic space. The itinerary of our
travel relies on these tools.

We start with a brief historical background to the dendritic problem and describe
the origin of the structural data used for further morphometric and computer simu-
lation studies of the dendritic arborizations (Chapters 1 and 2). Chapter 3 describes
basic bioelectricity with emphasis on space. We show how charge carriers are sep-
arated in space and thus electric fields and currents are created across the neuronal
membrane. An important generalization is that, despite multiplicity and diversity of
channel types, the number of different types of current—voltage relations is restricted
to three. Chapter 4 recapitulates the cable theory of the dendritic transfer properties
with special focus on the terms of the cable equation which determine the electrical
communication across the membrane and along the dendritic membrane. This issue
is further developed in Chapters 5 and 6, specifying the voltage and current transfer
along the dendrites. We highlight that the transfer maps provide an informative
representation of the dendritic electrical structure. Chapters 7 and 8 explain how
the electrical structures of an artificial dendritic path and of a branch bifurcation
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are built and how they indicate electrical relations in different dimensions of the
dendritic space that are the proximal-to-distal and the path-to-path relations. Next
the critical role of metrical asymmetry of the dendritic branches becomes obvious.
Chapter 9 navigates in the dendritic space of biological neurons and introduces our
library of reconstructed cells providing specific examples of metrical asymmetry
of complex dendritic arborizations. Chapter 10 explores the electrical structures
of single biological dendrites as the basic elements for constructing the whole ar-
borization. Here electrical features related to elementary structural heterogeneities
present in random combinations in the biological dendrites are noticeable. The
electrical structures of the whole reconstructed dendritic arborizations of different
types of neurons are analyzed and classified in Chapters 11 and 12. Relations of the
electrical structures related to size, complexity and asymmetry of the arborizations
are explored. Finally, Chapter 13 considers the consequences of morphological
and electrical structures of the dendritic arborizations for the generation of output
discharge patterns. These spatial-temporal patterns indicate some new emerging
rules by which the dendrites govern the whole cell activity.

This book results from more than 15 years of cooperation between French and
Ukrainian laboratories: the Unit of Cellular Neurocybernetics of the CNRS in
Marseille and the Laboratory of Biophysics and Bioelectronics, Dnipropetrovsk
National University and Dnipropetrovsk Division of the International Center for
Molecular Physiology, National Academy of Sciences of the Ukraine. It originated
in the form of seminars, lectures, published papers and notes for students. We
have benefited from innumerable discussions with students and colleagues. To
acknowledge all of them personally is impossible but we wish to thank first our
collaborators who have co-authored our published articles and who were directly
involved in various aspects of our work at different periods between 1993 and 2007.
This book would have never happened without them.

In the French team, we are specially grateful to Dr. Cesira Batini and Dr.
Ginette Bossavit. We should like to pay tribute to Paul Gogan who initiated the
quantification of dendritic geometry. His vision was far in advance of the impact of
computer science in biology. He had foreseen what could be done by introducing
high computational technology in our neurobiological laboratory. His knowledge
of electrophysiology, his wide scientific background and his generous participation
in our work make him an essential person to thank. We would also like to thank
the technicians, secretaries, programmers and photographers of our laboratories for
their generous assistance and invaluable help.

In the Ukrainian team, Yuri Ivanov, Irina Kopysova and Vladimir Sarana valuably
participated at earlier stages of our joint work on the dendritic processing. We
especially acknowledge the contribution of Dr. Iryna Kulagina, who is the co-
author of most of the results presented in this book, some of which have already
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been published, as well as unpublished data in Chapter 13. Her thorough and
creative work provided novel dynamic electrical maps of the dendritic space which
look sunny and bear clear landmarks of the determinative role of geometry in
spatial-temporal electrical phenomena in the dendrites. We appreciate the creative
contribution by Valery Kukushka who developed the NeuronViewer, a tool for
interactively displaying spatial-temporal dendritic activity described in Chapter 13.
NeuronViewer is available at Cambridge University Press site (URL . . .). Scientific
cooperation between our teams was efficiently supported by the French Embassy
in Ukraine and we are deeply grateful for that.

We want to thank our friends and colleagues Dr. Elska Jankowska, Dr. John
Lagnado, Dr. Bob Liberman, Dr. Hans Liischer and Dr. Gerta Vrbova for reading
some parts of the manuscript and for their comments, criticisms and encouragement.

Finally and importantly, we regret that we can only provide an incomplete picture
of dendritic spatial processing, but we are happy to open this space for younger
generations of researchers.
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Definition of the neuron

1.1 The biologist

The shapes of the dendritic arborization of vertebrate neurons is a unique property
which differentiates the nervous tissue from all the other tissues of the organism.
The neuron doctrine, which we owe to Santiago Ramén y Cajal (Ramén y Cajal,
1904, 1911), was established 50 years after the cellular theory proposed by Schwann
in 1839. This long period of trial and error and of vigourous opposition by the ad-
herents of the reticularism is simply explained by the great difficulty of recognizing
a nerve cell on histological preparations (Figure 1.1).

It was only after the discovery of the Golgi method, which is a selective technique
for visualizing nerve cells and their prolongations that Ramén y Cajal established
the first fundamental concept of neuroscience:

All becomes clear in our minds. Why do dendritic arborizations exist, why are they so
varied, so abundant, so extensive? We understand now. Simply to enable the cell to receive,
and to transmit to its cylinder-axis, the greatest possible variety of signals, from as many
different sources as possible; put simply, to make of the cell a microcosm whose connections
to the interior and exterior worlds are as numerous and complex as possible.

He called the nervous tissue the most intricate structure known in the living
world. He observed a great number of neurons stained with the Golgi method in a
variety of species. The comparison of dendritic morphologies of neurons located
in homologous regions of the brains of different animals led him to formulate what
we call the ‘shape hypothesis’. It was in the darwinism context of the time and
tuned with the comparative phylogenetic approach. During evolution, the structural
complexity of the dendritic arborization is greatly increased and he also illustrated
the idea that the ontogenetic history of a neuron replicates its phylogenetic history
(Figure 1.2).

The evolutionary aspects of the shapes of cellular structures were also studied
in the Moscow Brain Institute, where the concept that the higher we ascend the



Figure 1.1 (Plate 1) The shape of all living cells of all tissues that make an organ
are regular, similar and simply geometrically patterned. A: epithelial cells; B:
tendon cells; C: muscular fibres; D: renal cells; E: the cellular bodies of the neurons
are dark (arrows) with thick dendritic stems which divide into fine branches, the
origin of which becomes soon unidentified.

Figure 1.2 Dendrites of pyramidal cells observed in the course of phylogenesis
(D and ontogenesis (II). I: A: frog, B: green lizard, C: rat, D: human. The den-
drites become increasingly important and complex. II: Growth of the the dendritic
arborization of a pyramidal cell observed at different stages of development of the
human embryo. (Adapted from Ramén y Cajal, 1911.)

phylogenetic ladder, the more complex become the dendritic and axonal structures
of the neurons was developed by Sarkisov (1960). A definitive nervous system
first appears unequivocally in the coelenterates (including hydroids, jellyfish, sea
anemones and comb jellies) some 1500 million years ago. The nerve cell types
evolve from unipolar to bipolar, multipolar and heteropolar types (Figure 1.3). The
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Isopolar, bipolar, and multipolar C Unipatar

INTERNUNCIAL AND MOTONEURONS

Figure 1.3 Types of neurons based on the number and differentiation of processes.
A: Sensory neurons. The most primitive (left) send axons into a superficial plexus.
In animals with central nervous systems the commonest type is a similar bipolar
cell in the epithelium with short, simple or slightly elaborated (arthropod) distal
process and an axon entering the central nervous system and generally bifurcating
into ascending and descending branches. A presumably more derived form is that
with a deep-lying cell body and long branching distal process with free nerve
endings. In vertebrates such cells secondarily become unipolar and grouped into
the dorsal root ganglia. B: Isopolar, bipolar and multipolar neurons in the nerve
net of medusa. These may be either or both interneurons and motoneurons: dif-
ferentiated dendrites cannot be recognized. C: Unipolar neurons representative of
the dominant type in all higher invertebrates. Both interneurons and motoneurons
have this form. The upper four are examples of interneurons and lower two of
motoneurons. Dendrites may be elaborated but are not readily distinguished from
branching axonal terminals. The number and exact disposition of these two forms
of endings and of major branches and collaterals are highly variable. D: Heteropo-
lar, multipolar neurons. These are the dominant types in the central nervous system
of vertebrates. The upper two represent interneurons and the lower a motoneuron.
(Adapted from Bullock and Horridge, 1965.)
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excellent seminal book by Bullock and Horridge (1965) provides a review of early
nervous systems.

The shape hypothesis is a concept within other principles operating in evolution.
The evolution of progressively more complex functions has been made possible by
the evolution of more complex structural patterns, hence more complex connec-
tivity and greater differences between individual neurons. From lower to higher
animals there is a scale of increasing complexity in connectivity patterns that is
made possible by greater structural specificity and resolution in the morphogenetic
mechanisms by which neurons become a highly complex system. How neurons
grow into the fantastic patterns of connections that bring about their properties,
which make in turn their richness of behaviours, remains unknown. We know
that the driving forces of evolution have created the conditions for an enormous
increase in the number of elements, in particular those in between receptors and
motor neurons, the number and profusion of their branching processes together
with the differentiation of shapes and connections. This structural complexity is
the background that provides for complex manipulations of signals representing
internal and external worlds.

An important contemporary concept of the neuron doctrine is that the neu-
ron is made of several regions of different functional capacity facultatively in-
teracting in complex ways, which will be discussed in later chapters. Some of
the functionally diverse regions correspond to the anatomically distinct parts of
the cell. The axon is a process specialized to distribute or conduct nerve im-
pulses generally over great distances. It is smooth and only sends off branches
at long intervals, if at all. It is commonly surrounded by a barrier of non-
nervous cells called neuroglia inside the central nervous system and Schwann cells
outside.

The dendrites are processes specialized for collecting information from other
neurons, glial cells, circulating hormones and extracellular signals. Vertebrate den-
drites are commonly highly branched, irregular in thickness, thorny and filled with
cytoplasm more like that of the soma than that of the axon. No other cells can
compete with neurons and their dendritic arborizations for sheer complexity of
form and the extraordinary range of sizes that they display (Van der Loos, 1967)
(Figure 1.4).

The membrane: all known organisms (excluding viruses) are composed of cells
with membranous boundaries composed of lipid molecules. The membrane that
surrounds every living cell is essentially such a lipid sheet formed into a bubble.
The lipids are the primary component of cell membranes. Particularly abundant
are the phospholipids, a class of lipids that consist of a sugar molecule (glycerol)
linked to two fatty acids and to a polar alcohol molecule via a phosphodiester
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Figure 1.4 Drawings by Ramén y Cajal to illustrate the great diversity of the
shapes of dendritic arborizations of the neurons. A: Purkinje cell (adult human);
B: spiny neurons from the striatum; C: cell from the olfactive bulb (cat); D: mo-
toneuron (cat foetus); E: ganglion cell fron the retina (adult chicken); F: pyramidal
cell (adult mouse). (Adapted from Ramén y Cajal, 1911.)

bond. These molecules are amphiphilic, containing both polar and non-polar do-
mains. Phospholipids form sheets by lining up with non-polar domains inward and
polar domains outward. Channels are macromolecular pores lodged in the lipid
bi-layer that make up the cell membrane and are positioned in a transmembrane
orientation such that one end is in contact with the environment and the other end
is located in the cellular interior. Integral membrane proteins consist of one or
several transmembrane (TM) regions connected by extra-membrane segments. TM
regions are 15-20 amino acids in length; just enough to span the lipid bilayer. They
mediate the transport of ions and small molecules across the cell membrane along
their chemical potential gradient. The other membrane components are carriers,
which bind to a solute and move it across the membrane and protein pumps, which
transport ion species against the chemical potential gradient expending energy in
the process. Most channels in contemporary cells are highly selective to only one
type of ion: Na, K, H, Ca, Mg or Cl. The selectivity is encoded in the amino acid
sequence. The ligand-gated superfamily of channels is activated in response to
specific interactions with small molecules.
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1.1.1 Evolutionary history

Astrobiology, a new interdisciplinary field in science, explores the origin,
evolution and distribution of life in the universe (see NASA’s exobiology
program: http://exobio.ucsd.edu/NSCORT.htm). Research is focused on tracing the
pathways taken by the biogenic elements, leading from the origin of the universe
through the major epochs in the evolution of living systems and their precursors.
These epochs are: (1) the cosmic evolution of biogenic compounds, (2) prebiotic
evolution, (3) the early evolution of life and (4) the evolution of advanced life.
The principal goal of research in the area of the cosmic evolution of biogenic
compounds is to determine the history of the biogenic elements (C, H, N, O, P, S)
from their birth in stars to their incorporation into planetary bodies. The discussion
deals with current evidence for the development of complexity, both chemical and
structural, through the 4.5 billion years of Earth’s history.

Itis interesting to look at the recent results obtained by astrobiologists in this field
and to learn about the emergence of membrane proteins, which are assumed to be
essential for evolution from simple vesicules in the membrane to the simplest form
of cellular life. Peptides are likely the first precursors of biopolymers (Pohorille
et al., 2005). The main thesis is that the emergence of simple ion channels is proto-
biologically plausible. In fact, molecules capable of forming vesicules constitute a
large fraction of organic material extracted from the Murchison meteorite (Deamer
and Pashley, 1989), and were also obtained in laboratory simulations of interstellar
or cometary material (Deamer et al., 2002). The current discussion is how peptides
have partitioned into membranes self-organized into functional structures and
evolved towards increasing efficiency and specificity for adaptation and diversity.
For example, the family of potassium channels exist in organisms from all three
domains of life, eukarya, bacteria, archae, which speaks for their antiquity.
Recently, structures of several K channels have been resolved from eukaryotes
(Jiang et al., 2003; Kuo et al., 2003), revealing that the ion conduction pore and
the mechanisms of selectivity are conserved within the family (Lu et al., 2001).
Analysis of the rapidly growing databases of sequences reveal that many eukaryotic
channels have homologues in both bacteria and archea (Lu et al., 2001). Many
channels have been identified that resemble those in higher animal phyla (Hille,
2001). Given the enormity of time separating us from the actual events thousands of
millions of years ago, only speculation is possible. Nevertheless, current opinion is
that channels evolved from a common ancestor and that their evolution is extremely
slow. The message that we shall keep in mind is that the main characteristic of
the evolutionary history of channels is their remarkable conservation throughout
phyla. The emergence of neuronal complexity relies not on channels, but on their
organization and their distribution in more and more complex dendritic structures.
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Figure 1.5 Intracellularly recorded resting and action potentials from several
nerve cells: cat myelinated nerve fibre at 37 °C; cat motoneuron at 37 °C excited
antidromically by stimulation of motor axon; squid giant axon at 16 °C; electric
eel electroplaque at 27 °C; frog sartorius muscle at 22 °C; sheep Purkinje fiber at
32 °C. (Adapted from Bullock and Horridge, 1965.)

1.1.2 Neuronal excitability

Up to now, the properties common to all neurons can only be stated on the basis
of a small sample studied electrophysiologically. All neurons so far examined are
capable of an all-or-nothing brief electrical membrane change called the action
potential propagating without decrement along the axons (Figure 1.5). As yet little
can be said definitively about the evolutionary history of the signals used in nervous
tissues except that the most characteristic of these signals, the action potential, is
already present in the simplest nervous systems yet studied, those in jellyfish. Its
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common feature is universal without differences throughout phyla, although there
are some slight variations in detail and mechanism.

To generate an action potential, the neuronal membrane uses some ionic chan-
nels. This operation is normally done by an intact neuron integrated in a live system,
but it can also be performed by neurons extracted from their natural environment
to be recorded in vitro and even by a small patch extracted from the neuronal
membrane and sucked on the recording pipette (Safronov et al., 1997; Wolff et al.,
1998; Safronov et al., 1999). This observation indicates that the action potential is
not only universal, but also the most primitive nervous signal.

1.2 The physicist

The neuron is a highly complex system. The concept of system is defined by a set of
interacting elements, the structure of which gives its principle of organization. The
term ‘principle’ indicates that the system is not fully described, but that data allow
one to consider that the system is organized. The scale of observation determines
the level of organization that is considered. A scale measured in tens of microns
or even in millimetres deals with the macrostructure of the neuron, which is itself
made of a microstructural organization explored by electron microscopy focusing
on the smallest parts of the structure at a scale of tenths of micrometres or even less.
The different spatial scales of the neuronal system span a range of three orders of
magnitude. The crucial notion is that all these parts, from the smallest molecular to
the largest cellular elements, are linked together to constitute an individual united
whole. Any mechanical damage to a single part kills the whole as an operating
unit.

Considered as an electrically distributed system, the neuron is defined by its
active plasma membrane in which macromolecules, acting as intrinsic generators,
are lodged. The macromolecular assemblies play the key role in the communication
between intra- and extra-cellular spaces. Intrinsic generators are carriers of electric
current which move the ion across the plasma membrane. Channels in the open
state let ions passively cross the membrane along the concentration gradient. Ion
pumps transfer the ions actively against their concentration. In such an electrically
distributed system, the whole neuron is a functional structure made of linked
elements. Any change occurring in a single element by the action of a current or a
voltage produced by intrinsic generators is followed by an immediate characteristic
change in the state of all the other elements. As in the structural notion of the
united whole, we deal here with the same crucial notion of a functional unit made
of electrically inseparable elements. Consequently every site of the neuronal space
operates as a generator and a load at the same time. When the membrane generators
produce unequal transmembrane potentials in different elements of the neuron, the
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voltage difference between the elements generates a current that flows between
them. It is called the lateral current that is conducted through the extra- and intra-
cellular space. The lateral current added to the currents flowing through the plasma
membrane pictures the electrical space of the whole neuron. The main property
of the neuron is to produce electrical signals which are funnelled into axonal
and dendritic tubes. The shapes of these tubes determine the way the signals
are distributed spatially within the neuron. Most important of all, the neuronal
space provides the neuron with its specific electrical morphology and shapes the
intracellular conductor through which all elements are connected.

1.3 The physicist and the biologist

Taking for granted that the action potentials and their instantaneous frequency at the
output of the neuron is the neuronal code, this system of signals must be considered
as the final product of a chain of stochastic events occurring continuously at the
soma—dendritic membrane of the neuron. These transient discharges and their
transmission through highly specialized synapses made electrophysiologists hover
on the brink of major discoveries that Eccles (1957) made in the late 1950s.
Intracellular recordings from mammalian spinal motoneurons and their synaptic
potentials were a major breakthrough in neuroscience that came with new ideas
opening the way for decades of intensive investigations. The drawback of such
an important discovery is that it quickly establishes dogma acting as a barrier to
progress. In his time Ramén y Cajal commented on this type of attitude:

That an idea may be mistaken or that a fact may be wrong matters little! The fact is
simple, the idea is inspired, an illustrious scientist has put them forward; fashion, that
indefinable something made up of idleness in judgement and deed, of respect for authority
and total abdication of responsibility for oneself, takes over, influences other scientists by
suggestion, and then, throughout their work, you see nothing but reflections of the trend
they are following, nothing but proofs of the fact, confirmation of the idea.

Electrophysiologists have been fascinated by the recordings obtained with their
tool — the intracellular or the patch electrode — and one of the dogmas in elec-
trophysiology is to believe that the study of the transfer function between single
or a few synaptic inputs and the output discharges is capable of explaining how a
neuron operates. They forget that the output discharges constitute the space integral
of all dendritic events occurring in the whole arborization and that they provide no
information about how active dendritic sites contribute to the generation of these
output discharges. Then the difficult question of finding out the mechanisms by
which the complex processing performed by the interconnected active dendritic
sites remains open.
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If one assumes that the firing neuron is a functional unit that plays in time and
space, one must admit that electrophysiology describes the phenomenon in time but
notin space. Our hypothesis proposes to fill the gap between the temporal and spatial
aspects of the same phenomenon by introducing the concept of dendritic space.
We believe that the transfer function of the neuronal system, that is the functional
link connecting a diversity of synaptic inputs with the adapted output discharges,
will be further understood in terms of membrane mechanisms distributed in the
dendritic space. As we know that the commonality in structural and functional
design of membrane channels is antique and exist in all domains of life, it is
only their organization in space, their distribution in the complex architecture
of the dendritic arborization that can support neuron processing. We predict that
the generation of all types of specific output discharges triggered by an immense
variation of synaptic inputs can only be produced by an arborization in which a
differential plastic contribution of all its dendritic parts is continuously selected by
its electrical states.
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3D geometry of dendritic arborizations

2.1 Brief historical background

The lack of methods of fixation and the lack of staining techniques seriously
handicapped the earlier workers in their observations of nervous tissues during the
nineteenth century. The story changed enormously during the last decades of the
twentieth century when Golgi found that osmic dichromate fixation followed by
silver impregnation gave pictures that could not be achieved by any other method.
The enthusiastic description by Ramén y Cajal of the beauty of the successful Golgi
preparations depicts for the first time the richness of these histological images:

Against a perfectly translucent yellow ground, you can make out, dotted with dark strands,
smooth and thin or rough and thick, black bodies — triangular, star-shaped, shaped like
spindles — looking like designs in Indian ink on transparent paper. There is nothing to
interpret, nothing to do but watch and take note of this cell with its many moving branches
covered in crystals, whose movements encompass a remarkably large area; this smooth
even fibre which, originating in the cell, sets off from it to cover enormous distances. . .

The gifted hand of Ramoén y Cajal produced the first seminal book on ner-
vous systems proposing prophetic views on the functions of dendritic arborizations
(Ramén y Cajal, 1911). But the lengthy and elaborate descriptions of Golgi prepa-
rations discouraged the students who were frustrated with this type of investigation
and, influenced by the new results of local electrical stimulation, tended to devote
themselves to the new promising approach of electrophysiology. The Spanish
school declined, the last elaborate studies being made by Ramoén y Cajal’s pupil,
Lorente de N6 (Lorente de N6, 1922, 1934). The importance of understanding the
nature of dendritic electrogenesis was stated by Lorente de N6 and Condouris who
argued that all-or-nothing law could not be completely valid for the bodies and
dendrites of neurons but instead suggested some kind of graded response action
capable of spreading without leaving a refractory period and capable of summating
(Lorente de N6 and Condouris, 1959).

13
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Figure 2.1 Left: An example of a reconstruction of a neuron of nucleus magnocel-
lularis drawn from successive micrographs. The length and thickness of dendritic
branches are indicated in the circle. Concentric circles are separated by 50 pm
intervals traced from the soma. Arrows show sectioned and reconnected tips.
Right: Method of graphical representation of the lengths of dendritic branches for
a single neuron. 04, 05, 06 denote the first branches that arise from the soma. The
length of the branches are drawn to scale and the branch points shown by vertical
lines. Vertical lines are drawn across the diagram at distance equivalent to 20 pm.
(Modified from Sholl, 1953, 1956.)

During the twentieth century histologists were looking at dead tissues and their
observations remain qualitative. It is only in the two last decades of the twentieth
century that we find the beginning of serious and continued quantitative studies
of the geometry of single neurons. The Golgi technique stains the neuron in its
entirety with the dendrites and axon and their branches complete. Only a proportion
of the neurons present are stained but it enables very thick sections (up to 200 um)
to be cut; consequently the whole ramifications of the neuronal branching can be
seen. Bok was a pioneer in the quantitative study of dendrites (Bok, 1936a, b). He
attempted to relate the extent of the dendritic field to the depths of the neuron in
the cortex. Later, Sholl proposed imagining that the soma is surrounded by a set
of concentric spheres (Sholl, 1953, 1956). The number of branches intersecting
each of the lines is counted easily and is equal to the number of dendrites cutting
each of the imagery concentric spheres (Figure 2.1). He represented his results by
a diagram (called later a dendrogram) showing the first branch of each dendrite.
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Figure 2.2 Photomontage of a motoneuron with a microelectrode implanted in
the soma. Following an intracellular injection of HRP, all the dendritic processes
are stained. (Photography Paul Gogan. CNRS-UPR 9041, Marseille.)

The length of the branches are drawn to scale and the branch points shown by short
vertical lines. This was the first graphical representation of a dendrogram.

2.2 Single neuron labelling

The advent of new tools and new techniques enables neuronal geometry to be
analyzed quantitatively. The invention of the microelectrode (Ling and Gerard,
1949), the discovery of dyes (Procion) for intracellular staining of individual live
cells (Kravitz et al., 1968) and the introduction of computers into research lab-
oratories constituted a breakthrough in the quantitative analysis of the geometry
of dendritic arborizations. An excellent survey of the state of the art at that time
can be found in the book Intracellular Staining in Neurobiology by Kater and
Nicholson (1973). A second major breakthrough came with the discovery of a
new dye, horseradish peroxidase (HRP) providing the full potential of intracel-
lular stain injections (Jankowska and Lindstrém, 1970; Czarkowska et al., 1976;
Jankowska et al., 1976; Snow et al., 1976). HRP soon became the preferred label
because, unlike other fluorescent dyes, it resulted in a dense product without react-
ing to photobleaching. The HRP technique permits the entire dendritic and axonal
domains of neurons to be viewed in great detail (Figure 2.2) and also observed at
ultramicroscopic level.

The first reconstructions were aesthetically pleasing but their utility was severely
limited by the lack of quantification. Data acquisition was first performed with
a camera lucida (Schierwagen and Grantyn, 1986) and hand drawings or a tilt
microscope stage (Mannen, 1966) or with eyepiece tracing and analogue plotter
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drawings. Satisfactory answers were not obtained until precise methods for accu-
rately describing neuronal structures were developed. The practical difficulties
involved in obtaining quantitative information have been thoroughly reviewed by
Glaser and Van der Loos (1965) who were pioneers in implementing an online digi-
tal computer system for the semiautomatic analysis of neurons (Wann et al., 1973).
This basic principle has remained unchanged for the last decades although impor-
tant progresses have been made in the technologies of the microscope-scanning
stages, the metrology, the computers, the computer memory required for data
acquisition and storage, and the implementation of dedicated softwares. A detailed
overview of these technical approaches is described in a book by Capowski with
exhaustive references (Capowski, 1989).

For any mathematical or graphical representation of the neuron, the two steps
involved in the construction of a proposed neuronal model for investigating den-
dritic geometry are: (1) measurements of the labelled neuronal pieces and the
acquisition of their 3D coordinates and (2) reconstruction, which must be performed
after digitalization of the neuronal elements; it consists of a reassembly process
reconnecting pieces scattered in the histological sections. Neither procedure is
trivial.

2.2.1 Acgquisition of 3D coordinates

The measurements of label pieces in serial histological sections relies on the quality
of the optic of the microscope and on the precision of the mechanical system.
As an example, the system acquisition built in our laboratory by Paul Gogan is
described in Bras et al. (1987). A Leitz Orthoplan microscope equipped with a high-
precision focusing mechanism (mechanical play < 0.5 um), a x100 Plan objective
(oil immersion, NA = 1.25), an oil immersion condenser matching the numerical
aperture (NA = 1.25) of the objective and x10 oculars. For each point of interest,
3D coordinates are given by the position of the microscope stage (Maerzhauser EK
32), which is moved by three stepping motors allowing mechanical microsteps of
0.1 pm in X, Y and Z directions. Additional x16 demultiplication is provided in the
Z direction by the coupling between the Z stepping motor and the fine focussing
mechanism of the microscope. The thickness of each section is checked before
and after processing using methods described by Elias (Elias and Hyde, 1983).
Other systems are described in Capowski (1989) and some are currently available
commercially.

The measurements obtained by this first procedure constitute a database which
is a numerical representation of the labelled neuron following a discretization
process. The database can be used for vector graphic display, statistical analysis of
the geometry or neuronal modelling.
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2.2.2 Technical procedure for reconstruction

Once the labelled neuron has been digitalized, the neuron, which is a continuous
geometrical object, is disintegrated into numerous pieces which are distributed
in more or less distorted histological sections. The reconstruction process recon-
necting pieces scattered in the sections requires a procedure of reassembling the
disintegrated stained neuronal elements (Glaser and Van der Loos, 1965; Wann
et al., 1973; Zsuppén, 1984; Capowski, 1989) and is performed with dedicated
software. It must provide tools for detecting suspicious data points, data duplicates
and for merging the serial sections using manual or automatic optimization of
section alignment (Bras et al., 1987, 1993; Korogod et al., 1994; Korogod, 1996;
Horcholle-Bossavit et al., 1997, 2000).

2.3 Dendritic quantification

Quantitative characterization of the branching pattern of an arborization is required
for morphological description of neurons as well as for modelling their morphogen-
esis and electrogenesis. Quantification provides two types of parameters and char-
acteristics: topological and metrical. Topological description deals with counting
discrete elements of the branching structure, such as branches or segments, branch
points and terminal tips. Metrical description deals with the parameters which are
continuous and can be measured with a ruler, or a planimeter, for instance the
thickness of a neurite, the branch length measured along its path in the 3D space,
the distance in 3D (called airway distance or radial distance) between charac-
teristic points, the planar angle between sister branches at their common origin
(called bifurcation angle or divergence angle), and the spatial angle that envelopes
a domain of 3D space containing a certain part of a cell.

2.3.1 Topological parameters

Quantitative description of branching structures is well developed in graph theory,
a mathematical theory dealing with abstract objects composed of two sets of ele-
ments: a set of points called vertexes and a set of lines which connect the vertexes
and are called ribs. A special type of graph in which the ribs (branches) do not
form loops is called a tree. The graph tree is called oriented if a direction is defined
on its branches. This abstract (mathematical) object is put in correspondence to a
neuronal tree: the vertexes correspond to the tree origin, branch points and terminal
tips and the ribs correspond to the dendritic or axonal segments connecting these
points. Natural orientation of a neuronal tree is from the cell soma to the terminal
tips. The trees are fopologically equivalent or homeomorphous if they have equal
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numbers of identically connected vertexes and branches. Counting the discrete
vertexes and branches allows the allocation of a number (integer). In an oriented
graph, O stands for the tree origin (root), the branch emerging from this point gets
number 1 and the same number 1 is attributed to the end-point of the branch. If
other branches emerge from this point, they get sequential numbers, e.g. 2 and
3, and the same numbers are attributed to their end-points. Mathematically, any
graph composed of N branches can be represented by a so-called incidence matrix
(or connectivity matrix) of size (N 4+ 1) x (N 4 1), which is a table formed of
columns, which correspond to vertexes and are indexed i = 0..N, and lines, which
correspond to branches indexed j = 1..N. For an oriented graph, an element (i, j)
of its incidence matrix is equal to 1 if the branch j is connected (incident) to the
vertex i and directed to this vertex; —1 if the branch j is connected to the vertex i
and directed from this vertex and O if the branch j is not connected to vertex i. The
incidence matrix determines exhaustively the graph tree and allows the arbitrary
numbering of the branches and vertexes, though it is more convenient to attribute
sequential integer numbers to the branches on the paths directed from the soma to
the tips.

In terms of graph theory, the topological elements of a neuronal tree are named.
The three types of vertexes are the root, the branch point and the terminal tips.
The two types of elements connecting the vertexes are intermediate segments and
terminal segments.

The root is the point of origin of the tree, located conventionally at the soma.
The branch point is the vertex into which one segment enters and two or more
segments exit. It is said that, at the branch point, the parent segment gives rise
to two or more daughter segments. Such a branch point is called a bifurcation or
multifurcation point. If all branch points of a tree are bifurcations then the tree is
binary. A part of the tree composed of a certain subset of connected branches and
vertexes is called the subtree.

Several specific terms were introduced to label segments according to the
number of terminal tips ahead, or to their topological remoteness from the root
(Van Pelt and Verwer, 1986; Van Pelt et al., 1992; Van Pelt and Schierwagen,
1994; Van Pelt et al., 1997; Van Pelt and Uylings, 1999; Uylings and van Pelt,
2002; Van Ooyen et al., 2002; Van Pelt, 2002; Van Pelt and Schierwagen, 2004).
The degree of a segment is the number of tips in its peripheral subtree with the
pertinent segment as rooted segment. The centrifugal order of a segment is counted
by the number of branch points passed on the path leading from the root to this
segment. For instance, the segment originating directly from the root has the cen-
trifugal order 0. The daughters emerging from the end of this segment have the
centrifugal order 1 (one branch point has to be passed in order to reach these
segments).
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Topological asymmetry

The comparison of the topology of different trees reveals symmetry or asymmetry,
depending on whether the subtrees born at each branch point are topologically
equivalent or not. In case of most common binary trees, the fopological asymme-
fry is quantitatively characterized by the partition asymmetry index A, and tree
asymmetry index A;. The partition asymmetry index describes the topological dif-
ference between two subtrees emerging from a common origin and hence is local
or ‘within-tree’ variable (Van Pelt, 2002). It indicates deviation from an equal divi-
sion (partition) of a tree into subtrees. The topological size of binary trees can be
expressed by the number of its terminal tips (segments) n, by the total number of
its segments (2n — 1) or by the number of its bifurcation points (n — 1). Any of
these tree elements can be used to characterize the difference between subtrees (the
dispersion measure according to Van Pelt et al. (1992)). If the two subtrees have
degrees r and s, respectively, then the sum of these values m = r + s is the degree
of the partition of the tree into subtrees at the given common origin. Hence, at each
branch point, a pair of discrete values is determined, (r, s) or equivalent (r, m — r)
assuming that r <=s and m = r +s > 2. The partition asymmetry index A, is
defined as
[r — s

Ap_—r+s—2 (2.1)
with r and s indicating the number of terminal tips and indicates the relative
difference in the number of branch points (r — 1) and (s — 1) between the subtrees.
By definition A,(1, 1) = 0. For the symmetric partition with equal subtrees r =
s = m/2, the partition asymmetry index is the lowest, Ay(m/2, m/2) = 0 and for
the most asymmetrical partition (1, m — 1) is the greatest: Ap(1,m — 1) = 1. The
tree asymmetry index A; is a global (‘whole-tree’ according to Uylings and van
Pelt (2002)) topological variable, which characterizes the binary tree as the mean
value of all its A;)s, ranged from j = 1to j = n, (n, is the number of terminal tips
or segments) or to j = n — 1 (n is the number of branch points):

1 1
At:n— E Ap(i‘j,Sj):m E Ap(l"j,Sj) (22)
p

This indicator does not allow one to distinguish all the tree types of the same degree.
For instance, for Uylings and van Pelt (2002), there are 127912 topologically
different tree types of the same degree n = 19 whereas there are 36 904 different
values of the tree asymmetry index A, which is considerably smaller. However,
other measures have even less discriminative power (see Van Pelt et al., 1992;
Verwer et al., 1992; Van Pelt and Uylings, 1999). This description can be extended
by adding other topological parameters, e.g. vertex ratio and terminal/link ratio by
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Sadler and Berry (1983, 1988) or a similar measure called / minus terminal/link
ratio by Smit et al. (1972).

2.3.2 Metrical parameters

2D representation of trees

The complex 3D structure of the dendritic arborization is greatly facilitated when
3D curvilinear segments are represented by its dendrogram (see above Scholl’s rep-
resentation). Hence, the path representation of the 3D tree is formed by a system
of parallel lines of varying thickness. Metrical parameters which characterize the
extent and thickness of the dendritic segments in both 3D and 2D-path representa-
tions are the segment length, the diameter and the membrane area. The lengths of
individual segments allow the construction of the ‘whole-cell’ metrical variables
used in morphometrical studies and in simulations of electrical and electrodiffusive
properties of neurons. Such variables are the total dendritic length, which is the
sum of lengths of all segments constituting the dendritic arborization and the path
length, which is the sum of lengths of the consecutive segments forming the path
between a given origin and a terminal point, e.g. between the root and a certain
terminal tip.

Trees in 3D space

Dendritic trees occupy a 3D space within the brain in a specific manner. Some
quantitative descriptors characterize the extent of the tree structure, whereas others
specify the orientation of the elements. An example of a relevant metrical parameter
is the bifurcation angle. Another example is the airway distance or radial distance,
which equals the length of a straight line directly connecting the origin and terminal
point of the generally curvilinear segment or path. Naturally, the radial distance is
less than or equal to the path distance between the same points of the tree.

The problem of metrical asymmetry

When trees are equivalent in their topology but clearly distinct in metrical sizes (e.g.
in length or thickness), undoubtedly the topological quantitative characterization of
trees is not complete. For example, unequally long segments may form unequally
or equally long multisegment paths. Moreover, the metrical description is further
complicated by differences in diameters which exist even between equally long
segments. Although metrical differences between subtrees happen as often as dif-
ferences in topology, quantitative indicators of metrical symmetry/asymmetry are
far less elaborate than those used in topology studies. The need for some comple-
mentary description of metrical properties has not yet been met. Several measures



2.3 Dendritic quantification 21

can be proposed to indicate metrical asymmetry due to difference in length of sister
branches.

Consider two dendrites of equal homogeneous diameter and unequal lengths, /
and /" > [, emerging from a common origin, e.g. soma or a branch point. Obviously,
this branching is symmetrical topologically but asymmetrical metrically. One nat-
ural quantitative measure of such asymmetry (dissimilarity) is the difference in
length measured in physical units which we call the metrical asymmetry proper:

I'—1=Al>0 2.3)

Another way to describe the asymmetry of the branches is the ratio of shorter
to longer branch lengths (measured in relative units) and this we call the metrical
asymmetry ratio:

0<k=1/I'<1 (2.4)
or the inverse value, which we call the metrical asymmetry factor:
k=1/1>1 (2.5)

One more measure is the relative elongation, defined as a proportion of the
shorter branch length / that makes the absolute difference Al =1’ — [ in length
compared to the longer branch:

e=Al/l (2.6)

As follows from the definitions (2.3-2.6), the relative elongation ¢ is simply
related to the metrical asymmetry ratio k and factor «:

e=xk—1=0-k)/k 2.7)

Hence, for a given shorter branch length /, the length of the longer sister branch
I’ can be determined using the inter-related indicators of metrical asymmetry:

I'=I1+Al=1l-k=1-(1+e)=1/k (2.8)

2.3.3 Complexity function

The complexity of dendrites is due to the presence of multiple branching points
and hence multiple branches and paths. To characterize this property, one has to
deal with discrete topological elements (branches, branch points, end-points) and
metrical parameters (e.g. path distance from soma) indicating the spatial location of
these elements, which can be described by a discrete function of continuous metrical
argument. This is the complexity function. It is defined as the number of dendritic
paths at various path distances from the soma for any dendritic domain. At zero path
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distance, the complexity function equals the number of primary dendrites emerging
from the soma P(0) = N (P(0) = 1 for anindividual dendrite). As the path distance
increases, the number of paths increases by one, when a bifurcation occurs, or
decreases by one when a path ends. Hence the complexity function increases in the
spatial domain where branchings prevail over terminations and decreases where
terminals prevail. A reconstructed dendritic arborization is usually sampled at a
discrete number of sites and hence the path distance can be measured discretely.
In this case, the complexity function can by estimated from the histogram of path
distance distribution of the number of dendritic paths. This estimate is accurate, as
the finite number of branch points and ends which are definitive for the complexity
function allows their complete sampling, unlike the practically infinite number of
intermediate points along the branches. Demonstration of the use of the complexity
function is shown in Chapter 11.

2.4 Data quality and morphological noise

Whatever the acquisition system and the data processing, it is not possible to
exactly retrieve the real original neuronal structure because of histological, opti-
cal and operator-linked distortions. Since the development of a combined object-
relational database (Shepherd et al., 1998) which focused on different types of
membrane properties to be included in canonical forms of neurons, new databases
have appeared in the domain of brain-structure relationships (Kétter, 2001). As
recently stressed by Shepherd: ‘Archiving neuronal properties and making them
web-accessible to integrating and search tools is a fundamental problem which is
how to control for the quality of the data; many feel that this is the main problem to
be solved before any widely accessible databases should be built’ (Shepherd et al.,
1998). So far, there are no attempts to provide an estimation of the morphological
noise which alters the geometry of reconstructed neurons. Published material and
available databases do not provide sufficient information to evaluate this noise
since only the final result of the neuron reconstruction is given and complete raw
data are generally not accessible.

Our contribution to this important problem was published in 2000 and 2002
proposing a detailed method for checking data quality (Horcholle-Bossavit et al.,
2000; Kaspirzhny et al., 2002). We suggest several simple methods to detect and
evaluate morphological noise and its possible functional consequences in neu-
ronal simulation (Horcholle-Bossavit et al., 2000; Kaspirzhny et al., 2002). We
demonstrate that the two procedures (acquisition and assembly) involved in the
reconstruction process introduce a morphological noise in any representation of
the digitized neuron. Any neuron reconstructed on the basis of metrical and topo-
logical parameters is blurred by some morphological noise.
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Figure 2.3 An example of analysis of sampling intervals and diameter measure-
ments in two versions A and B of a frog motoneuron. For the 3D sampling interval
(left), the distributions are built using a bin width of 0.1 pm and clipped to values
less than or equal to 10 um. For diameters (right), the distributions are built using
a bin width of 0.05 um and clipped to values less than or equal to 5 pm. (From
Kaspirzhny et al., 2002.)

Two series of stochastic parameters must be considered as the morphological
noise. The first series concerns the digitizing process and depends on the combina-
tion of instrumental noise and operator skill. It is described by the accuracy in the
measurements of diameters, X, Y, Z distances and topological coding. The quality
of the morphological description depends on the sampling interval used to describe
the changes in direction, the length and the diameter of the neuronal pieces. The
smaller and constant the sampling intervals, the better the description of the length
of the neuritic paths (Figure 2.3).

The second series of parameters is related to the reconstruction procedure for
merging the serial sections to reconstitute the arborization. It contains the distor-
tions due to histological treatments of the serial sections and possible topological
errors. This evaluation can only be performed if the data describing the original
digitized pieces (i.e. before merging and without corrections for shrinkage and/or
wrinkling) are available. Number of dendritic roots, size and complexity of the
dendritic arborization are sources of difficulties for matching the original pairs of
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Figure 2.4 One example of analysis of thicknesses distortion in two histological
sections of a frog lumbar motoneuron. The actual thicknesses observed after
digitizing successive histological sections (examples of section 5 and 8) cut from
the frog motoneuron are compared. Section thickness is expressed as a percentage
of the original thickness at the microtome (80 pm) and plotted (B-spline area
fitting) as a function of XY coordinates in the sectioning plane. (From Kaspirzhny
et al.,2002.)

contiguous points, now found in pairs of adjacent sections. Ideally, all pairs of
points should have identical 3D coordinates. However, they are actually separated
by random distances as, for light microscopical observations, the tissue block is
cut into thin slices with more or less irregular surfaces. Furthermore, whatever the
fixation procedure and histological treatment, they are unhomogeneously distorted
(Figure 2.4).

It is very difficult to correct the distortions resulting from tissue shrinking
and/or wrinkling. Although some computer algorithms such as the ‘volleyball
net algorithm’ have been proposed to deal with such distortions (for review, see
Capowski, 1989), the use of such algorithms may introduce even more distortions
in the data since the physical model underlying the distortions depends on many
parameters and is generally unknown. For example, it was shown that neurons
stained with HRP did not shrink with the slices and that instead the dendritic and
axonal arbors bent and curled due to the compression and kept their diameters and
path lengths (Grace and Llinds, 1985). In such cases, only the 3D spatial extent of
the neuron would be affected but high spatial resolution sampling of the data would
produce correct estimates of parameters such as path length along the neurites or
neuron surface area.

When a large number of subtrees comprise numerous branches densely packed,
there are alternative possibilities to connect neighbouring pairs of points. The cut
ends of neuritic segments located at the tops and bottoms of adjacent sections to
be merged do not coincide any more but are separated by gaps of various sizes
(Figure 2.5).
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Figure 2.5 Gaps between adjacent serial sections. A: Zoom on pieces of neurites
in two adjacent sections (dark and light grey) with cut ends a, b, ¢ and d at the
junction of two sections (circle) not coinciding due to instrumental and histological
distortion. B: Possible connections between the cut ends are a—c, b—d, or a—d,
b—c (circle). These connections are equally plausible and generate artificial links
(worms). The larger the number of the worms, the larger the morphological noise.
(From Kaspirzhny et al., 2002.)

When connecting the pieces, several origin points can be considered as alterna-
tive merging partners. It may not be obvious to make a clear decision to choose
one of the merging possibilities. Consequently, alternative topological variants
may constitute equally plausible choices for the reconstructed neuron, creating the
topological noise (Figure 2.6).

This topological noise linked to different possible choices is a component of
our estimation of the morphological noise which evaluates all the 3D distortions
included in the original data. However, the tools for evaluating the topological
noise alone and for selecting the ‘best’ variant are difficult to design, since the
original shape of the neuron in the brain remains unknown. These fluctuations
in tree complexity reveal the existence of a topological noise which affects the
topological description of the neuron: it is generated by the reconstruction process
and combines with the metrical noise to produce the morphological noise.

2.5 Models of neurons

No-one has ever seen the original shape of a live neuron operating in a living
brain and consequently there is no model a priori of the neuronal form. In physics,
simplifying models have been useful in explaining large classes of phenomenon. If
modelling is a strategy developed because complexities are an obstacle to under-
standing the principles governing the function, the neuron is a perfect example of



26 3D geometry of dendritic arborizations

Figure 2.6 Topological errors introduced by metrical noise. Comparison of two
dendrograms (A, B) obtained from the same dendrite of the same neuron digitized
by the same operator but using two different acquisition systems. Topological
differences between dendrites are grey in the dendograms.

extreme structural complexity to be tackled by modelling. The ideal and the reality
seldom coincide and the resulting bias is usually unknown because the underlying
assumptions go untested. The impact of bias on the accuracy of estimation and
the validity of biological conclusions is also unknown. Keeping this warning in
mind, modelling is the only available approach in the absence of experimental data
allowing a detailed description of the neuronal system.

During the second part of the twentieth century, many books have discussed
the advantages and the handicaps of the models. There is a wide variety of opin-
ion over this issue leading to inappropriate attacks on, and defences of, neuronal
modelling. Source books provide extensive bibliographies on the matter. An exten-
sive bibliography together with original articles has been collected in the two
volumes of Neurocomputing (Anderson and Rosenfeld, 1988). In 1855, Thomson
(later to become Lord Kelvin) published his exposition of cable theory wherein
longitudinal conduction in thin cylindrical elements was described in terms of
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one spatial dimension and time. Around 1900, several investigators admitted the
applicability of Thomson’s theory to core conduction in neurons. All important
contributions to the understanding of electrical signal processing in dendrites have
been based on this approach. Seminal books and reviews on these contributions are
provided by outstanding contributors (Davis and Lorente de N6, 1947; Rall, 1960,
1962a, b; Taylor, 1963; Harmon and Lewis, 1966; Rall, 1967; Rall and Shepherd,
1968; Rall, 1970; Jack et al., 1975; Rall, 1977; Tuckwell, 1985; Macgregor, 1987;
Durbin et al., 1989; Rall, 1989; Holmes and Rall, 1992; McKenna et al., 1992;
Koch and Segev, 1999).

In the late 1950s, Wilfrid Rall, a physicist educated at Yale, proposed the appli-
cation of the cable theory to dendritic arborizations (Rall, 1957). It was Rall who
demonstrated that the time constant estimates found by Frank and Fuortes (1956)
and by Eccles and collaborators (Coombs et al., 1956) had resulted from misinter-
pretation of the voltage transient treated as a simple exponential. This assumption
would have been valid only if the motoneurons were a soma without dendrites.
Rall published a note in 1957 to establish this point and a detailed demonstration
of his biophysical-mathematical theory in 1959 (Rall, 1959). The references to
the introduction of Rall’s theory in neuroscience are given in his autobiography
(Rall, 2006). At that time, Rall played a crucial role in the understanding of the
dendritic function by forcing researchers to re-examine their assumptions about the
inexcitability of dendrites advocated by Eccles. In an interesting meeting of neuro-
biologists held in Amsterdam in 1959 (Eccles, 1960), Eccles presented his view on
the properties of dendrites: ‘The prolonged depolarizations that have been regarded
as the characteristic dendritic response are merely the EPSPs that are produced just
as well by the soma’. This conclusion deserved the attention of all neurophysi-
ologists. Scientifically, it operated as a barrier to progress with few exceptions,
particularly with regard to the opposing views of Chang expressed brilliantly in a
Cold Harbor Symposium in 1952 (Chang, 1952, 2001) and some others (Bishop
and Clare, 1952; Grundfest and Purpura, 1956; Bishop, 1958; Grundfest, 1958).

Ever since, all articles and contributions published by the numerous investi-
gators studying neuronal dendrites contain a statement about the pivotal role of
dendritic geometry for the transformation of spatiotemporal patterns of postsynap-
tic potentials into a time-structured series of action potentials. The amazing fact
is that there is no comparison between the enormous amount of work dedicated
to guessing electrical parameters by matching the theoretical predictions with the
experimental data and the readiness to use simplified dendritic geometry (Redman,
1973; Fleshman et al., 1988; Clements and Redman, 1989; Stratford et al., 1989;
Ascoli, 2002). Curiously, while stained neuronal structure can be directly measured
in great detail with some confidence, the current choice of electrical parameters
for constructing neuronal models is preferred, although they can only be inferred
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indirectly from measurements obtained by the microelectrode at a single site of the
neuron. According to this approach, a plethora of unknown biophysical parame-
ters offers a tremendous number of degrees of freedom available for constructing a
model of the neuron. It seems that the emblematic tool of the electrophysiologists —
the microelectrode and its recordings — cannot be dumped in favour of an approach
consisting in direct precise measurements of the stained elements on histological
serial sections.

There are studies using high spatial resolution reconstructions, however, that
demonstrate the importance of local dendritic geometry. For example, they reveal
that diameter changes and branch asymmetries displayed by the stochastic dendritic
geometry determine the electrotonic structure of the arborization of single neurons
(Bras et al., 1993; Korogod et al., 1994; Korogod, 1996; Carnevale ef al., 1997).
Therefore, characterizing a neuron by its electrotonic structure depends strongly
on the accuracy of morphometrical data obtained experimentally.

The qualitative or quantitative assessments provided by models rely on the type
of approach chosen by the experimentalist. Currently, most modellers adopt a strat-
egy of reducing the morphological complexity to ‘equivalent cylinder’ in order to
generate ‘canonical form’, as described by Shepherd for constructing a compu-
tational neuronal model: ‘A canonical model is the simplest type of a particular
pattern of motif of neuronal structure and function that can represent a given
neuron in computational form as a basis for simulating a functional operation or
set of operation essential for that type’ (Shepherd, 1992; Shepherd et al., 1998).
The task is to identify the electrical properties that are critical for the particular
input-output operations under study, in other words to be able to reproduce what is
recorded by the microelectrode by a minimum number of compartments containing
the minimum set of properties sufficient to capture the operations. Compartmental
modelling is a similar method of coping with arbitrary geometries that is to divide
the dendritic tree into a number of compartments, each of which is small enough
to be considered as isopotential (Segev et al., 1989). Most often, only two com-
partments are necessary to mimic microelectrode recording. So far, these strategies
have provided most of the results obtained in modelling single neurons (see for
references Durbin et al., 1989; Stratford et al., 1989; McKenna et al., 1992; Stuart
etal.,2001).

In producing all kinds of output discharges resembling those well-known pat-
terned discharges described by electrophysiologists, all the models elude a funda-
mental problem. They do not explain how the whole dendritic arborization con-
tributes to the generation of the various adapted output discharges. Neither do they
provide an understanding of the mechanisms that sustain the transfer function of all
dendritic sites. For example, when Mainen and Sejnowski (Mainen and Sejnowski,
1996) show, using two compartmental models, that different dendritic geometry
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produce a variety of firing patterns in neurons that share a common distribution of
ion channels, they stress the impact of dendritic structure on the pattern of output
discharges. However, they do not provide an explanation for this difference.

This book proposes an alternative approach to the conventional models and
introduces the notion of a functional dendritic space. We shall forget for a while
the dogma of electrophysiology to concentrate on a detailed spatial description
of the electrical states of all dendritic sites when the dendrites operate. By analyzing
the electrical dendritic space in which all the signals are processed, we shall explore
the spatial dimension of the transient events well known by electrophysiologists.
We will demonstrate the mechanisms by which the operating dendrites decide,
in fine, how the distributed synaptic inputs generate final various adapted output
discharges. This original approach reveals the mechanisms by which individual
dendritic geometry determines the sequence of action potential that is the neuronal
code.

All neurobiologists know that a live neuron receives about 10000 to 1 000 000
inputs which are distributed over its soma-dendritic membrane, which, in turn,
contain dozens of different voltage- and time-dependent ionic conductances. These
ionic channels interplay in the dendritic space leading to complex non-linearities in
electrical behaviour. In principle, the electrical state of a neuron can be completely
specified if its morphology and membrane properties are fully known. The only
example described until now is the account of the electrical excitability of the squid
giant axon by Hodgkin (1964). As for central mammalian neurons, unfortunately
we must be content with very little, the vast unknown dendritic territory remaining
a gamble on future research. Without this very minute knowledge, we are con-
strained to make assumptions and hypotheses. Conventional models have adopted
a strategy that display single synaptic inputs in an arborization and simulate the
recordings at single sites from the soma or some dendritic patches. In contrast, the
approach implemented in this book considers that the whole dendritic arborization
is homogeneously covered by defined synaptic inputs activated simultaneously
with different intensities.

2.5.1 Uncertainties in the membrane properties of the dendrites

We acknowledge in several places of the book the fact that reconstructed geome-
tries are known in fine detail unlike the electrical properties of dendritic arboriza-
tions that are known fragmentarily if at all. Neither composition of cocktails of
membrane conductances nor their densities and dynamics are known for sure.
However, we must specify these properties when performing any simulation. We
are reduced to guessing them so they can be right or wrong. We adopt an experi-
mental approach consisting of simulating the impact of a geometrical feature first
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Figure 2.7 The macrostructure is represented by the dendrogram of a single den-
drite extracted from a reconstructed motoneuron. Each branching point is shown
as a thin vertical line. The macrostructure is a 3D object which is defined by geo-
metrical parameters (length and diameters of branches) and its branching pattern
(topology). The scale of observation is from mm to pum. Its inputs are distributed
synaptic potentials along the branches. Its outputs are action potentials generated
at the initial segment of the axon. The three circles indicate schematically den-
dritic sites from which a description of the types, location, density and properties
of channels and receptors are, or should be, obtained to describe the microstructure
represented below. They are toolkits of protein molecules. Their scale of obser-
vation is from pm to mm. The two scales of this functional unit explain why an
immense territory of dendritic membrane remains unexplored.
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on passive membrane properties. If the geometry-induced feature is observed in
the simulation of the electrical structure of the dendritic arborization that receives
single-site inputs, we conclude that this specific geometrical feature is responsi-
ble for the electrical effect. Then we test whether the geometry-induced feature
is observed when the membrane is active with non-linear IV relation (Hodgkin-
Huxley type or N-shaped) or when the true synaptic inputs are not single-site ones.
For example, the simulations are performed with a membrane represented by spa-
tial voltage profiles generated in response to tonic activation of distributed inputs.
If the geometry-induced feature is again observed, we conclude that this specific
feature is robust with regard to uncertainty of the membrane properties. A similar
procedure is adopted to solve the problem of variability of the membrane param-
eters as we know that R, changes as a result of ongoing activity. Ry, decreases
with increasing synaptic activation due to introduced synaptic conductances. The
simulations are then performed at different values of R, and we check whether the
geometry-induced feature is observed whatever the values of R, chosen in a given
physiological range. Whatever the membrane properties, the geometry determines
the electrical states of the dendrites.

In our simulations, we compute the electrical states of the arborization in different
functional conditions and we observe the generation of unexpected patterned output
discharges. Space and time of the phenomenon of the excited neuron are examined
here for the first time.

We suggest considering the neuron as a macrostructure characterized by its 3D
geometry made up of an organized microstructure specified by the macromolecules
that populate its membrane (Figure 2.7). This functional unit is by now an immense
unknown territory that plays the pivotal role in generating the neuronal code.
Dendritic space is the focus of the following chapters of this book.
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Basics in bioelectricity

There is no bioelectricity without space. To produce an electric field, electrical
charges must be separated in space. The distance separating the charge carriers —
the ions — on the neuronal membrane ranges between 6 and 10 nanometres. The
charges are separated by the action of non-electrical forces that must be organized in
space. Pump molecules embedded in the membrane operate by chemical binding
and unbinding of the ions on the opposite sites of the membrane. The shape of
the cell membrane together with the membrane material determine the membrane
capacitance.

3.1 Ions as carriers of current

In neurons the currents are carried by ions flowing in the conductive intra- and
extracellular media, the cytoplasm and cerebro-spinal fluid. The intra- and extra-
cellular media are conductors of the second class, the electrolytes. The ions are
elementary species of both charge and substance. Therefore, two driving forces
move them: electrical and non-electrical, diffusive or chemical. Both types of
forces occur due to special properties of the neuronal membrane separating the
intracellular solution from the extracellular one. Electrical forces originate from
the voltage difference (gradient). Diffusive forces are due to gradient of ion concen-
tration. Ions change their spatial location also as a result of chemical reactions, e.g.
with intracellular or membrane molecules. Main ion species carrying currents are
sodium (Na™), potassium (KT), calcium (Ca’*) and chloride (C17). Each species
has different concentrations inside and outside the cell. Normally, for sodium
and chloride, intracellular concentrations are lower than extracellular, for calcium
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much lower, whereas intracellular concentration is greater than extracellular for
potassium:

[Na*]; < [Na'],
[K*] > [K*],
[Ca®']; < [Ca’t],
[CI'] < [CI ],

In other words, there is a transmembrane gradient of ion concentration directed
inward for Na*, Ca?" and Cl1~ and outward for K.

3.2 Selective ion permeability of neuronal membrane

The three known conditions for a current to flow between two points require: (i) a
difference of electric potentials between the points; (ii) carriers, charged particles
and (iii) conductive pathway between points. The presence of ions by itself is nec-
essary but not sufficient for the current to flow. For generating a voltage difference
between inner and outer sides of the membrane the separation of positive and neg-
ative charges between these sides is required. The charge separation is provided
by transferring ions across the membrane either along or counter to their concen-
tration gradient. The physical nature of these opposite movements is different as
they are provided by different molecular machines inserted in the membrane, the
ion channels and ion pumps. The charge can be separated if the ion carriers cross
the membrane dissimilarly, that is if the membrane has different permeabilities
for different ion species in different directions. Indeed, if the membrane did not
have such selective permeabilities, then each positive ion crossing the membrane
would be accompanied by a negative ion of the same charge to keep the electrical
neutrality of electrolytes on both sides of the membrane. In reality, due to selective
permeability of the membrane, e.g. in relation to K™, when a K™ ion is moved by a
diffusive force from the inner side with greater concentration to the outer side of the
membrane, then an equal uncompensated negative charge (carried by large organic
anions) remains on the inner side. Both charges are now separated by the membrane
and create the voltage difference between the ‘plates’ of the tissue capacitor. This
is the transmembrane voltage, which, by the sign convention, is counted as the
difference of potentials (E) between inner and outer sides of the membrane:

E=E —E, 3.1)

The electric field, thus created, tends to bring back the positive K* ion. The
transmembrane voltage increases while the number of K™ ions crossing the mem-
brane along the concentration gradient exceeds the number of those returning by
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the electric field. When the outward and inward fluxes of Kt equilibrate then the
net flux and, correspondingly, the net current are zero and the transmembrane volt-
age established in this situation is the equilibrium potential or Nernst potential.
Quantitatively, it is defined by the Nernst equation that for an ion specie k has the
form:

RT _ [Cilo
= — ln
wlF  [Cyli

where R is gas constant, 7" is absolute temperature, F is Faraday constant, z; is

E; 3.2)

valence of ions of sort k and [Cy]; and [Cy], are, respectively, intra- and extracellular
concentrations of these ions. For k = K* and Na™, the valence is zx = zna = +1,
fork = Cl™ z¢; = —1, and for k = Ca®>* z¢, = +2, and the corresponding Nernst
equilibrium potentials are:

E RT [K'],
= —1In
TF K
RT = [Na'],
Ena=—1n
F  [Na'];
RT  [CIt],
Ecy=——In_——=
F [CIT];
RT [Ca™],
ECa = ——1n
2F = [Cat;

Correspondingly, in the total ion current conducted across each unit area of
the membrane (current density J), one can distinguish the channel and pump
component currents:

Jion(x, 1) = Jehan(x, 1) + qump(xv r) (3.3)

3.3 Ion pumps

The function of ion pumps is to move ions against their concentration gradient. This
is the main force maintaining unequal concentration of a given ion inside and out-
side a cell. Naturally, such translocation of charged particles of substance requires
energy, and the translocation is called active transport. The energy is consumed
from chemical bonds of adenosine triphosphate (ATP) in reaction with adenosine
triphosphatase (ATPase). The pumps are different types of ATPase specialized for
transportation of different ions, e.g. Na™ /K+ ATPase, Ca®* ATPase. The pump cur-
rent is generated by the so-called electrogenic pumps, which translocate unequal
charges in opposite directions. For instance, during each reaction cycle, the elec-
trogenic Na™ /K*+ pump translocates three Na* ions from the inner to the outer side
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of the membrane and two K™ ions in the opposite direction. So, the net Na* /K™
pump current is outward.

3.4 Ion channels

The function of ion channels is to conduct ions along their concentration gradient.
Such movement of ions is called passive, because this is simply diffusion, which
does not require energy from any source. The ion channels are protein molecules
spanning the membrane and forming a pore in the bi-lipid layer. The passage
through the pore is not always possible. This depends on a conformational state
of the channel molecule in which the gate of the pore is open or closed. The
conformational states change stochastically and so the channels are open or closed,
permeable for ions or not. The probability of transition between the states and
the life-time of the open and closed states are important determinants of the ion
conductivity of the membrane. Different factors influence the transitions. The
channels are classified following the leading factor. If the leading factor is the
transmembrane voltage, the channels are classified as voltage-gated or voltage-
sensitive. If the state of a channel is determined mainly by binding to some chemical
substance, e.g. neurotransmitter or a current-carrying ion, the channel is classified
as ligand-gated or chemo-sensitive, or more specifically calcium-dependent.

An important property of the channels is their selective permeability to certain
ion types. According to this property the channels are classified as sodium channels,
potassium channels, calcium channels or chloride channels. However, some ligand-
gated channels are permeable for more than one ion species.

The ionic current through the membrane unit area J is determined by the mem-
brane conductivity G, and the driving potential (E — E,), that is the deviation of
the transmembrane voltage E from its effective equilibrium level E,. The mem-
brane conductivity is the sum of single channel conductances of all open channels
present in the membrane unit. In the case of voltage-gated channels G,(F) is
voltage-dependent. The density of the total local current J;,,(E) is hence a func-
tion of the voltage E'

Jion(E) = Gm(E)E — Eq) (CXD)

being the product of two factors, the total membrane conductivity Gy, (E) and the
driving potential.
The total membrane conductivity G, is the sum of the partial conductivities:

Gm =Y Gy (3.5)
k
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The effective equilibrium potential £y is a dynamically varying value which
changes if, at least, one partial conductivity changes with the voltage (see be-
low). Voltage dependence of an ionic conductance is determined by two opposite
processes, activation and inactivation, described by the kinetic variables.

3.5 Voltage dependence of membrane conductance

The first factor in Equation (3.4), the conductivity Gn,(E), is often voltage-
dependent. This property is due to the voltage dependence of a channel transition
from closed to open state (activation) and back from open to closed (inactivation).
In fact, there could be many conformational states; usually one is open and the
others are closed. The so-called kinetic variables of activation m and inactiva-
tion h describe this feature of the ion conductance mathematically. Typically, the
relevant equation has the following form:

Gn(E)=Gp- mP - h4 (3.6)

where G, is the maximum value of the membrane conductance, p and ¢ are
integer powers. Gy, is the sum of single-channel conductances of all channels in
open state. The product of kinetic variables (m? - h?) determines which proportion
of the whole population of ion channels are currently open and therefore contribute
to the actual membrane conductivity G, (E).

The kinetic variables m and h obey the ordinary differential equation of the same
form:

dm/dt = (1 —m) am(E) + mBu(E) (3.7)

in which the backward and forward rate constants a,,(E) and B,(E) are explicit
functions of E. These functions usually are phenomenological, obtained by ap-
proximation of experimentally measured relations on a certain class of functions.

3.6 Effective equilibrium potential of multicomponent ion current

The second factor (E — Ej) in Equation (3.4) includes the voltage explicitly. Equa-
tion (3.4) gives the local current-voltage relation (/-V relation) which is a key
characteristic of the membrane unit properties for understanding the biophysical
mechanisms of all current transfers in a complex electrical structure. A well-known
example of equilibrium potential is the resting potential of the membrane E,, which
is often used as a reference level, from which the transmembrane voltage is counted.
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The total transmembrane ion current obeys the superposition principle. It is
represented by the sum of the component currents:

Jon(E) =Y JW(E) =" Gu(E)E — Ey) (3.8)
k k

where each k-th component is characterized by the corresponding partial conduc-
tivity G4 and equilibrium potential Ej.

For the multicomponent current with different Ej, the effective equilibrium
potential of the total transmembrane current is defined as a weighted sum
of E k-

Eq=) (Gi/Gm)Ex (3.9)
k

3.7 Membrane capacitance and capacitive current

A thin insulator (the membrane matrix made of lipids) with adjacent conductors
(intra- and extracellular electrolytes) forms a tissue capacitor with an admitted
specific capacitance Cy, ranging from 0.7 to 1 uFcm ™ (usually the latter value is
used in theoretical studies). Like solid-body (hardware) capacitors, this structure
allows condensing of the charges of opposite sign on the two sides of the insulator.
The difference here is that charges are ions and the ‘plates’ are liquid layers of
electrolytes. Otherwise, the nature of electrical processes remains common. The
condensed charges create an electric field, the intensity of which (the voltage
difference between intra- and extracellular layers of electrolyte) is proportional to
the charge density per unit membrane area. The charges deposited on one side
of the membrane attract the charges of the opposite sign and repulse those of the
same sign on the other side. This is because the electric field of the charges spreads
behind the membrane. Conversely, removing charges from one side reduces the
attracting and repulsing forces on the other side so that corresponding ions freely
distribute by thermal motion between the juxta-membrane layer and the bulk of the
electrolyte. An important feature of such redistribution of charge is that the ions
do not cross the membrane and their ‘coordinated movement’ (the current) is due
to remote action spreading across the membrane. Such ion movement is known as
the capacitive current, which is related to the voltage change per unit time by the
equation:

JE(x, 1)
Jex, 1) = Cp——s ™= (3.10)
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This is the time derivative of the equation relating the voltage difference between
the plates and the charge density per unit area of the plate in any capacitor:

Q:Cm'E

3.8 External sources

The source function Equation (4.18) also includes the contribution to the total
membrane current from an external generator (stimulator) Jy(x, t). The charges
are delivered from an external generator to a given part of a cell via electrodes.
Depending on the ‘stimulation protocol’, there are generators of voltage or current.
Time-courses of the stimuli are diverse: single or multiple impulses of different
amplitude and duration, steady levels, ramp with different starting and end levels
and different rates of change, sinusoidal or special complex shapes.

3.9 Local current-voltage (I-V) relations
3.9.1 Steady-state 1-V relations

A useful characteristics of the membrane generators is the relation between voltage
and current measured in the steady state, the steady-state local current—voltage
(I-V) relation. The term ‘local’ refers to a membrane unit with homogeneous
electrical parameters and without any lateral current between this and other units.
The command steady voltage is maintained from an external generator (operational
amplifier). From the generator output, a corresponding stimulating current I is
applied via the microelectrode. In steady-state, the sum of these currents is zero:

Jion + Jo = 0 and Jon=—Jy=—Eg- Ginp (311)

Hence, the local ion current in this case can be measured as the inverse of the
stimulating current at the output of the external generator. The pump component
Jpump Of the total transmembrane ion current Jio, (3.3) is small. If it is negligibly
small (Jpymp = 0), the ion current is determined by the channel current Jion, = Jehan-
Until indicated otherwise, we use the simplest, index-free notation J for the total
channel current as all other components of the membrane current are effectively
Zero.

The ionic currents crossing the membrane unit are fixed by the cocktails of
membrane conductivities. The number of possible combinations of different con-
ductivity types is huge and thus, the possible /-V relations are also enormous.
However, it can be demonstrated that there are three major types of /-V relation,
whatever the cocktails of the conductivities are: linear, non-linear with positive
slope and non-linear with positive-negative slopes (Figure 3.1).
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Figure 3.1 Three main types of the local current—voltage (/-V) relation in the
membranes. A and B: Respectively, type 1, linear and type 2, non-linear /-V's both
having positive slope in the whole range of the transmembrane voltages (abscissas,
E, mV). C: Type 3, non-linear N-shaped with alternating positive and negative
slopes in different voltage ranges. Exemplified are the membrane properties used
in further simulations. Ordinates: J, mA cm 2 is the density of the total membrane
current (solid line) and its synaptic and extra-synaptic components (dashed lines):
(A) both components Jyy, and Jp,s are linear; (B) the synaptic component Jgy,
is linear and the extra-synaptic one Jyy is Hodgkin—Huxley type non-linear; (C)
synaptic component through NMDA-type glutamatergic channels Jyg, iS non-
linear with the limb of negative slope and extra-synaptic Jp,s is linear.

Linear 1I-V

Analysis of expression (3.4) shows that the local transmembrane current is a linear
function of the transmembrane voltage when conductivity G is voltage independent.
The plot of this /-V relation produces a straight line with a constant positive slope
G which crosses the voltage axis at a point corresponding to the reversal potential
E = E; where the current is zero (Figure 3.1, A).
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Non-linear 1-V with positive slope
When the conductivity depends on the voltage, G = G(E), the I-V relation is
non-linear and the slope varies according to the voltages. One example of this /-V
relation is the non-linear steady relation between total current and voltage in the
membrane of the giant axon of the squid. This relation includes sodium, potassium
and leak currents and is described by the conventional Hodgkin—Huxley equation
of excitable membrane:

J(E) = Gnam®h(E — Exy) + Gxn*(E — Ex) + GL(E — EL)  (3.12)

The plot of this function has a positive slope in the whole range of physiologically
reasonable voltages (Figure 3.1, B). It crosses the voltage axis at a single point which
corresponds to the resting potential of the axonal membrane.

Non-linear I-V with negative-positive slope

One example of this type of relation is provided by a membrane contain-
ing synaptic conductance of inward non-inactivating current through voltage-
sensitive glutamate-gated channels which are also sensitive to N-methyl-D-
aspartate (NMDA). The cocktail of this conductance with the voltage-independent
synaptic (AMPA type) and extra-synaptic conductances producing inward and out-
ward currents respectively gives a non-linear /-V relation with a negative part of
the slope (Figure 3.1, C). This N-shaped curve can cross the voltage axis in one or
three points depending on the values of the conductivities.

3.9.2 Instantaneous local I-V relations

The steady-state /-V is informative but is an incomplete description of the elec-
trical properties of the membrane. Additional important information is conveyed
by the so-called instantaneous current—voltage relation. Considering the difference
between the steady-state and the instantaneous /-Vs gives a more profound in-
sight into the nature of electrical processes generated by the neuronal membrane
(Khodorov, 1975).

The time-course of instantaneous /-Vs, e.g. during relaxation to a steady-state
relation, is informative with regard to membrane properties dominating in the
steady state (rest) and during generation of transients. A demonstrative example is
the evolution of the /-V relation of the Hodgkin—Huxley membrane. The instanta-
neous /-V relation has a limb of negative slope and thus exemplifies the N-shaped
relation.

This type of I-V is associated with the ability of the membrane to produce
an auto-regenerative response, the action potential in this case. With relaxation
to the steady state this limb gradually disappears and the ultimate /-V relation is
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non-linear with a positive slope. Such a relation indicates that membrane has a
unique resting state with the voltage corresponding to zero total membrane current.
This state is stable in the sense that after small perturbations (deviations from the
resting potential), the membrane tends to come back to the initial resting state. In
response to a stronger stimulus, the membrane changes its /-V to an instantaneous
one and becomes able to generate action potential.

Reference

Khodorov, B. 1. (1975). General Physiology of Excitable Membranes [in Russian],
Moscow: Nauka.



4
Cable theory and dendrites

A relevant mathematical tool to describe the bioelectricity in the neuronal dendrites
is cable theory, which is based on application of the so-called cable equation to
the core conductor model (Kernleitermodel) of the dendritic structure conducting
currents and voltages. Exhaustive description of the cable theory and its application
to analysis of electrical phenomena in the dendrites is provided in several excellent
works (Taylor, 1963; Jack et al., 1975; Rall, 1977; Rall and Agmon-Snir, 1999;
Koch, 1999). In this chapter, the basics of this theory are given with accentuation
of the issues important for understanding the material in the following chapters.

Cable theory requires space in which electrical parameters are distributed. The
dendritic space is shaped by the membrane into a tube-like branching structure. The
tube diameter ranges from several micrometres (or even a fraction of a micrometre)
to several tens of micrometers in diameter and the tube length can read hundreds or
even thousands of micrometres. These dimensions of the dendritic space are much
greater than the thickness of the membrane across which the charges are spatially
separated to create the electric field. What happens in the space along and over the
membrane tubes? This depends on spatial properties of the electrical field in this
larger domain. If the charge separation and the electric field produced by molecular
machines is different at different locations in the cable, then electrical voltage
occurs and the corresponding current flows between these locations. The routes in
the space along which the current flows are shaped by the dendritic structure. We
focus on the electrical events in the dendritic cables. The space we deal with is
reduced to one-dimensional routes or lines along the dendritic cable, the dendritic
paths.

4.1 Dendrites as electrical cables

Cylinder-shaped neuronal dendrites resemble branching electrical coaxial cables.
Both obey the same laws of electricity physics and are described by the same

47
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type of the so-called cable equations mathematically. Like hardware cables, the
dendrites have a conductive core enveloped with coaxial insulator and conductor
cylinders. The dendritic core and outer conductive cylinder consist of cytoplasm
and extracellular liquid solutions of ions. The insulator cylinder separating them
is a thin plasma membrane that is a lipid bi-layer. This insulator is leaky due to
specialized insertions permeable for ions. The cable equation is a parabolic-type
partial differential equation describing electrical resistive-capacitive systems (cir-
cuits) with distributed parameters. The parameters characterizing the neuronal
cable structures are the specific membrane capacitance and conductance (or re-
sistance) related to the unit area or unit length of the membrane cylinder and the
cytoplasm specific resistance related to the unit volume or unit length of the axial
cytoplasmic core. For a cable of diameter d, the membrane capacitance per unit
length ¢, and that per unit area C, are related via perimeter (7w d):

Cm = Cm(rd) 4.1)

Similar is the relation between the membrane conductance per unit length g, and
per unit area G,:

gm = Gn(d) 4.2)

The inverse values ry, = 1/gn and Ry, = 1/ Gy, i.e. the membrane resistance per
unit length and per unit area are related inversely:

rm = R /(7 d) (4.3)

The cytoplasm resistance per unit length r; and per unit volume R; are related via
the cross-sectional area of the core (rd?/4):
R 4.4

ri = m 4.4)
The parameters in Equations (4.1-4.4) are spatially heterogeneous and variable
in time. They are then functions of one-dimensional space coordinate x counted
along dendritic path and time ¢. The electrical state of a cable at each site x
and at time ¢ is characterized by the transmembrane voltage E(x, t), the membrane
current per unit area J (x, t) or per unit length i (x, ¢) of the cable. One more physical
value, especially important to characterize the electrical communication (coupling)
between different sites, is the lateral (core or axial) current icq... Noteworthy, there
are sign conventions which determine how the voltage and current should enter
the mathematical expressions in order to correctly reflect the physical picture of
the events. The transmembrane voltage E is counted as the difference of electric
potentials measured on the inner E; and outer E, sides of the membrane, ‘inside
minus outside’ (the signconvention 1):
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E=FE—-E, 4.5)

It is known that the electrical potential is a physical value determined with accuracy
to an additive constant, i.e. counted from any constant level. In neuronal cables,
the transmembrane voltage is counted from the so-called resting potential E; (for
details see below):

Vx,t)=E(x,t)— E; (4.6)

It is convenient because E; is often constant in time and homogeneous in space,
which means zero derivatives, dE, /0t = 0 and dE,/dx = 0. Therefore the corre-
sponding derivatives of V(x, ¢) and E(x, t) are equal:

VG t) _ dE@ N E) _9E@.D) __ 9E@.1)
ar ot T T

and

OV(x,1) (E(x,1)—E) 0E(x,1) 0— IE(x, 1)
ax dx T Ox ot

The membrane currents per unit length and membrane area are related, like
membrane conductance or capacitance, via the cable perimeter:

i(x, 1) =J(x,1)- (nd) 4.7)

These currents are positive if directed outward (the sign convention 2).
Ohm’s law relates the core current and the lateral voltage gradient:
) 10E(x,1t) 1aV(x,1t)
leore = ————(—— = ————(—— (4.8)
rp  o0x r;  0x

The ‘minus’ sign in the latter equation indicates that the positive current flows
in the direction of voltage drop (the sign convention 3) provided that the spatial
domain is chosen so that the increment of the path coordinate dx is positive, i.e.
counted as ‘greater coordinate minus smaller.’

4.2 The cable equation

4.2.1 Mathematical expression and physical meaning

For a cable of a given structure, which are the voltages and currents in all sites x
and in every moment of time ¢ depending on the parameters of the cable and of the
external actions? This is provided by the so-called cable equation for which a set
of corresponding values {x, t} composes a spatio-temporal definitional domain. A
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well-known standard form of the cable equation written in terms of V(x, #) and
parameters per unit length of the cable (see Rall, 1977) is:

d < 18V(x,t)> aV(x,t) Vix,t)
ri  0x ot F'm

o 4.9)

In the case of homogeneous and constant parameters, this equation contains factors
having dimensions of time when multiplied by rp,

Tm = FmCm = RnCi (4.10)
and distance squared
A2 =rm/ri = Rnd/4R; 4.11)

Corresponding scaling by A and t,,, gives the dimensionless path coordinate and
time:

X =x/A and T =t/tm
The cable equation in the dimensionless coordinates (X, T) is another standard
form:
VX, T) 9V(X,T)
ax2 AT
In the steady state when the voltage does not depend on time V(X, T) = V(X),
Equation (4.12) is reduced to:

+ VX, T) 4.12)

VX, T)
X2
Below we consider more general forms of the cable equation and the details
that are important for the analysis of the transfer properties of the dendrites. In
theoretical studies of dendrites, we deal with analytical and/or numerical solutions
of the cable equations. The properties of these solutions are considered as a more
or less correct reflection of the properties of the neuronal dendrites. Interpretation
and explanation of the dendritic properties in terms of properties of solutions of
the equations require a clear understanding of the physical meaning of all terms
of the equation and their impact on the form and properties of the solutions. The
standard forms of the cable equation (4.9, 4.12 and 4.13) are most often sufficient.
However, we shall consider some other forms with an emphasis on the different
terms of the equation, their physical meaning and on their relevance to different
aspects of dendritic functioning. The aim is to understand better the impacts of the
membrane properties and of the geometry on the electrical processes that occur in
dendrites that receive various input actions.

=V(X) (4.13)
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As already mentioned, at each point (x, ¢) of the spatial-temporal definitional
domain, the cable equation relates the membrane voltages and currents. The equa-
tion is based on two main laws of physics: Ohm’s law and the current conservation
law. In terms of parameters per unit length, the cable equation is:
Oicore 0 ( 1 0E(x, t))

] , 1) = — = ——
i(x 1) 0x 0x ri  0x

(4.14)

In the case of a homogeneous segment in which diameter d and hence r; do not
depend on coordinate x, the cable equation takes the form:

10°E(x,1)
ri ox2

i(x,1) (4.15)

Using Equations (4.4) and (4.7), the cable equation can be written for a dendritic
cylinder of unitary area:
d 0°E(x,1)
—— = J(x,t 4.16
4R, ox? (x. 1) (4.16)

The cable equation, in each form, equalizes two terms, the cable term and
the source function. They are, respectively, the left-hand and right-hand sides of
Equations (4.15) and (4.16).

4.2.2 The cable term
The cable term is the left-hand side of Equation (4.15)

LOPECLD) _ . /9
]"i 8x2 - lcore X
and Equation (4.16)
d* 0?E(x,t
_n L) = _(ﬂd)aicore/ax

4R;  9x2

It expresses the increment of the core current in an elementary cable segment dx
located at site x that is the difference between the core currents flowing into and
away from dx. The difference of the core currents at x (partial space derivative
of the current) is positive if the out-flowing current is greater than the in-flowing
current and vice versa. This term determines which current remains available for
the exchange between intra- and extracellular space at a given site after exchanging
with the neighbouring sites. So, it is ‘responsible’ for the description of the way
in which any given site of the dendritic cable is electrically coupled with the
neighbouring sites.



52 Cable theory and dendrites

Lateral current

The core current, Equation (4.8), flows tangentially or laterally, i.e. along the den-
dritic membrane. It is pure Ohmic current due to voltage difference between the
given element dx and the neighbouring elements of the cable. By ‘the sign conven-
tion’, a positive core current flows in the positive direction of the x coordinate. It
depends on both electrical and geometrical parameters of the core: the cytoplasm
resistivity R; and diameter d. Indeed, any dendritic segment communicates electri-
cally with all other segments (parts) of the cell by exchange of the current flowing
through the core. The ‘sending’ and ‘receiving’ parts work as the source and sink
of the core current respectively. The current conservation law means that equal
lateral current flows between the same parts on the other side of the membrane, in
the extracellular medium. The communicating parts of the cell play the opposite
roles. The site of the source of intracellular, core current is simultaneously the sink
of the extracellular current and vice versa. However, these equal lateral currents
produce significantly different voltage drops. The voltage drop inside the cell is
much greater than outside. The reason is the much smaller cross-sectional area
(rd?/4) of the core conductor compared to that of the extracellular space, while
the specific resistance of the cytoplasm R; and of the extracellular liquid R, are
nearly equal. For that reason, the cable equation very often does not include R..

Local balance of transmembrane and lateral currents

The cable equation, according to the current conservation law, at each location x
equalizes the membrane current and the increment of the core current:

(X, 1) = —icore/ DX 4.17)

This local balance of currents means that, at x, the core current increases or
decreases depending on positive or negative contributions from the membrane cur-
rent. The sign convention requires ‘minus’ in Equation (4.17): to provide a positive
difference between the in-flowing and out-flowing core currents (increment), the
membrane current should make a positive contribution, that means inward and
therefore negative.

4.2.3 The source function: electrical properties of a membrane unit

The source function is the right-hand side of the cable equation:
i(x,1)
or

J(x,1)
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that is the membrane current generated by the element 0x per unit length or area
of the cable at location x. This function determines the type of sources of the
electric field in the nerve cables. Like in any other physical system, the electric
field in neurons has two types of sources, called sources and sinks. The current
streamlets originate from sources and terminate at sinks. The sign of the source
function determines the source type. The source function determines also the
nature of electric field sources. Specifically, they are determined by the two major
components of the function, i.e. of the membrane current. In terms of parameters
per unit membrane area, these are represented by components of the membrane
current density:

J(x,t) = Jo(x, ) + Jion(x, 1) + Ju(x, 1) (4.18)

where J.(x, t) is the capacitive current due to charge redistribution without crossing
the membrane, Jio,(x, ) is the ion current transferred across the membrane, i.e. the
transmembrane current, and Jg(x, t) is the current from external sources, that is
the current of charges delivered via intracellular and extracellular electrodes from
a generator of current or voltage (a stimulator).

4.3 Additional conditions required for solution

To get a unique solution to the cable equation with either linear or non-linear
source functions, one needs to know additional conditions. The cable equation is
the partial differential equation of the first order in time ¢ and second order in
spatial coordinate x. Correspondingly, the required additional conditions are the
initial condition and boundary conditions.

4.3.1 Initial conditions

The initial conditions are put on the value of E(x, ¢) function over the whole spatial
definitional domain at an initial moment of time ¢t = fo:

E(x,t9) = Eo(x) (4.19)

4.3.2 Boundary conditions

The boundary conditions are put on the values of the function E(x, t) and/or its first
partial space-derivative 0 E(x, ¢t)/dx at each point of the boundary of the spatial
definitional domain. In mathematical physics, three standard types of boundary
problem are considered, depending on what is defined on the boundary. In the first
type of boundary problem, the values of the function are defined. In the second
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type, the values of the first partial space-derivative of the function are defined. In
the third type (called also the mixed boundary problem), the linear combination of
the function and its first partial space-derivative is defined. For the dendritic cable
equation, the standard boundary problems have their own specificity. The boundary
conditions are applied at the root and terminal tips of a dendritic arborization.
Consider a single dendrite of finite length /.

The first boundary problem implies that the membrane potential is fixed to its
resting value E; at x = [:

El,t)=E; (4.20)

That is equivalent to zero deviation of the membrane potential from the resting
potential:

Vi,t)=E(,t)—E, =0 4.21)

This condition is similar but not identical to the standard ‘open-end’ boundary
condition used in electric circuit theory.

The second boundary problem implies that, at x = [, the lateral (axial) current
is interrupted by the impermeable tip membrane, that is equivalent to zero voltage
gradient. This is the so-called ‘sealed-end’ boundary condition:

19E(x, 1)

lx=t =0 (4.22)
ri 0x
In terms of V(x, t) it is written as
10E(x,t)
=0 (4.23)
ri 0x

The third (mixed) boundary problem applied to dendrites is known as the prob-
lem with ‘leaky-end’ boundary condition. Physically, this means that at the dendritic
tip x = [ the core current flows out of the cell through the leak conductance Gy.
This current is proportional to the transmembrane voltage counted from the resting
level (by Ohm’s law) and is equal to the core current approaching the tip (current

conservation law):
10E(x,1t)
—————— = = GL - [E(, 1) — E{] (4.24)
rp  Ox

4.3.3 Coupling conditions

Real dendrites are structurally heterogeneous. The two major types of structural
heterogeneity are the change in branch diameter and the occurrence of branching
points (sometimes called a node of branching). A branch having an abrupt change in
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diameter can be considered as piece-wise homogeneous, i.e. composed of connected
homogeneous segments. Usually, the branches connected to each other at the
branching point have different diameters. Consider a homogeneous segment of
diameter dj, from which homogeneous segments of diameters d; and d, emerge.
At the connection point, there is a step-wise change in diameter, i.e. structural
heterogeneity. The connected segments are coupled electrically, i.e. the voltages
and currents in the connected elements depend on each other in a certain manner.
This coupling obeys two laws of electricity, the current conservation and the voltage
continuity laws.

Conservation of current

The current conservation law means that the core currents flowing in and out of
the connection site are equal in the coupled segments. In other words, at the site of
heterogeneity, the algebraic sum of core currents equals zero. This law means that
the charges do not appear from nowhere or disappear, they are just redistributed
between different parts of space. A well-known version of this law is Kirchgoff’s
rule used in electrical circuit theory.

Continuity of voltage

Consider two regions with a common border. The voltage continuity means simply
that the voltage remains the same when the border is crossed between adjacent
points in the two regions. These relations are expressed mathematically.

Coupling of unequally thick homogeneous segments

For the two segments of diameters d; and d;, and lengths /; and /, such that the end
of the first segment x; = /; is the origin of the second segment x, = 0, it is assumed
that the path coordinate x is directed from the origin of the first segment to the end
of the second segment and is indexed as x; and x; along the corresponding segment.
This is the simplest example of piece-wise homogeneous dendrite with a stepwise
change in the diameter. Consider the adjacent pre-step and post-step points x; = [;
and x, = 0. The core current flowing from pre-step to post-step segment (or in the
reverse direction!) meets on the border with a corresponding geometry-induced
stepwise change in the core resistance r; = R;4/(;rd?) even though the cytoplasm
resistivity R; is the same everywhere. The current conservation yields equality
of pre-step and post-step core currents at the common point of the two adjacent
segments:

d? 9E(x1,1) _dj 0E(x,1)

e = ke LA 425
4R, ox b= 4R, ox, =0 (4.25)
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The voltage continuity yields:

Exi=04,t)=Ex,=0,1) (4.26)

Coupling segments at bifurcation

Now consider a bifurcation in which the parent branch of length /; and diameter
dy gives rise to daughter branches of lengths /; and /; and diameters d; and d,. The
path coordinate x is directed from the origin of the parent branch to the ends of
the daughter branches and correspondingly indexed within each branch as x, x;
and x,. At the common point of the three branches, i.e. at the bifurcation node, the
coordinates are xo = lp, x; = 0 and x, = 0, respectively. The current conservation
at the bifurcation node yields:

d; 9E(xo, 1) d} 9E(x1,1) d3 0E(xy,t)
A = = Ty =0~ o le=0  (4.27)
4Ri 8)60 4Ri 8x1 4Ri 8)62
The voltage continuity at the bifurcation yields:
Exo=1p,t)=E(x;=0,1)=E(x2=0,1) (4.28)

4.4 Input—output (point-to-point) relations in dendritic cables
4.4.1 Attenuation ratios and factors

Voltage attenuation

In the dendritic cable, the voltage transfer between sites x; and x; considered as
input and output, respectively, is characterized by the voltage attenuation ratio that
is the ratio of (greater) voltage at the input to voltage at the output:

Ay =ViJV; (4.29)

It gives the number of times by which the input voltage should be reduced in order
to get the output voltage. The inverse value is the voltage attenuation factor:

aij =V;/Vi (4.30)
which gives the proportion of the input voltage to be taken for getting the output

voltage.

Current attenuation

The current transfer between input x; and output x; is characterized by the current
attenuation ratio, which is defined similarly to the voltage attenuation ratio as the
ratio of (greater) current at the input to (smaller) current at the output:

Kij = 1I/1; (4.31)
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Correspondingly, the current attenuation factor is:

kij =1;/1; (4.32)

Directional reciprocity of voltage and current attenuations in passive cables

In passive (linear) cables there exists the directional reciprocity between the voltage
and current attenuations. This means that for any two sites in the cable, e.g. x; and
xj, the voltage is transferred from x; to x; with the same attenuation ratio as the
current is transferred in the opposite direction from x; to x;:

Ay =K (433)

4.4.2 Transfer conductance and impedance

The transfer conductance is one more value characterizing the transfer properties
of a cable. It is the ratio of the current at the input site x; to the voltage at the output
site x;:

Gij =1V, (4.34)
The inverse value is the transfer resistance:
Rij=1/G;; =V;/I; (4.35)

Similarly the transfer impedance is defined, but it deals with the transient signals.
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Voltage transfer over dendrites

Dendrites as electrical systems with distributed parameters differ from electrical
systems with lumped parameters in an important aspect: any dendritic site can be
considered as either input or output or both. In that sense, we deal with an electrical
system such that the inputs and outputs are distributed in space, over the whole
dendritic space.

The voltage is a standard and direct indicator of electric states. Similarity
or dissimilarity of voltages reflects similarity or dissimilarity of electric states
at different locations in space. The sign and magnitude of the voltage, that is
the difference in the transmembrane potential between the sites, determines what
electrically communicates with what and the intensity of the sent/received signals.
The sites communicate by sending/receiving charges, i.e. by currents. The current
flows in the direction of the voltage drop. Hence, considering the path profiles
of the transmembrane voltage, one can see from where and to where the current
flows in the given domain. Given the core resistance of the dendritic cable, the
current between neighbouring sites is proportional to the voltage difference. Since
one cannot ‘observe’ the path map of resistances, the path map of the voltages is
informative, however not exhaustively. For an exhaustive characterization of the
electric states and of the electric communication between sites over the dendritic
space, a complementary map of the membrane currents is required (see Chapter 6).

5.1 Dendritic cables in the steady state

In the steady state, there are no temporal changes in voltage, voltage-sensitive
conductance and current. The time derivatives of all values are zero. Therefore the
capacitive current is zero. The cable equation is simplified:

d 9%*E(x)
4Ri 8x2

= Gn(E(x) — Ey) (5.1

59
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In terms of voltage counted from the spatially homogeneous resting potential
V=F-E:
d 0*V(x)
4Ri 0x 2
The spatial distribution and the time evolution of voltage along the dendritic
cables is described by the solution of the cable equation.

=GV (x) (5.2)

5.1.1 Characteristic solutions to the passive cable equations

Infinite homogeneous cable

The characteristic solution to the cable equation describes the voltage distribution
along homogeneous cables of infinite and finite lengths with standard boundary
conditions. In all cases, the boundary condition at the origin x = O is fixation of
the membrane potential at a certain level Vj:

Vix)=V, atx=0 (5.3)

A special case is the semi-infinite cable extending from x = 0 to infinity, which
means no boundary. In such a cable, the voltage remains bounded however far
away from the origin (when x — 00). This requirement follows the physical law
of energy conservation: to create a non-zero voltage at infinite distance, the source
should have infinite energy, which is physically impossible. Mathematically this
condition is written as

Vix)— 0 when x — o0 5.4)
The corresponding solution to the steady-state cable equation is:

V(x) =V -exp(—x/A) (5.5)

Finite cable with clamped end

For a homogeneous cable of finite length / with the boundary condition of voltage
clamped to the resting potential at x = /, the solution is:

sinh(( — x)/)
V) = VoG ma/n (5.6)

Finite cable with sealed end

For the similar cable but with the ‘sealed-end’ boundary condition at x =/, the

solution is:
cosh((/ — x)/A)
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Finite cable with leaky end

In the more general case of a ‘leaky-end’ boundary condition with leak conductance
Gy, the solution is:
cosh((! — x)/A) + (GL/ G ) sinh((I — x)/A)

V) =V cosh(l/A) + (GL/ G o) sinh((1)/1) oY

where G is the characteristic conductance defined below by Equation (5.13).

5.1.2 Input conductance of dendritic cable

Input conductance is a useful characteristic of a dendritic cable in a steady state.
It is defined from Ohm’s law as the ratio of the core current to the transmembrane
voltage at the input x = 0:

Ginp = icore(o)/v(o) (59)

In all examples below the input voltage is the same V}, as defined by Equation (5.3).

Infinite cable

From Equation (4.8), written in terms of the cytoplasm resistivity R; and the voltage
V counted from the reference resting level, the steady-state value of the core current
at the input x = 0 is:

md* 9V (x)

lcore(0) = — 4R Tlxzo (5.10)

The voltage in this case is defined by Equation (5.5) and its partial derivative at
x =0is:
aV(x)
ox

im0 = —(1/M)Voexp(—x/Mlsmo = —(1/1)Vy (5.11)

Taking the ratio of Equations (5.10) and (5.11), we obtain the input conductance

of the semi-infinite cable:
7Td2 V()
Gip = [ —— - 5.12
P ( 4Ri>< AVO) (5.12)

Substitution of A = (Rnd/4R;)"/ 2=( /4G R 2 into Equation (5.12) gives the
following expression for the input conductance of the semi-infinite homogeneous
cable, which is the characteristic value often used in many other expressions:

Goo = (/2)d>*(Gm/ R)'/? (5.13)
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Finite cable with clamped resting potential at the end

Taking the corresponding partial derivative of the voltage (Equation 5.6) at x = 0
and putting this into Equation (5.9) and using Equation (5.13) gives the following
expression for the input conductance:

Ginp = Goo coth(/1) (5.14)

Finite cable with sealed end

Using the same procedure, but taking the relevant expression for the steady-state
voltage (Equation 5.7) gives the following expression:

Ginp = G tanh(/ /1) (5.15)

Finite cable with leaky end

Finally, using Equation (5.8) and the same procedure as above gives the following
expression for the input conductance of a homogeneous finite cable with the leaky-
end boundary condition:

tanh(//A) + G1/Gao

Ginp = Goo
1+ (GL/Goo) tanh(//A)

(5.16)

5.2 Voltage transients in dendritic cables

Dendritic cables are usually not in a steady state. The voltages, currents and con-
ductances at different sites change over time. Ultimately, the electrical transients
are the most interesting phenomena from the point of view of the dendritic func-
tioning. Generally, they are obtained as numerical solutions to the non-stationary
cable equations. Getting such solutions, especially in the case of complex dendritic
structures with non-linear properties, is a rather complicated procedure. Cable
theory allows some informative solutions in simplified cases of passive dendrites
receiving certain, ‘standardized’ input actions.

5.2.1 Green’s function and transient solutions

For the non-stationary cable equation in dimensionless coordinates:

PV(X,T) VX, T (X, T
LT) _VLT) g WGT)
X2 oT ACm
where Iy(X, T) = Atnlgy(x, t) is the stimulating current, the Green’s function or
impulse response is Vs(X, T), the solution obtained in a particular case when the

stimulating current is an infinitely brief pulse, which deposits the charge Qg = Iy,
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at the cable input, X = x /A = 0. For instance, in the case of infinite homogeneous
cable with a standard ‘boundary condition’:

VX)—> 0 as |X| = o0

the solution is
2

#;‘“)meé e 7 (5.17)

For linear cables, the impulse response allows one to build-up the solution
to the non-stationary cable equation, which describes the response to the input
current of an arbitrary waveform /(7). The arbitrary input current is represented
as a sequence of §-pulses appropriately ‘weighted’ according to the command
waveform. The composite response of the cable to such input is the superposition of
the impulse response function and the input current. The response voltage V (X, T)
is the sum (integral) of the impulse functions generated by each individual pulse
and appropriately weighted by the pulse. Mathematically, this is the convolution
integral:

Vs(X, T) =

T
VX.T) = %VS(X, T) s I(T) = %f Vs(X. T)I(T — T')dT'
0

where the symbol * denotes convolution and 7,/ Q is the scaling factor converting
the voltage Vs into an impedance.
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Current transfer over dendrites

Currents flowing between dendritic sites redistribute charges over the dendritic
space. The spatial maps of the net current are complementary to the those of
the membrane voltage. The current density maps show contributions, positive or
negative, of different dendritic sites to the core current flowing in the dendrites.
In neurons, the currents are transferred by ions, which are not only elementary
charges but also elementary amounts of substance. The current flow into or out of
a unitary volume of the dendritic space changes the amount of substance per unit
volume, that is the concentration. Both electrical and chemical signalling in neurons
is concentration dependent. The well-known examples include the Nernst equilib-
rium potentials for the transmembrane ion currents, the concentration-dependent
currents such as calcium-dependent potassium current, concentration-dependent
ion pumps in the plasma membrane and in the membrane of intracellular or-
ganelles, and finally ion concentration-dependent intracellular biochemical reac-
tions of many vitally important substances. Hence, the current density maps are
necessary for understanding the contribution of the current flow and substance
fluxes across the membrane to the dynamics of ion concentration over the dendritic
space.

6.1 Charge transfer ratio

The charge transfer ratio also called the relative effectiveness of the charge transfer,
was first introduced by Barrett and Crill (1974) to characterize the contributions
from different individual dendritic sites to the total somatopetal current transferred
to the soma. By definition, the charge transfer ratio Tj; is the time integral of
the voltage ij produced at the reference point, x;, i.e. at the soma, by charge
injected at the point under investigation, x;, divided by the time integral of the
voltage occurring at the reference point when the same amount of charge is injected

65
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directly at x;:

?OVJ.’(t)dt
0

[e.¢]

[ Vi(n)de
0

Ty = (6.1)

Since in a linear (passive) cable, the time integrals are independent of the time
course of the charge injection, Tj; is defined also by the ratio of corresponding
steady voltages:

Tiy=Vj/V;  where  Vi=V, /Ay (6.2)

Hence the value calculated for the relatively simple case of steady charge injection
is equal to that for transient injection, and Equation (6.2) is valid in the more general
case.

6.2 Somatopetal current transfer and somatofugal voltage spread
6.2.1 Theorems

The lemmas and theorem given below are used for obtaining relationships between
somatofugal voltage and somatopetal charge transfer in the same arbitrary complex
dendritic path domains (Section 6.3). The derivations are based mostly on the
known steady-state solution of the cable equation, e.g. Equation (2.25) in Rall
(1989), describing the distribution of electrotonic voltage along a cable of finite
length, Ax = [, with uniform diameter, d, and with the voltage clamped to V; at
the origin and leak conductance G, at the end:

V) Vo = cosh((/ — x)/1) + (GL/Goo)s%nh((l —x)/A) 6.3)

cosh(l/A) + (GL/Gso)sinh(l /1)

The leaky boundary conditions are taken since they can represent an arbitrary
continuation of the path and, when necessary, be easily transformed to either sealed
or open ends by taking the corresponding limit. Uniform segments of passive
cable [x;, x;] (Figure 6.1) were used to compose arbitrary paths (Figure 6.2) with
elementary piece-wise uniform and branching sections (Figure 6.3).

For current injections, the input conductances to the ground at the extremes of
[x;, xi] are

Gi=G; +Gji, Gi=Gi +Giy (6.4)

where G ;_ and G are the boundary leak conductances, and G ;; and G_ are the
input conductances as seen from the origin and the end of the segment, respectively.
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> 4—|—>\s
! !
I 1, I I,
G. G, G, G

Figure 6.1 Electrotonic voltage as a function of x (a) for a uniform segment
[x;, x¢] of passive cable, (b) when currents /; and I are injected, respectively,
at x; and x;, where input conductances to the ground are G; and Gy, and input
conductances met by the core currents, /4 and [;+, are G j+ and G+, respectively.
(From Korogod, 1996.)

@) 1
A~
NS 4
sl Ny,
~ | | i i+l
| | ‘ T T-- Vi
| | } | \r——'-‘
b 4
(b) B /ﬁy
\E , Vi, Vi ’{ b
4 o b
e I I I [
Xo X Xt Xi X XN-1 XN
()
0 Gi—l Gi Gin Gy
i = e —— = e
N \ i e T
\ \

Figure 6.2 Steady voltage decay in the opposite directions (a, b) along an arbitrary
piece-wise uniform route on a passive dendritic tree (c). G; are input conductances
to the ground at x; (i =0, ..., N). (From Korogod, 1996.)
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Figure 6.3 Elementary piece-wise uniform segments [x;, x;] of the route shown
in Figure 6.2 without (a) and with (b) side-branch offspring [x;, x;] having input
conductance Gy, for the core current at xj. Other designations are the same as in
Figure 6.1. (From Korogod, 1996.)

Lemma. The ratio of the steady voltage attenuations, A j and Ay;, in the forward
and reverse directions along a uniform passive segment [x j, xi ] is equal to the ratio
of the input conductances to the ground at the end and the origin of the segment:

Ajk/ Ak = G/ G (6.5)

Proof. Use Equation (6.3) for [x;, x;] shown in Figure 6.1. The corresponding
reciprocals of Equation (6.3) are the attenuation factors in the forward and reverse
directions, respectively:

Ajp = V;/ Vi = cosh(Ax/L) + (G4 / Goo) sinh(Ax /1) (6.6)
Ay = Vk//Vj’ = cosh(Ax/A) + (G j—/Gw) sinh(Ax /1) (6.7)
The ratio of Equations (6.6) and (6.7) reduced by cosh(Ax /1) is

. 1 + (Giy/Goo)tanh(Ax /1)
Al Ay = 771 (G j_/Goo)tanh(Ax /1) ©8)

The ratio of the input conductances to the ground is

Gi/Gj = (Gi- +Gi)/(G;—- +Gjy) (6.9)
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Substitution of corresponding input conductances of the leaky segment written
as Equation (2.37) of Rall (1989), namely
tanh(Ax/A) + Gt/ Goo

I T 1 (Gry/ Goo)tanh(Ax /1) (6.10)

and
tanh(Ax/A) + G- /G

— (6.11)
1 +(Gj-/Goo)tanh(Ax /1)

k—

into Equation (6.9) gives Equation (6.8) and ultimately Equation (6.5).

Lemma. The steady voltage attenuation along an arbitrary passive path, [xy, xy]
composed of N segments is equal to the product of the attenuations along all the
segments [x;_1,x;],i = 1,..., N composing this path:

N
Aoy =[] Ai-1 (6.12)
i=1

Proof. Consider [x;_1, x;] and [x;, x; 4] in the path [x¢, xy] (Figure 6.2, ¢). The
voltage attenuations along these segments in the forward direction (Figure 6.2, a)
are

A1 =Vie1/ V()| x=x,— (6.13)
and
Aiiv1 = V(O)lx=x+/ Vit (6.14)
By virtue of continuity of the voltage, that is
V@l = V@licxs = Vi (6.15)
The product of Equations (6.13) and (6.14) is
Aic1iAiiv1 = Vit /Vier = A1 (6.16)

Since the voltage is continuous in all x; (i =1, ..., N — 1) including branching
points, the same procedure being applied recurrently gives Equation (6.12).

Lemma. The ratio of the steady voltage attenuations, Aoy and A yo, in the forward
and reverse directions along an arbitrary passive path is equal to the ratio of the
input conductances to the ground at the end and the origin of the path:

Aon/Ano = Gn /Gy (6.17)
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Proof. Consider two auxiliary cases. First, consider (Figure 6.3, a) the non-uniform
non-branching path [x;, x;] composed of [x;, xx] and [x, x;] with G ;, G and G,
defined as in Equation (6.4).

By Lemma (6.12) the voltage attenuation along [x;, x;] is the product of the
attenuations along [x;, x¢] and [xi, x;]. Hence, the attenuations in the forward and
reverse directions, respectively, are:

Aj,l = Aj,kAk,l and Al,j = A[’kAkJ' (618)

In Equation (6.18) factors A; x and Ay ;, Ax; and A;, respectively, are related to
the same uniform segments. Hence by Lemma (6.5)

Aj,k = Ak)ij/Gj and Ak,l = A[)kGl/Gk (619)
Substitution of Equation (6.19) into Equation (6.18) gives
Aji=A1;G/G; (6.20)

Since the above derivations do not depend on explicit expression of G, Equation
(6.17) is also valid in the second auxiliary case (Figure 6.3, b), when the non-
uniform branching path [x;, x;] is composed of [x;, x¢] and [xi, x;], with the side
segment [xy, x;] arising at x;. The input conductances to the ground at x; and
x; are G; and G, defined as in Equation (6.4), whereas Gy = Gy_ + G4 + Gy
additionally includes input conductance to the side segment as seen looking from
xi. Replacing G4 by the sum (G4 + G_) in Equations (6.9)—(6.11) results in
the same Equation (6.20). Thus, this procedure being applied recurrently to all x;
from [xo, xn] (Whether they are branching or not) yields the proof.

Theorem. The charge transfer function of an arbitrary point, xi, of the passive
cable in relation to any reference point, x;, is equal to the reciprocal of the
electrotonic steady voltage attenuation along the path leading from the reference
point to the one under consideration

T =1/Aj 6.21)

Proof. Use Equation (6.2) and Figure 6.1. For the voltages VJT and V; produced
at x; by the same currents I; = I; = I injected at x; and directly at x;, Equation
(6.21) holds. The voltage ij is related to V) by Ay; in the reverse direction:

V]f = V,/ Ay (6.22)

The voltages produced by the same current, /, at different injection sites are defined
by the local input conductances to the ground:

Vi=1/G;, and V/=1/G, (6.23)
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Substitution of Equations (6.22) and (6.23) into Equation (6.2), reduction of the
equal currents and using Equation (6.5) completes the proof of Equation (6.21).

6.2.2 Path profile of the somatopetal current transfer

The soma is the natural common reference site, x( for all dendritic paths. When
it is assumed to be isopotential with the whole cell input conductance Gy, then
the injected current / produces the same voltage V (xo) = Vj, at the root of every
dendrite. Consider a dendritic site, x4. According to Equations (4.29) and (6.17)
the relative effectiveness of the charge transfer from x, to x is:

Tao =1/A0a = Va/ Vo (6.24)

Provided that the voltages are produced by the same current, I, injected at
different x, the relative charge transfer effectiveness of any dendritic site can
be characterized in the same way and compared with those of other dendritic
sites composing branches, paths and subtrees of the whole arborization. Since the
somatofugal voltage, V(x;), is a continuous function of the path distance from
the soma and the reference voltage Vy = constant, the relative effectiveness of
the somatopetal charge transfer, 7,0 = T (x,), defined by Equation (6.24), is also a
continuous function on the same domain. The profile of 7' (x,) is completely defined
by the corresponding profile of the normalized somatofugal voltage, V (x;)/ Vo, and
the path behaviour of V (x;) induced by the dendritic geometry also represents that
of T'(x4). Correspondingly, the breaks in continuity of the voltage gradient induced
at geometrical non-uniformities as a result of electro-geometrical coupling define
the breaks in continuity of the path derivative, a7 (x;)/dx,4, that is, somatofugal
decrease in somatopetal effectiveness.

6.3 Current transfer ratio for passive paths at different
boundary conditions

The relationship between somatofugal voltage and somatopetal charge transfers
(Equation 6.24) allows one to obtain current transfer ratios directly from the solu-
tions to cable equations for different passive dendritic cables (Equations 5.5 and
5.8).

6.3.1 Uniform dendrite of infinite length

In the simplest case of an infinite length (! — o0), uniform (diameter D) passive
(cytoplasm resistivity R;, membrane resistivity Ry,) dendrite, it follows from (5.5)
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that the transfer function is exponential:

T(x; Rp) = exp(—x/A) (6.25)

6.3.2 Finite length dendrite with clamped end

Combining Equation (6.24) with Equation (5.6) gives the current transfer function

for a finite length cable with the voltage clamped to the resting level at the distal

end:

sinh((/ — x)/A)  sinh(L — X)
sinh(/A) _ sinhL

T(x; Ry = (6.26)

6.3.3 Finite length dendrite with sealed end

Combining Equation (6.24) with Equation (5.7) gives the current transfer function
for the finite length dendritic cable with a sealed distal end:
cosh((l — x)/A) _ cosh(L — X)

T ;Rm = =
(x ) cosh(//\) cosh L

(6.27)

6.3.4 Finite length dendrite with leaky end

Combining Equations (6.24) and (5.8) gives the following expression for the current
transfer function for a finite length dendritic cable with a leaky distal end:
cosh((/ — x)/A) + (GL/G ) sinh((I — x)/A)

T(x; Rnm) = - (6.28)
cosh(l/A) 4+ (GL/Gso) sinh(l/A)

Here Ry, is included in A and G . Using notations X = x/A, L =1[/} and B =
G/ G, Equation (6.28) can be rewritten in a more compact form:
cosh(L — X) + Bsinh(L — X)

T(x; Rn) = - (6.29)
cosh L + Bsinh L

6.4 Local electro-geometrical coupling in non-uniform paths
6.4.1 The sites of non-uniformity in diameter

Consider a segment [x(, xp] of passive dendritic branch with a step change in
the diameter at x; (Figure 6.4, b). The pre-step and post-step uniform sections,
[x0, x1] and [x1, x2], have, respectively, diameters d; and d,, and constant core
conductances per unit length:

oy =ndi /AR,  x € [x0,x] (6.30)
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Figure 6.4 Voltage and gradient behaviour at the sites of step change in diameter
(a) and bifurcation (c) shown in (b) and (d). Numbers 0, 1 and 2 added to subscripts
mark the values corresponding to uniform segments. (From Korogod, 1996.)

and
oy =md; /AR,  x € [x1, x2] (6.31)

Assume that the voltage is clamped to Vj at xy and decays towards the leaky
boundary, x;, with leak conductance, G,.. At x; the voltage is continuous,
V(x1—) = V(x1+) = Vi, the voltage gradient is discontinuous and the core current
is conserved, which means:

01& = né& (6.32)

where & = £(x;—) and & = E£(x;+). As follows from Equations (6.30-6.32),
the ratio of post-step to pre-step gradient at this site is determined by the purely
geometrical ratio of the inverse square diameters:

Uy = 5/& = (di/dy)* (6.33)

although the gradients themselves do depend on electrical parameters of the cable,
boundary conditions and voltage.

6.4.2 The branching point

Consider a bifurcation node (Figure 6.4, c). Let the parent and the two daughter
segments have the lengths [y, /; and /; and the uniform diameters dy, d; and
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d,, respectively. The corresponding constant values of o;(x) are o, o and 0;. The
voltage at the origin of the structure is V. The daughter segments have ‘leaky’ ends
with the leakage conductances G and Gy . The steady-state voltage distributed
along the parent segment is described similarly to Equation (6.3) with G, = Ggr. =
G1in + Goin now determined by leakages into the two daughter branches. At the
node, the voltage is continuous, yielding equality of the pre- and post-node values:

Vo(lo) = V1(0) = V»(0) (6.34)

The condition of conservation of the core current written in a form similar to
Equation (6.32) here involves three terms, 0oy = 01&; + 0,&;, from which it
follows that:

d3& = di& + d;&, (6.35)

It is noteworthy that the axial current and the voltage produced at the origin of each
daughter branch are linked with the factor of input conductance:

Iix1 = 01&1 = G1in V1(0) (6.36)
and
Lo = 02E = Goin V2(0) (6.37)

The post-node gradient at the origin of a certain daughter branch may be related
either to that at the origin of the sister branch, or to the pre-node gradient at the end
of the parent branch. Consider the gradient £;. The ratio of the post-node gradients
can be obtained by dividing I,x; by I, from Equations (6.36—6.37) and taking
account of Equation (6.34):

Wy = &1/& = (da/d1)*(G1in/ Gain) (6.38)

Dividing Equation (6.35) by d?&; with regard to Equation (6.38), one obtains the
ratio of post-node and pre-node gradients:

Wi = /& = (do/d1)*G1in/(G1in + Gain) (6.39)

Reciprocally, \112] = 82/81 = 1/\1112 and LIJO] = 50/81 = 1/\1110. As follows from
Equations (6.38) and (6.39), unlike at internal non-uniformity sites (Equation 6.33),
the ratio of the gradients in different branches at the branching point is determined
not only by the square inverse ratio of their diameters, but also depends on the input
conductances to the daughter branches. This means that the electrical parameters of
the membrane and the global geometry of the subtrees originating at the daughter
branches may also influence the relative magnitude of disturbances of electrotonic
gradients at the branching points.
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6.5 Current transfer from distributed dendritic sources

According to cable theory (Jack et al., 1975; Rall, 1989; Taylor, 1963), for any
element x of uniform dendrite of diameter d the core current i.oe., the gradient
of the membrane potential 0 E(x, t)/dx and the core resistance per unit length
ri = Ri(4/md?) are related by Ohm’s law (Equation 4.8). Consider Equation (4.14),
defining the link between the core current and the total membrane current per unit
path length i (x, t), written in a slightly modified form:

Olcore/0x = —i(x,t) = —nwd[CIE(x,1)/0t 4 Jion(x, 1)] (6.40)

The increment (Equation 6.40) in the steady state (d E(x, ¢)/0¢t = 0) is defined only
by:

Jion(x) = Gm(X)[E(x) — Eq(x)] = Gm(x)E(x) — Gn(x)Eq(x)  (6.41)

Once the path profiles of the steady voltage are computed, the corresponding
path profiles of G,(x), Eq(x) and Jion(x) can be defined by Equations (3.5), (3.9)
and (6.41). As follows from Equations (3.4), (4.7) and (4.17) in the steady state, the
elementary contribution to the core current can be obtained from the path profiles
of the total membrane current per unit area or per unit path length:

Olcore(x) = —mwd Jn(x)dx = —i(x)0x (6.42)

Correspondingly, one can obtain the total core current collected from any den-
dritic path [ by summation (integration) of elementary contributions along this
path:

Leore (1) =/8icore(x) = _fi(x)ax (643)
! I

Equations (6.42) and (6.43) give absolute estimates of the current transfer ef-
fectiveness of elementary segment dx and finite length path /, respectively, for the
case of distributed sources. Dividing the core current from an elementary source
(Equation 6.42) or that from any sub-path [’ of the path [ by the total path current
(Equation 6.43) gives the relative contributions to the total core current oo (l),
which are estimates of the relative current transfer effectiveness of the parts of the
dendrite with distributed sources:

8T,(x) = 8icore(x)/lcore(l) (644)
Tl(l/) = / aT[(X) = core(l/)/lcore(l) (645)
l/

For branching paths, the contributions are computed according to the rules of
conservation of the core current at branching nodes.
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7

Electrical structure of an artificial dendritic path

The mathematical tools described in the preceding chapters can now be applied first
to simple artificial structures for the sake of demonstration of the electrical relations
between proximal and distal dendritic sites. Studying these relationships means
analyzing the electrical states of the sites. In a dendritic cable, the local electrical
state, that is the state of a site, is characterized by the transmembrane voltage,
current and/or conductance. A set of values of voltage (current, conductance)
defined at consecutive sites along a path forms the so-called path profile of the
corresponding values. It is graphically represented by a plot of these values as a
function of the path distance from the soma.

A single dendritic path has a unique dimension measured in units of distance
along the dendrite. Electrical relationships between all the sites situated in this
continuous one-dimension space at shorter or longer distances from the reference
point, usually the soma, provide a one-dimension representation of the electrical
structure of a path. The electrical relation between proximal and distal sites is the
only type of spatial relationship that can be assessed by the electrical picture of
a single path. As a single dendritic path (Figure 7.1) is the most simple building
block of an arborization, its study provides basic insights into the complexity of
the dendritic structure.

In this chapter, the impact of a variation in diameter on the electrical structure
of a single dendritic path is analyzed in detail. The simulated neuron has an axon
represented by a non-myelinated proximal segment 200 um in length and 3 um in
diameter, a cylinder-shaped soma (length 20 pm, diameter 22.5 wm) and a single
non-branched dendrite of the same length, 780 um, either uniform (Figure 7.2, A)
or with a step change in diameter in the middle.

The simulations are performed in two conditions illustrated in Figure 7.2, B
and C. The first condition corresponds to the experiments performed in modelling
studies (Stuart et al., 2001), which mimic a single-site input applied by a synapse
to the dendrite, the voltage from this external source being transferred to the soma

77
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Path

L

Figure 7.1 Schema of a single dendritic path which is a continuous structure from
the soma (S) to the tip with two variables, length of the path and heterogeneous
diameter.

A Soma
Dendrite
Axon
200 um 780 um
20 um

Figure 7.2 Schematic representation of the model neuron to study distal to prox-
imal relations along a single path. A: Values of the geometrical parameters used
in the model neuron. B: Single sites inputs (circles) at proximal and distal loca-
tions along the passive dendritic path. The specific membrane capacitance is
Cm = 1 uFcm™2, the cytoplasm resistivity is R; = 100 - cm throughout the
cell. The specific membrane resistivity R, is variable. C: Multisynaptic inputs
homogeneously distributed along the either passive or active dendrite. Specific
electrical parameters are indicated for each case in the text.

and recorded there. This type of simulation experiment studies the relation between
distal and proximal inputs. In general, the use of two compartments is sufficient
although several compartments are also used.

The second condition (Figure 7.2, C) considers that a neuron never exists in iso-
lation but is embedded in heavily interconnected neuronal networks that are active
spontaneously. Therefore a spatially distributed, rather than single-site, activation
of dendritic conductances is applied to the model. This condition is recognized as a
more realistic input signal in many studies of input—output conversion in neurons,
including simulations (Holmes and Woody, 1989; Abbot, 1991; Bernander et al.,
1994; Rospars et al., 1996) and experimental research (Powers et al., 1992; Powers
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and Binder, 1995). In some cases, activation of multiple discrete inputs can be a
reasonable compromise (Rusakov et al., 1996).

Based on laws of electricity physics, analysis of coupled electrical states of
different dendritic sites and of changes in these states allows one to specify the
relation between different sites and parts during spatial signal processing.

7.1 Electrical structure of passive paths with single-site inputs

Here we consider some simple examples of geometry-induced distal to proximal
relations of electrical states along a simple path with passive membrane with type 1
I-V relation (Figure 7.2, B). Even though they are well-known, the smooth steady
voltage distributions along uniform dendrites are computed as a reference for
further consideration of electric disturbance at a local geometrical non-uniformity.

7.1.1 Path profiles of the membrane voltage

The case of different diameters and boundary conditions are shown in Figure 7.3,
a and b. The smooth monotonic somatofugal decay of voltage has a greater rate
along thinner dendrites. At a given distance from the soma, dendritic sites with
different diameters display different voltages.

A step change in diameter, when large enough, causes an abrupt change in the
voltage gradient (Figure 7.3, c, d). At the sites of diameter variation, the axial
current meets a non-uniform conductance caused by an abrupt change in the cross-
sectional area of the core conductor with uniform volume resistivity, R;. Since the
voltage is continuous and the axial current is conserved, the pre- and post-step
voltage drops per unit length (the gradients) produced by the same current are
inversely proportional to the core conductances of the unitary length sections of the
adjacent pre- and post-step segments (Equation 6.32). Each of these conductances
is proportional to the cross-sectional area of the corresponding uniform segment
(Equations 6.30 and 6.31). Consequently, the gradients or the slopes of voltage
decay are proportional to the corresponding cross-sectional areas, i.e. to the square
diameters. Under both boundary conditions (Figure 7.3, c, d) when the pre-step
diameter is greater than the post-step one, the somatofugal gradient increases (curve
A) and vice versa (curves C and D). The greater the relative change in diameters
(d»/dy), the greater the change in the slope of somatofugal voltage decay (curves C
and D). In accordance with Equation (6.33), there is no dependence on boundary
conditions, nor on R,.

The information contained in the voltage path profiles provides the electrical
picture of the dendrite, that is the electrical state of any site at any distance from
the soma. Ohm’s law says that the voltage drops in the direction of the current
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Figure 7.3 Somatofugal steady voltage distribution along uniform (a, b) and non-
uniform (c, d) dendrites with open (a, c) and sealed ends (b, d). Location of
the soma and the input of dendritic current are indicated by arrows. Diameters
of uniform dendrites are indicated near the profiles in (a, b). Curves A to D in
(c, d) correspond to different post-step diameters. Examples for the same pre-
step diameter, d; = 5 um, and different post-step diameters, d, = 3, 8 and 10 um
(curves A, C and D) in comparison to a uniform case (curve B d; = d, = 5 um).
(From Korogod, 1996.)

flow. Hence, the plot of the voltage path profile indicates that the core current flows
towards or away from the soma, depending on the direction of the voltage decay.
The abrupt voltage drop observed when the current crosses the border between
regions with different diameters, thus different resistances, is explained by the
conservation law, which says that the core current is the same before and after such
structural heterogeneities. According to Ohm’s law in differential form, equality of
the currents requires this abrupt change in the voltage gradient to keep the same core
current. That the voltage gradient is a good sensor for revealing geometry-induced
electrical heterogeneity of the dendritic core is thus demonstrated.

7.1.2 Somatopetal current transfer from single-site sources

According to the directional reciprocity of the somatofugal voltage profile and the
somatopetal current transfer effectiveness (Korogod, 1996; Carnevale et al., 1997;
Koch, 1999 and see also Chapter 4), the pattern of the non-smooth somatofugal
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Figure 7.4 Excitatory postsynaptic potentials (EPSPs) at the soma in response
to somatic and dendritic injections of transient synaptic current: plots (a) and (b)
correspond to Figure 7.3, b. In the upper right-hand corners, values of relative
effectiveness defined by the voltage-time integrals. (From Korogod, 1996.)

decay of voltage just described is identical to the path profile of the non-smooth
decay of current transfer with increasing path distance from the soma.

In the same models, if we compare the transfers of steady currents to the trans-
fers of transient currents, the values of T,y can be computed for different sites on
the dendrites and compared further. The calculations are performed in two ways.
First, T, is calculated as defined by Equation (6.24) from the steady somatofugal
voltage profiles e.g. those shown in Figure 7.3, b. Second, it is calculated from
the original definition as the ratio of voltage-time integrals of the somatic exci-
tatory postsynaptic potentials (EPSPs) produced by the same transient synaptic
currents injected at the dendritic site under study and at the soma (see Figure 7.4).
Figure 7.4, a and b shows the results obtained for the sites on single uniform den-
drites of the same length but with different diameters. These plots correspond to
Figure 7.3, b, in which the input site is indicated by an arrow. At sites equidistant
from the soma, the relative effectiveness is greater for a thicker dendrite (diameter
5 um) with sealed ends.

7.2 Electrical structure of paths with distributed tonic inputs

Distributed intrinsic current sources occur in passive linear or active non-linear
dendrites when they receive tonic activation of multiple synaptic inputs over the
whole membrane surface area (Figure 7.2, C). In active dendrites, such types
of sources occur also when single-site inputs are activated. In these cases the
charge/current transfer ratio (Barrett and Crill, 1974) is not an appropriate estimate
of the transfer properties of different sites along the path under study. An adequate
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Figure 7.5 A: A single active input generates inward current which divides into
the greater somatopetal and smaller somatofugal branches. B: Counter-directed
branches of axial currents generated by two neighbouring synapses subtract and
give an elementary net current directed to the soma. C: Repeating events shown
in B give a chain of elementary somatopetal currents producing the membrane
voltage E(x) which drops in the direction of the current flow.

alternative is the universal estimate proposed by Korogod and Kulagina (1998b)
(see also Chapter 4).

7.2.1 Voltage transfer from distributed sources

The universal estimate (Equation 6.42) calculates the contributions of each element
dx of the dendritic path to the total current collected over the path receiving
distributed excitatory inputs (sources), and transferred to the region of distributed
sinks of the core current, usually the soma and the initial segment of the axon
(Korogod and Kulagina, 1998b).

What is the physical picture of these events? It is illustrated by the explanatory
Figure 7.5. Consider a dendrite with the membrane homogeneously covered by
excitatory synapses receiving tonic activation of equal intensity (pre-synaptic fir-
ing rate). At each synaptic site, equal synaptic conductances are then introduced
(Abbot, 1991). An input inward current of a certain intensity is generated at each
site as this conductance is associated with depolarizing reversal potential (Figure
7.5, A). When this transmembrane current enters the core, it meets unequal input
conductances in the somatopetal and somatofugal directions. The input conduc-
tance in the somatopetal direction is greater than in the somatofugal direction
because the soma, having a relatively big volume and an attached axon, provides
a much better leak at the proximal end than the thin distal terminals that have
big resistances. Thus, the input current at these sites partitions into unequal lateral
branches, the greater branch directed to the greater conductance, i.e. somatopetally.
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Now consider two neighbouring synapses doing the same (Figure 7.5, B). At both
sites, we have two branches of the core current, a greater somatopetal and smaller
somatofugal. The unequal counter-directed branches of the core currents generated
by these synapses subtract so that the resulting net current is directed somatopetally.
Finally, consider a chain of neighbouring synapses again doing the same. The events
near each pair are the same so that we have a chain of elements of the core current
directed towards the soma (Figure 7.5, C). The superposition or the algebraic sum
of the core currents at each site provides the net core current increment, positive or
negative (decrement in the latter case). By the current conservation law, this equals
the net local transmembrane current.

Hence, the principal structural asymmetry of the proximal and distal parts of a
dendrite causes asymmetry of the lateral input conductances and inequality of the
somatopetal and somatofugal portions of the core current, which is equal to the
inward current at each synaptic location. This inequality leads to the occurrence
of the somatopetal core current which receives contributions of inward currents
from the distributed sources of tonically activated excitatory synapses. Here again,
remember that the voltage drops along the dendrite in the direction of the core
current flow. It means the occurrence of a dendritic depolarization that decays from
the distal towards the proximal end attached to the soma.

The purpose of such a schematic explanation is to facilitate the understanding of
the complex events occurring in the following specific examples, when dendritic
voltage, conductance and current are computed along the path. Consider a finite-
length uniform dendrite receiving tonic activation of homogeneously distributed
synaptic inputs. Its membrane properties are also uniform and are defined by the
corresponding /-V relation. First, we consider the cases when the /-V relation has
positive slope and is linear (type 1) or non-linear, the Hodgkin—Huxley membrane
(type 2) (Figure 3.1, A or B).

7.2.2 Membrane 1-V relation with positive slope

Compare two artificial neurons of the same morphology (see insert in Figure 7.6, b)
like that described above (see Section 7.1). In both models, the soma and axon have
identical passive membrane properties (conductivity G, = 0.677 mS cm ™2 associ-
ated with the equilibrium resting potential £, = —65mV). However, the membrane
properties of their dendrites differ. One is passive with G, = 0.0677 mS cm~2, and
E, = —65mV (Figure 7.6, a, ¢), and the other one is active with the same Nat, K+
and leak conductances as the conventional Hodgkin—Huxley model (Figure 7.6,
b, d) but with 10 times lower values to represent a lower channel density in the
dendrites than in the soma (Katz and Miledi, 1963; Clements and Redman, 1989).
The common feature of both dendrites is that their membrane /-V relations have



84 Electrical structure of an artificial dendritic path

a b
-30 -
35 oYY axon_ dendrite
_ A . 3
0 soma
—45 1w Eq@)

Potential, mV

E(x) ~
o /— T
=55

—60 ;

c d
0.3

~
§
g o2 Cn),
2 G, =Gy + Gp.d Gyp(x)
z !
3 0.1 Gy (),
3 Gy Gpa K Gs |
é G

0 Ona(%)

-200 0 200 400 600 800 -200 0 200 400 600 800

Path distance, um Path distance, um

Figure 7.6 Path profiles of the membrane potentials and conductivities resulting
from steady uniform activation of excitatory synaptic inputs distributed along a
homogeneous dendrite with passive (a, ¢) or active (b, d) extra-synaptic mem-
brane (simulated neuron shown in insert in b); a, b: transmembrane potential E(x)
(solid lines) and effective equilibrium potential of the total transmembrane current
E4(x); c: homogeneous total membrane conductivity G, and its equal partial con-
ductivities of synaptic and passive extra-synaptic dendritic membrane G, Gy 4,
d: non-homogeneous total membrane conductivity G,(x) and homogeneous volt-
age independent G, G components. Gyy(x) = Gna(x) + Gk(x) + G is non-
homogeneous conductivity of the active extra-synaptic membrane of the dendrite.
(From Korogod and Kulagina, 1998b.)

a positive slope over the whole range of voltages, but are linear in one case and
non-linear in the other (Figure 3.1, A and B).

In the initial steady state, the path profile of the transmembrane potential and
the equilibrium potential of the total transmembrane current are equal and uni-
form, E = E; = —65 mV over the entire neuron. Introducing a steady uniform
synaptic conductivity Gy = 0.0677 mS cm™2 (Figure 7.6, c, d) after relaxation of
the transients leads ultimately to steady depolarization shifts of the transmembrane
potential E(x) and of the effective equilibrium potential of the total transmembrane
current Eq(x) (Figure 7.6, a, b, solid and dashed lines, respectively).

Consider the path distributions E(x) and Eq(x) produced by the same uni-
form activation of excitatory synaptic conductances along passive and active
dendrites (Figure 7.6, a, b, solid lines). In both dendrites, the depolarization
E(x) is spatially inhomogeneous. It is highest at the distal end of the dendrite
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(x = 800 um) and decays towards the soma (x = 0) and further to the distal end of
the axon (x = —200 um). The axo-somatic part of the path profile E(x) is concave,
and the dendritic part is convex. The path gradient (the slope of the path profile) of
the transmembrane potential is positive along the dendrite and negative along the
axon (note negative path coordinates of the axo-somatic part in Figure 7.6, a, b)
and decreases with increasing path distance from the soma. The depolarization
and its longitudinal gradient are greater when the dendritic membrane is passive
(Figure 7.6, a, b, solid lines). The effective equilibrium potential E4(x) remains at
the same uniform level —65 mV in the soma and axon, but changes in the dendrite
depending on the properties of the extra-synaptic membrane. In the passive dendrite,
it is shifted to uniform depolarization at E; = —32.5mV. In the active dendrite,
E4(x) is also shifted to depolarization, but non-uniformly. The depolarization E4(x)
is maximal at the proximal end of the dendrite and decays with increasing path
distance from the soma.

The vertical deviation of the solid line from the dashed line in Figure 7.6, a and
b defines the difference between the membrane potential E(x) and the effective
equilibrium potential E4(x), that is the driving potential E(x) — E4(x), of the total
transmembrane current J,(x) (see below). With such path profiles of E(x) and
E4(x), the driving potential E(x) — E4(x) is negative in the dendrite and positive
in the axo-somatic part. The absolute value of the driving potential decreases with
increasing path distance from the soma. In the dendrite, the decrease is greater
when its extra-synaptic membrane is active (Hodgkin—Huxley type).

Path profiles of total and partial membrane conductances

Path profiles of the total and partial membrane conductances are sensible descrip-
tors of the electrical structure of the dendrites in two respects. First, they explain
the shape of the path profiles of the effective equilibrium potential Eq(x) (Figure
7.6, a, b, dashed lines). Second, they define the path profiles of the density of the
total membrane current Ji,(x) and its components (see below, Figure 7.7, a, b).
According to Equation (3.9), the effective equilibrium potential of the total trans-
membrane current is defined as the weighted sum of the partial equilibrium (rever-
sal) potentials of the component currents. For each, the weighting factor is a
proportion of a given partial conductivity in the total membrane conductivity.

In the passive dendrite, both synaptic G and extra-synaptic G 4 conductivities
are voltage-independent equal and spatially homogeneous (overlapping horizontal
lines in Figure 7.6, ¢) and so is their sum G, = G+ Gpq (in Figure 7.6, c,
parallel horizontal line). Correspondingly, the weighting factors G/Gp and
Gp,4/ G are spatially homogeneous and equal to 0.5, and so is the sum of the
weighted equilibrium potentials of the passive membrane and synaptic currents
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(Equation 3.9). This explains the spatially homogeneous path profile of E, along
the passive dendrite (Figure 7.6, a, dashed line).

In the active dendrite, the extra-synaptic dendritic conductances are voltage-
dependent. They react to spatially inhomogeneous transmembrane voltage and,
although their densities (maximum values) are homogeneous, the activation levels
are not. Path distributions of the dendritic conductivities (Figure 7.6, d) show that
although the synaptic conductivity Gy is uniform, the total membrane conductiv-
ity Giy(x) and its main component, the conductivity of the active extra-synaptic
membrane Gyp(x), increases with path distance from the soma following the
transmembrane depolarization E(x) (Figure 7.6, b). The main contribution to this
change in Gyy(x) and thus Gp(x) comes from an increase in non-inactivating
potassium conductivity Gk (x) associated with the hyperpolarization equilibrium
potential Ex. The contribution from the inactivating sodium conductivity Gy,(x)
associated with the depolarization equilibrium potential Ey, is about one order of
magnitude lower than that from Gg(x). Increasing weight Gg(x)/Gn(x) of the
hyperpolarizing potassium potential Fx and decreasing weights of the depolariz-
ing potentials make the effective equilibrium potential £4(x) of the total dendritic
current less depolarized at greater path distances x from the soma.

This path profile of the transmembrane voltage defines the direction and the
intensity of the core current. In the dendrite, the core current is somatopetal and
its intensity increases towards the soma. In the axo-somatic part of the neuron, the
core current is somatofugal and its intensity decreases with increasing path distance
(Figure 7.7, c, d).

7.2.3 Current transfer from distributed sources

For electrophysiologists, the question of how to distinguish the contributions of
the different dendritic elements to the net current delivered to the soma remains
unsolved. This critical problem can now be considered by analyzing the path
profiles of the total transmembrane current density per unit area in the passive and
active dendrites shown in Figure 7.7, a, b. Our tools are Equations (6.40-6.42).
Corresponding to the driving potentials, the current is negative (inward) in the
dendritic part and positive (outward) in the axo-somatic part. The density of the
dendritic current decreases with path distance from the soma. The current loss
through the unit membrane area is the highest in the soma and decreases towards
the distal end of the axon.

The plots of the increment of the core current as a function of the path distance
from the soma are shown in Figure 7.7, c, d. The advantage of this presenta-
tion is that the area between the current plot and zero axis on any path segment
defines directly the net core current collected from or consumed in this segment.
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Figure 7.7 Total membrane current density per unit area (a, b) and increment of the
core current per unit path length (c, d) as a function of path distance from the soma
as a result of the steady uniform activation of excitatory synaptic conductances of
the uniform dendrite with passive (a, ¢) and active (b, d) extra-synaptic membranes
in the same neuron as in Figure 7.6. Shaded area in ¢ shows the current collected
from the path element dx. (From Korogod and Kulagina, 1998b.)

Figure 7.7, ¢, d, shows that the contribution to the core current is made only by
the dendritic elements where the current production by the membrane genera-
tors G (x) - Eq(x) dominates over the current loss Gy, (x) - E(x) through the load
Gn(x). The elementary contribution dicoe(x) = —i(x)dx decreases with increas-
ing path distance x from the soma in both passive and active dendrites. The passive
soma and axon consume the core current delivered from the dendrite. The con-
sumption has a prominent peak in the soma, is much lower in the axon and decays
gradually along the homogeneous axon.

7.2.4 Membrane 1-V relation with negative-positive slope

It is known that the N-shaped I-V relation (type 3, Figure 3.1) is provided by the con-
tribution of a non-inactivating or slow inactivating depolarizing (inward) current,
like the persistent sodium current or L-type calcium current through extra-synaptic
voltage-gated channels, or the current through glutamatergic synaptic channels of a
special type sensitive to N-methyl-D-aspartate (NMDA-type current). The latter is
used here, as it is the minimum sufficient to provide the electrical bistability of the
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dendritic membrane (Korogod and Kulagina, 1998a). It illustrates the biophysical
basis for the hypothesis that the persistent inward current can make distal dendrites
more or less effective than proximal dendrites in the somatopetal current transfer
from distributed excitatory inputs, due to voltage-dependent amplification of tonic
synaptic currents (Schwindt and Crill, 1980; Bernander et al., 1994). It shows that
the distal dendritic ‘dominance’ or ‘surrender’ depends on the level and inhomo-
geneity of postsynaptic depolarization in an active dendrite. It is possible when the
depolarization level is within the range of the negative slope of the membrane /-V/
relation.

The study of the electrical structure of a dendritic path which is electrically
bistable provides a deeper insight into the mechanisms by which local membrane
properties rule the comparative effectiveness of distal versus proximal sites (see
Chapter 6).

To facilitate the comparison with the previously described models, the simulated
neuron has the same morphology as in Figure 7.2, C. To highlight the intrinsic den-
dritic mechanisms, a constant leak conductance is kept at the proximal end of the
dendrite with a sealed distal end. For that, the axo-somatic membrane is again
assumed to be passive with specific conductivity G s = 0.677 mS cm 2 and rever-
sal potential E, = —65 mV. Numerically, this conductivity equals to that of the
conventional Hodgkin—Huxley membrane at the same resting potential. The den-
dritic membrane has passive extra-synaptic conductivity G, ¢ = 0.0677 mS cm 2
and voltage-dependent synaptic conductivity of NMDA-type, Gnmpa associated
with the reversal potentials £, = —65 mV and Exvpa = 0 mV, respectively. Tonic
activation of distributed (spatially homogeneous) NMDA inputs is simulated by
introducing a uniform maximum value of NMDA conductivity Gxmpa, o that
the actual value of NMDA conductivity Gnvpa depends on the transmembrane
potential E via the activating kinetic variable p: Gnmpa = GNMDA - p-

Equation dp/dt = «a,(1 — p) — B,p describes Kkinetics of a depolarization
recovery of the NMDA channels from the extracellular magnesium block with
the same rate constants «, and B, as those reported by Brodin er al. (1991). The
specific membrane capacitance Cy, = 1 uF cm™2 and the cytoplasm resistivity R; =
100 €2 - cm are homogeneous throughout the cell.

The electrical structure of this path is characterized by the steady path profiles
of the same set of physical values as those used in the previous examples. They are
all taken after relaxation of the transients induced by the onset of tonic synaptic
activation. These values are: the transmembrane potential E(x); the partial and the
total membrane conductivities G(x) and G,(x) = X Gr(x); the effective rever-
sal potential of the total membrane current Eq(x) = Zi(Gi(x)/ Gm(x))Er(x); the
total surface (per unit membrane area) and longitudinal (per unit path length)
membrane current densities J,(x) = Gh(x)U(x) and i(x) = w DJ,(x), where



7.2 Electrical structure of paths with distributed tonic inputs 89

a

-2

Conductivity, mS cm
S = N W kA~ N

Effective reversal
potential, mV
&
=)

S —10
=5 -15
Q—ZO
= 2

=30

-80 —-60 —40 -20 O
Potential, mV

Figure 7.8 Steady-state local characteristics of the dendritic membrane as a func-

tion of the transmembrane potential E mV. a: Total membrane conductivity G,, and

its synaptic Gnvpa component (solid and dashed lines, respectively), mS cm™2;

b: effective reversal potential Eq mV for the total transmembrane current; c: total
surface current density (per unit membrane area), J;, LA cm™2. (From Korogod
and Kulagina, 1998a.)

U(x) = E(x) — E4(x) is the driving potential, D is the diameter, Gy = G5, Gpq
or GNMDA, and Ek = Ep or ENMDA-

The function —i(x) = icore(x)/0x linked with the increment of the core current
per unit path length is used here for estimating the contribution of any element
dx of the dendritic path to the total core current reaching the soma (Korogod and
Kulagina, 1998b) (see Chapter 6). Local membrane properties of the dendrite are
illustrated by the voltage dependence of the NMDA conductivity and its proportion
of the total membrane conductivity (Figure 7.8, a). In a steady state, the effective
reversal potential is a sigmoid function and the /-V plot is an N-shaped function of
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Figure 7.9 a: Path profiles of the steady-state transmembrane potential produced
by tonic activation of NMDA-gated excitatory synaptic inputs homogeneously
distributed along a passive dendrite. A: At a super-critical intensity Gnmpa =
6.10mS cm™2; B: at ten subcritical | intensities Gnvpa from 6.00 to 6.09 mS cm ™2
separated by a small increment AGnmpa = 0.01 mS cm 2. The structure of the
simulated neuron is shown above. Abscissae: distance from soma, wm; ordinates:
potential, mV. b: Abscissae: surface current density, LA cm~2; ordinates: potential,
mV. (From Korogod and Kulagina, 1998a.)

the transmembrane potential (b and c, respectively). This N-shaped local character-
istic has a negative slope within a voltage range from —66 to —15 mV, indicating
the possibility of two depolarization steady states (Gutman, 1991) at a high (close
to 0 mV) and a low level (close to the resting potential).

Introducing the homogeneous excitatory synaptic conductivity Gampa causes
inhomogeneous depolarization, which is highest in the distal part and decays
towards the soma and further to the distal end of the axon (Figure 7.9). Quali-
tatively, this behaviour looks like that observed in a path with a local steady I-V
relation which has a positive slope over the whole range of membrane voltages.
The steady depolarization is relatively small and slightly increases with each small
increment AGnwvpa = 0.01 mS cm™2, while the values of Gympa remain below a
certain critical value (B). When a super-critical value (Gnvpa = 6.10 mS cm™2,
in our example) is reached with the same small increment, a rather large increase
in depolarization appears which reaches a very high level (A). A further increase in
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Gnwpa produces an almost homogeneous depolarization in the most distal region
of the path.

The path profiles obtained at subcritical and super-critical values of Gympa sep-
arated by small increments are shown in Figure 7.10, A-D and E-H, respectively.
They correspond to one of the two stable states: the state of low depolarization
close to the resting potential, which we call the downstate, and the state of high
depolarization, close to the reversal potential of the excitatory synaptic current, the
upstate.

In the downstate, the synaptic conductivity Gnmpa (x) and the total conductivity
Gn(x) of the dendritic membrane are spatially inhomogeneous with the biggest
values at the most depolarized dendritic tip (B). The driving potential U(x) =
E(x) — Eq(x) and the surface current density (per unit membrane area; A and C,
respectively) increase with path distance from the soma. The core current increment
per unit path length (D) reaches its greatest value (0.2 pA um~') at the distal
dendritic end. Thus, in the downstate, the most depolarized distal dendritic sites
supply more current to the soma than the proximal sites. This makes significant
difference compared to dendrites having an /-V relation with positive slope.

In the upstate, with high dendritic depolarization, the synaptic conductivity
GnMpa 1s about one order of magnitude greater than that in the downstate and
composes an overwhelming proportion of the total dendritic conductivity (Figure
7.10, F). The effective equilibrium potential approaches nearly the homogeneous
partial equilibrium potential of the NMDA current (E, dashed line). The path
profile of the driving potential is almost completely defined by the path profile of
the transmembrane potential. The driving potential is nearly zero at the distal tip
and reaches maximum negativity at the proximal end of the dendrite. The total
membrane current is negative (inward) over the whole dendritic length. Its surface
density is the greatest at the proximal end and decays towards the distal end of
the dendrite (G). The contribution to the somatopetal core current is the biggest
from the most proximal dendritic sites and rapidly decreases with increasing path
distance from the soma (H). At the distal dendritic end, it is lower than in the
downstate (0.15 and 0.2 pA um™!, respectively).

A further increase in the range of super-critical intensity of tonic activation
leads to saturation of the membrane potential in the distal part of the dendrite. In
this region, the transmembrane potential becomes homogeneous and equal to the
effective equilibrium potential close to Exmpa, and the current density is zero.
The proximal border of such a zero-effective region approaches the soma as the
intensity of tonic input increases further. In both downstate and upstate, the effective
equilibrium potential remains at the initial level —65 mV in the axo-somatic part
(A, E, dashed lines). Correspondingly, the driving potential and the current density
per unit area are positive and decrease from their maxima at the soma towards the



92

Electrical structure of an artificial dendritic path

30 A 0 E
-10 /4’
>
g 40 R -20
= Pt -30
5 -S0p i 40
£ i -50
60— ~60} £
0.3 B 5 F
q Gpy(x)
g 4 G nmda(x)
wn
2 02 3
2
£ 0} Ot e S | 2
3 Gpa 1
g Grmda (X) G
S L P ——
5 C 40 G
.M -
T 3 20
- 2
< 0
o1
=
\E 0 I /
-1 ——
-2 —40
- D H
:% 20 400
<
=% -I:—’—__ 200
b“o 0 ax
it Qigore = —i(x) 90X 0
& -20 5
-200
& 40 '\ -400
—200 0 200 400 600 800 —200 0 200 400 600 800
Path distance, um Path distance, um

Figure 7.10 Path profiles of the electrical parameters of a passive dendrite under
conditions of tonic activation of the voltage-dependent excitatory synaptic NMDA
conductivities. Abscissae: Distance from soma, um. Ordinates: Transmembrane
E and effective reversal Eq potentials, mV (A, E); total membrane conductivity
Gy and its synaptic Gnvpa and extra-synaptic G, ¢ components, mS cm ™2 (B, F);
surface density of total current (per unit membrane area) Ji,,, LA cm ™2 (C, G); core
current increment per unit path length dicor /0x, pA um™~" (D, H). Fragments A-D
and E-H were obtained at sub- and super-critical synaptic intensities (Gnvpa =
6.0 and 6.1 mS cm 2, respectively). Dotted lines in D and H are eliminated peaks
of the current density at the soma (—3.21 and —26.6 pA um™!). Striped area in D
shows the contribution to the core current from the element dx. (From Korogod
and Kulagina, 1998a.)
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distal axon end. Since the soma has a much greater diameter than other parts of the
neuron, there is a prominent peak of the outward current per unit length (D and H).

In this chapter, we have demonstrated how the electrical relations between
dendritic sites along a single path determine the current delivered to the soma. We
have explained which proximal or distal sites contribute more or less effectively
to this somatopetal current and why. We have characterized the contributions by
different estimates, depending on the dendritic membrane properties (passive or
active) and the types of synaptic inputs (single-site or multiple and distributed).
The charge transfer effectiveness is a good estimate in the case of passive dendrites
activated at a single site and at a given moment in time. But only the universal
estimate is relevant for cases of passive or active dendrites with distributed inputs
(Korogod and Kulagina, 1998b).

Some conclusive facts can be drawn from the path profiles describing the spatial
electrical relations:

(1) The type of local I-V relation of the dendritic membrane determines the type of
proximal-to-distal relations along the dendritic path. The dendritic geometry controls
these relations.

(2) As the dendritic path originates from a thick soma and ends with a thin tip, the structural
asymmetry provokes an electrical asymmetry: a leaky origin and an almost sealed end
involve a greater somatopetal and smaller somatofugal input conductance at each site.
Thus, the inward input current at any site divides into unequal core currents with
greater somatopetal and smaller somatofugal branches. Since the voltage drops in the
direction of the net current flow, distal sites are more depolarized than proximal sites.
The contribution to the core current at any site (the site effectiveness) can be found
therefore from the local /-V relation and the membrane voltage.

(3) In dendrites with linear or non-linear /-V relations with positive slopes over the whole
range of the membrane voltage, proximal sites are more effective than distal ones,
whatever the synaptic inputs, single or distributed. The shorter the path, the greater the
effectiveness because of the proximity of the sealed tip returning the current back into
the dendrite.

(4) In dendrites with N-shaped [-V relations with positive and negative slopes, the
proximal-to-distal relations depend on the specific range of the heterogeneous volt-
ages along the path. If the membrane voltage is in the range of positive slope, the
proximal-to-distal relations are similar to those described in (3); if it is in the range of
negative slope, the relations are opposite: more depolarized distal sites generate greater
inward currents and contribute more effectively to the somatopetal current. In cases in
which different parts of the path are in ranges of different slopes, the relations are much
more complex. For a given sign of the slope of the /-V relation, the slope steepness
decides how large the difference in the transfer effectiveness between proximal and
distal sites is. The steeper the slope, the larger the difference.
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8

Electrical structure of a bifurcation

After the single dendritic path analyzed in the preceding chapter, an elementary
bifurcation introduces the simplest case of a second discrete dimension for navigat-
ing over the dendrites. A set of elementary bifurcations forms the so-called binary
tree, which is most typical for dendritic arborizations of neurons. Obviously, the
bifurcation, also named binary branching or dichotomic branching is topologically
symmetrical but most often metrically asymmetrical, due to differences in lengths
and/or diameters of the sister branches.

In this chapter, we study the proximal-to-distal electrical relationship in two sister
paths by comparing sites situated at the same path distance from their common
origin but on different paths. The path length of the shorter branch determines the
path distance extent of the domain in which we can compare equidistant sites, since
it is obvious that the most distal sites on the longer branch do not have equidistant
counterparts on the shorter one! Remaining at the same path distance from the
origin in the first continuous dimension and ‘jumping’ from one branch to the other
in the second discrete dimension, we can compare electrical states of equidistant
sites (Figure 8.1). Such a structure is most convenient for studying the impact of
the metrical asymmetry of branching on the electrical structure of the paths. The
difference in the electrical states reveals the critical impact of metrical asymmetry.

8.1 Theory for different configurations

Consider a simple example of metrical asymmetry: two branches of the same
diameter d and different lengths, shorter / and longer I’ =1 + Al (Al > 0) arising
from the common origin. Assume that both branches have the same homogeneous
electrical properties: the membrane and cytoplasm resistivity, Ry, and R;, respec-
tively. This means equality of electrotonic length constant A and characteristic
semi-infinite cable input conductance G,. Compare the current transfer ratios at
the sites situated at the same path distances x from the common origin point x = 0

95
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Figure 8.1 Schema of four dendritic paths (Path 1 to 4) with branching points at
given distances from the soma (S).

but on different branches: T'(x) and T'(x). For that consider the difference:
AT(x)=T((x)—T'(x) (8.1)

and relate this difference to the simplest metrical asymmetry indicator, the length
difference in physical units A/ and dimensionless AL = Al/A. The specific result
depends on the boundary conditions posed at the distal ends of each branch,
i.e. at x =/ of the shorter branch and x =/’ of the longer one. Consider the
three conventional types of the boundary condition: (i) sealed-end, (ii) open-
end (or voltage clamped to resting potential) and (iii) leaky-end with the leak
conductance G.

8.1.1 Branches with sealed-ends

In a branch with ‘sealed-end’ boundary condition the current transfer ratio is defined
by Equation (6.27). Correspondingly, the difference in T (x) between each pair of
equidistant sites located at X = x /A is:

cosh(L — X) cosh(L' — X)

AT(X) = 8.2)
cosh(L) cosh(L’)
Take this equation in the following form:
h(L — X h(L + AL - X
AT(X) = cosh( ) _ cos (L + ) 8.3)
cosh(L) cosh(L + AL)
Put the expansions:
cosh(L — X) = cosh(L)cosh(X) — sinh(L)sinh(X) (8.4)

and

cosh(L + AL — X) = cosh(L + AL)cosh(X) — sinh(L + AL)sinh(X) (8.5)
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into Equation (8.2), gather like terms, cancel opposite terms and employ the relation
between hyperbolic functions. This gives:

AT (X) = sinh(X)[tanh(L + AL) — tanh(L)] (8.6)

This equation can be rewritten in terms of input conductances of the branches with

sealed-ends, Ginp = Gootanh(L) and G{np = Gootanh(L + AL):

AT(X) = sinh(X)(G; Ginp)/ Goo = sinh(X)AGipp/ G oo 8.7

inp
8.1.2 Branches with open-ends

For the branches with ‘open-end’ boundary conditions, the current transfer ratio is
defined by Equation (6.26). The corresponding equations defining the difference at
equidistant sites X = x /A are as follows:

sinh(L — X) sinh(L’ — X)

AT = =G sinh(L) 85)

AT(X) = sin}?(L -X) B sinb(L + AL — X) 89)
sinh(L) sinh(L + AL)

sinh(L — X) = sinh(L)cosh(X) — cosh(L)sinh(X) (8.10)

sinh(L + AL — X) = sinh(L + AL)cosh(X) — cosh(L 4+ AL)sinh(X)
(8.11)

AT(X) = sinh(X)[coth(L + AL) — coth(L)] (8.12)

Since multiplying coth(L + AL) and coth(L) by the same value of the char-
acteristic cable conductance G, gives the input conductances of the branches

Ginp = Gocoth(L) and G{np = Gocoth(L + AL), that gives again Equation (8.7).

8.1.3 Branches with leaky-ends

For the branches with ‘leaky-end’ boundary conditions, the current transfer ratio
is defined by Equation (6.29). The difference in the current transfer ratio between
asymmetrical branches at equidistant sites is defined by more complicated equations
given below. Consider two cases. In one case, the branches have different lengths
(I and I’ > ) and the same leak conductance (Gp) at their distal ends. In the other
case, both branches have the same length (/), but the leak conductances at their
ends are different (G and G|) that may correspond, for instance, to different
continuations of the branches beyond a certain distance /.
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Unequally long branches with the same leak

Denote the ratio of the leak and characteristic conductances entering in Equation
(6.29) as follows

B=0GL/Gu (8.13)

In this case the difference in the current transfer ratio is:
cosh(L — X) + Bsinh(L — X)  cosh(L’ — X) + Bsinh(L’' — X)

cosh(L) + Bsinh(L) cosh(L’) + Bsinh(L’)
(8.14)

AT(X) =

This equation also can be reduced to the general form (Equation 8.7).
To prove that, first express Equation (8.14) in terms of the length increment:

cosh(L — X) + Bsinh(L — X)
cosh(L) + Bsinh(L)
cosh(L + AL — X) + Bsinh(L + AL — X)
B cosh(L + AL) + Bsinh(L + AL)

AT(X) =

(8.15)

On the one hand, reducing the fractions to the same denomination and using the
formulae for a hyperbolic sine and cosine sum of two arguments, (L + AL) or L
and X, with further gathering of like terms and cancelling of opposite terms in
Equation (8.15) leads to the following expression:
tanh(L) — tanh(L + AL
AT(X) = sinh(X)(1 — B?) anh(Z) — taniu(Z + AL) (8.16)
[1 + Btanh(L)][1 + Btanh(L + AL)]

On the other hand, from the difference of the input conductances of the two leaky
cables with assigned properties:

s tanh(L) + B tanh(L + AL)+ B
~ "%\ 1+ Btanh(L) 1+ Btanh(L + AL)

AGi“P = Ginp - Ginp

one gets:

) tanh(L) — tanh(L + AL)
AGipp = Goo(1 — BY) (8.17)
[1 + Btanh(L)][1 + Btanh(L + AL)]

Equation (8.7) directly follows from Equations (8.16) and (8.17) and hence com-
pletes the proof.

Equally long branches with different leaks

In this case, because of the difference in the leak conductance, the ratio of the
conductances used in further formulae are:

B=GL/Gx and B'=G1/Gx (8.18)
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With this notation the current transfer ratio is:
cosh(L — X) + Bsinh(L — X)  cosh(L — X) + B’sinh(L — X)

AT(X) = cosh(L) 4 Bsinh(L) cosh(L) 4+ B'sinh(L)

(8.19)

Applying to Equation (8.19) the same operations as applied to Equation (8.15) one
gets:

1

[cosh(L) + Bsinh(L)][cosh(L) + B’sinh(L)]
(8.20)

AT(X) = sinh(X)(B — B')

On the other hand, from the corresponding difference of input conductances:

_ ( tanh(L) + B tanh(L) + B’ )
np — oo

AGi = G — G -
inp = Minp 1 + Btanh(L) 1+ B’tanh(L)

1

it follows:

AGinp = Goo(B — B) ] . 8.21)
[cosh(L) + Bsinh(L)][cosh(L) + B’sinh(L)]

From Equations (8.20) and (8.21) again one directly gets Equation (8.7).

Several narrative conclusions follow from the expression (8.7) describing the
difference in the current transfer ratio between equidistant sites on asymmetrical
branches in general form. Whatever the boundary conditions at the distal ends
are, the difference AT (x) is determined by the same four factors: (i) the common
‘spatial’ factor sinh(X) depending on the electrotonic path distance X = x /A from
the common origin; (ii) the characteristic input conductance of the semi-infinite
dendritic cable G; (iii) and (iv), respectively, the input conductances Gi,p, and
Gi’Hp of the branches as seen from their common origin. The hyperbolic sine sinh(X)
is a positive increasing function of the path distance. This means that the difference
in T(X) between equidistant sites always increases with the path distance. Corre-
spondingly, the path profiles T'(x) and T'(X) diverge along asymmetrical paths.
The difference is the greatest at the path distance x equal to the length of the shorter
branch /.

How big is this divergence? Other factors must be considered to find out the
response. At a given path distance x, the difference AT (X) is directly proportional
to the difference in the input conductances between the sister branches, AGj,, =
Ginp — Giyp-
length and hence the metrical asymmetry directly determines this factor. Inverse
proportional dependence of AT (X) on the characteristic input conductance G, =

The input conductances are positive increasing functions of the path
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(/2)(d Y3/2(Rm R;)~'/?* indicates how the branch diameter and electrical parameters
are involved.

In the next section, we use specific examples, typical of dendritic arborizations,
to illustrate the general notions just described. We replace the model of the single
path by the binary branching dendrite composed of a parent branch giving rise to
two daughter branches, symmetrical in one case and asymmetrical in the other (see
Figure 8.1). As in the preceding chapter, we use the same model of the neuron
(Figure 7.2) with passive or active membrane properties and the same protocols of
simulation.

8.2 Electrical structure of passive branching paths with single-site inputs

For a given diameter of the parent branch, dy = 5 um, the diameters of the daugh-
ter branches (d; = d, = 5 um, 3.1498 um and 1.9844 um) are chosen so that
the geometrical ratios GR = (d13/ >4 dg/ %) /dg/ : representing deviation from ‘3/2
power’ law for the equivalent cylinder (Rall, 1989) are equal to 2, 1 and 0.5. The
dendrites with these geometries are electrotonically similar to single un-branched
dendrites with step-wise increased, unchanged and step-wise decreased diameters
(Clements and Redman, 1989). Relationships between voltage gradients in pre-
and post-node points are more complicated than those between pre- and post-step
changes in diameter. An important difference is that the post-node core current
entering any daughter branch is only a proportion of the pre-node core current,
partitioned according to the input conductances of the sister branches.

Dendritic path profiles of voltage generated by a steady current applied to the
soma are illustrated for cases of symmetrical and asymmetrical branching with
open and sealed ends in Figures 8.2 and 8.3 respectively. In both figures, cases of
symmetrical branches are represented by the dashed lines and the asymmetrical
cases by the solid lines. Figure 8.2 illustrates the computed voltage profiles for
the open-end condition. Figure 8.3 illustrates the computed voltage profiles for the
sealed-end condition.

8.2.1 Somatofugal voltage along branching paths

Symmetrical branching

In the case of symmetrical branching, the ratios of the input conductances are
Giin/Goin = 1 and G1in/(Giin + Gain) = 0.5, the daughter voltage profiles are
identical and the ratio of the post-node voltage gradients is Wi, = &/& = 1
(Equation 6.38). The trans-node behaviour of the gradient (Figure 8.2) is mainly
determined by the ratio of the pre- to post-node diameters. When these diameters are
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Figure 8.2 Somatofugal voltage distribution along open-end symmetrical (dashed
lines) and asymmetrical (continuous lines) branching dendrites (d) with three
different relationships of pre- and post-node diameters specified in the text. (From
Korogod, 1996.)
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Figure 8.3 Same as Figure 8.2 but with sealed-end conditions. Arrows A—C
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charge transfer effectiveness. (From Korogod, 1996.)
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equal, then at the node there is a twofold somatofugal decrease in the gradient (a):
Wy = &1/& = 0.5 (Equation 6.39).

This behaviour is similar to that occurring at the site of the step increase in diam-
eter of the un-branched dendrite (Figure 7.3). The thinner the daughter branches
are, the smaller the pre-node gradient. It becomes equal to or less than the post-node
one in both boundary conditions.

Asymmetrical branching

In the case of asymmetry, the pre- and post-node gradients relationship is governed
by the same factors as above, although both gradients are less than their sym-
metrical counterparts under sealed-end conditions, and vice versa under open-end
conditions. The ratios between the post-node gradients in the unequally long sister
branches are reciprocal under sealed-end and open-end boundary conditions. With
equality of the diameters, the ratio of the post-node gradients is determined by
the ratio of the branch input conductances (Equation 6.38). The shorter branch
has a smaller input conductance and post-node gradient than the longer one under
sealed-end conditions, and vice versa under open-end conditions. Thus, metrical
asymmetry induces a perturbation in the voltage gradient that leads to divergence
of the post-nodal voltage path profiles.

8.2.2 Somatopetal charge transfer along branching paths

We apply the same simulation protocol to the symmetrical or asymmetrical bifur-
cating dendrite as for the non-branching dendrites described in the previous chap-
ter. The evaluations of the current transfer effectiveness (transfer ratio) Ty, are
obtained in two ways. First, by calculating Equation (6.24), that is the steady
somatofugal voltage profiles, as shown in Figure 8.3, a. Second, by calculating
the ratio of voltage-time integrals of the somatic EPSPs produced by the same
transient synaptic currents injected at the dendritic site under study and at the soma
(Figure 8.4).

In this example, the relative effectiveness of symmetrical sister branches is
equally low and the shorter branch is more effective among asymmetrical ones.
In each case, both values of 7' obtained in the two different ways are practically
identical.

8.3 Electrical structure of a bifurcation receiving distributed tonic inputs

We apply the same simulation protocol to the bifurcating symmetrical or asymmet-
rical dendrite as for non-branching dendrites described in the previous chapter (see
Figure 7.2). We keep the same membrane properties for computing the electrical



8.3 Electrical structure of a bifurcation receiving distributed tonic inputs 103

a b

10
T,= 0.47 Tz= 0.515
8
T.= 0.535
input:
> 6t | P
% input: soma
-:—% soma / C
8 4} A -
S S B
2t
0 . . . .
0 5 10 15 20 0 5 10 15 20
Time, ms Time, ms

Figure 8.4 EPSPs at the soma in response to somatic and dendritic injections of
transient synaptic current at sites indicated in Figure 8.3, a, d. Values of the relative
effectiveness defined by voltage-time integrals are given at the right top corner.
(From Korogod, 1996.)

profiles produced by tonic active inputs homogeneously distributed over the den-
drites. The simulated neuron has the same cylinder-shaped soma (20 pm length,
22.5 pm diameter), an axon (200 um length, 3 um diameter) and a binary branch-
ing dendrite. The dendritic bifurcation is symmetrical or asymmetrical. The length
and diameter of the mother branch is the same (380 um and 5 um, respectively).
In the model with symmetrical bifurcation, both daughter branches have the same
lengths as the mother branch. In the model with asymmetrical bifurcation, the
daughter branches are 380 and 195 um in length. With the given diameter of
the mother branch (dy = 5 um), equal diameters of the daughter branches are
chosen (d; = d, = 5 um, 3.1498 um and 1.9844 um) so that the geometrical ratios
GR=(d 13/ ‘4 c123 / 2) / dg /2 representing deviation from 3 /2-power law for the equiv-
alent passive cylinder are 2, 1 and 1/2 (Rall, 1989). The symmetrically passive
branching dendrite with these geometries is reducible to electrotonically equiva-
lent un-branching passive dendrites with stepwise increased and stepwise decreased
uniform diameters at the site corresponding to the bifurcation node (Rall, 1959;
Clements and Redman, 1989). G R expression in terms of 3/2 powers is used to
facilitate comparison with the conventional analysis of complex dendrites.

Three figures are used to illustrate the results of the computations. In each case,
the membrane potentials, the total membrane current density per unit area, the
increment of the core current per unit path length and the somatopetal current
transfer effectiveness from single sources are calculated as a function of the path
distance from the soma. But each figure illustrates three different cases of diameter
relationship between mother and both daughter branches. Figure 8.5 shows the
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Figure 8.5 Membrane potentials (a, e), total membrane current density per unit
area (b, f), increment of the core current per unit path length (c, g) and somatopetal
current transfer effectiveness from single sources (d) (ordinates) as a function of
path distance from the soma along symmetrical (dashed lines) and asymmetrical
(solid lines) branches with passive (a—d) or active (e—g) extra-synaptic membranes
resulting from steady uniform activation of excitatory conductivity. Diameters
of mother and both daughter branches are equal (dy = d; = d, = 5 um) giving
the geometrical ratio GR = (df 2y d23/ %) /dg/ ? =2 such that two symmetrical
daughter branches are electronically equivalent to extension of the mother branch
by a uniform cylinder of increased diameter. (From Korogod and Kulagina, 1998.)
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Figure 8.6 Same as Figure 8.5 but with dy = 5 um and d; = d, = 3.1498 um
(GR = 1, symmetrical branching electrotonically equivalent to uniform cylinder
of unchanged diameter dy). (From Korogod and Kulagina, 1998.)

case in which the diameters of mother and daughter branches are equal. Figure 8.6
shows the case in which the diameter of the mother branch is larger than the two
diameters of the daughter branches, which are equal and with a relation GR = 1.
Finally, Figure 8.7 gives an example in which the diameter of the mother branch is
also larger than the two diameters of the daughter branches, which are equal, but
with a relation GR = 0.5. To facilitate comparison, we add the plots of the relative
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Figure 8.7 Same as Figure 8.5 but with dy = 5 um and d; = d, = 1.9844 um
(GR = 0.5, symmetrical branching electrotonically equivalent to a uniform cylin-
der of unchanged diameter dj/2). (From Korogod and Kulagina, 1998.)

effectiveness of the charge transfer from single-site sources 7' (x) computed for the
same structure in each figure.

8.3.1 Dendritic membrane 1-V relation with positive slope

First, we consider a passive or active dendrite with Hodgkin—Huxley type con-
ductances receiving distributed tonic activation (Figures 8.5 to 8.7, see above).
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Its membrane is characterized by an /-V relation with positive slope. The dis-
tributed tonic synaptic action is simulated by introducing a constant homogeneous
voltage-independent synaptic conductivity G (see Section 7.2.2).

Introducing a steady uniform excitatory conductance G, = 0.0677 mS cm >
along branching dendrites leads to the generation of steady voltages and currents
with inhomogeneous path profiles. The depolarization shift in the transmembrane
potential E(x) is spatially inhomogeneous and increases with the path distance
from the soma (a and e in Figures 8.5 to 8.7). The slope of the path profile of
the depolarization decreases with path distance from the soma, being positive in the
dendrite. Both the level and the gradient of the depolarization are greater in the pas-
sive dendrite than in the active Hodgkin—Huxley type (a and e in Figures 8.5 to 8.7).
The equilibrium potential E(x) is shifted to depolarization and its path profiles are
uniform E; = —32.5 mV in the passive dendrites and non-uniform and decreasing
with path distance from the soma in the active dendrite (e, two upper profiles in
Figures 8.5 to 8.7). Thus, the negative driving potential E(x) — Ey(x) decreases
with path distance from the soma and its value and the rate of somatofugal decrease
are greater when the dendritic membrane is active. The total transmembrane current
is negative and inward and its densities per unit area and per unit length decrease
with increasing path distance from the soma in both passive and active dendrites
(f, g in Figures 8.5 to 8.7). This leads to a corresponding somatopetal increase in
the core current increment, that is the elementary contribution di e = —i(x)dx
to the net current reaching the soma. The current collected from the branch-
ing dendrite is consumed in the axo-somatic part with the peak at the soma
(not shown).

The path profiles of the potentials and currents in the branching dendrites have
features that are induced by their specific branching geometry. The symmetri-
cal daughter branches are identical in the path distributions of the conductances,
voltages, currents and relative charge transfer effectiveness (overlapping dashed
lines in Figures 8.5 to 8.7). At the branching node, the gradient of the poten-
tial is discontinuous whereas the potential is continuous. When passing the node
in the somatofugal direction, the slope of the path profile of the dendritic depo-
larization abruptly decreases or increases if the geometrical ratio GR is 2 or
1/2, respectively. These values correspond to the electrotonically equivalent non-
branching dendrite with a stepwise increase or decrease in diameter at the path
distance equal to the length of the mother branch. In a symmetrically branching
passive dendrite with GR = 1, there is still a trans-node break in the voltage gra-
dient, so that the slope is slightly greater on the daughter-branch side than on the
mother-branch side of the node. However, the voltage gradient is continuous if
the diameters of the daughter branches are d; = d, = 3.55 um, corresponding to
d,* +dy*/d)* = 1.
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In the same dendrites with passive membrane properties computed for reference,
the relative effectiveness 7'(x) of the somatopetal charge transfer from single-site
sources is a continuous decaying function of path distance from the soma (d in
Figures 8.5 to 8.7). The slope of its somatofugal decay is continuous along uniform
branches, but discontinuous at the branching node with the same G R-dependent
trans-node behaviour as that of the voltage gradient (see also the above section).
Namely, for GR = 1 and 1/2, the post-node slope is greater, and for GR = 2 less
than the pre-node slope. The slope is continuous at the branching point (i.e. pre-
and post-node values are equal) only in the case of symmetrical branching with
d; = d, = 3.55 pm corresponding to (d12 + d%)/dg = 1 (not shown).

In the case of asymmetrical branching, the path profiles of all electrical values
along sister branches diverge. Comparison of somatofugally equidistant sites of
these two branches (Figures 8.5 to 8.7) shows that the sites of the shorter branch
have: (i) smaller transmembrane depolarization; (ii) greater depolarization shift of
the effective equilibrium potential Ey(x) from the initial resting value —65 mV
in the case of the active dendrite; (iii) consequently, a greater driving potential
E(x) — E4(x) of the total transmembrane current; (iv) a greater surface density of
the transmembrane current; (v) a greater elementary contribution to the somatopetal
core current and finally (vi) a greater relative effectiveness of the somatopetal charge
transfer from single-site sources 7 (x).

The voltage E(x) and most of the voltage-dependent membrane characteristics
such as the total conductivity and current density per unit area G,(x) and Jy,(x) and
the effective equilibrium potential Ey(x) are always continuous at the bifurcation.
However, the profiles of the path increment of the core current diq./0x are gen-
erally discontinuous at the branching node. The continuity takes place only when
the diameters of the mother and both daughter branches are equal (Figure 8.5, c,
g). Otherwise, these characteristics abruptly decrease when passing the node from
a thicker mother branch to a thinner daughter branch (c, g in Figures 8.6 and 8.7)
or increase when the pre-node and post-node diameters are in the inverse relation.
A greater difference between the pre- and post-node values of dicore/dx = —i(x)
corresponds to a greater trans-node change in diameter. For the same geometry
of branching, this difference is greater in the passive dendrite than in the active
Hodgkin—Huxley type.

8.3.2 Dendritic membrane with N-shaped I-V relation

Now, we consider the electrical structure of the bifurcating dendrite with N-shaped
I-V relation provided by a minimum sufficient cocktail of conductances includ-
ing voltage-dependent non-inactivating synaptic conductance of NMDA-type. The
geometry of the model is the same as one of the above considered examples
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(Figure 8.5). Namely, the diameters of mother and both daughter branches
were equal dyp =d; =d, = 5um giving the geometrical ratio GR = (dl3 24
d23/ 2) / dg/ ? = 2. The membrane properties and simulation protocols are the same
as in the previous chapter (Section 7.2.4).

Introducing a homogeneous maximum synaptic conductance G nMpa, Which cor-
responds to a certain level of tonic activation of the dendritic excitatory synaptic
inputs, causes spatially inhomogeneous depolarization of the membrane poten-
tial. The level of the depolarization depends on the intensity of the activation
(Figure 7.10).

The bifurcating dendrite becomes electrically bistable with the typical down-
state and upstate (Figure 8.8, A-D and E-H, respectively). The values of Gxypa
sub-critical and super-critical for the bistability of this bifurcating dendrite are
5.3mS cm™~2 and 5.4 mS cm 2, respectively (they are lower than those for the non-
branching dendrites considered above). The membrane depolarization (Figure 8.8,
A, E) in both states is the greatest at the distal ends of the branching dendrite
and decreases towards the soma. In the asymmetrical bifurcation, the longer sister
branch is more depolarized than the shorter one. Along the whole dendrite the
low-level (downstate) depolarization is within the range of the negative slope of
the local /—V relation. The high-level (upstate) depolarization is outside the range
of the negative slope and is in the range of the positive slope.

The impact of asymmetry on the current transfer along the branching dendrite is
elucidated by analyzing path profiles of other parameters of the dendritic membrane
in the downstate and upstate (Figure 8.8, A—D and E-H). With transition between
the downstate and the upstate, changes occur in the voltage-dependent membrane
conductance (B and F), in the effective reversal potential of the total transmembrane
current (dashed lines in A and E), in the density of the total transmembrane current
per unit membrane area (C and G) and in the increment of the core current per unit
length of the dendritic path (D and H). In the dendrite, the total membrane current
is negative (inward) while it is positive (outward) in the axo-somatic part.

It is a critical feature of the profiles that, in each branch, the distal sites have the
total membrane current density and the effectiveness of the somatopetal transfer of
the core current greater or smaller than the proximal sites in the downstate or the
upstate. Even more important is that the relation between the longer and the shorter
daughter branches in both the total membrane current density and the effectiveness
of the somatopetal current transfer become inverse after transition of the dendritic
depolarization from downstate to upstate. As compared with the shorter branch,
the equidistant sites of the longer branch are more effective in the downstate and
less effective in the upstate of depolarization.

In bifurcations with other combinations of diameters of the mother and daughter
branches, the relationships between electrical profiles along asymmetrical sister
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Figure 8.8 Electrical parameters as functions of the path distance x from the
soma (abscissae) along branching electrically bistable dendrite with tonically
activated voltage-dependent excitatory synaptic conductance (NMDA-type). A, E:
The transmembrane potential E(x) (solid lines) and effective equilibrium potential
of the total transmembrane current Ey(x) (dashed lines). B, F: The total membrane
conductivity Gy, with its synaptic Gnmpa and passive extra-synaptic G, ¢ compo-
nents. C, G: The total current per unit membrane area J,. D, H: The core current
increment per unit path length i qre/9x. A—D and E-H were obtained at sub- and

super-critical synaptic intensity (ENMDA =5.3 and 5.4mS cm™2), respectively.
(From Kulagina, 1998.)

branches are qualitatively similar to those described above. The main difference is
more or less prominent discontinuity of the core current profiles observed at the
branching node with ‘mismatched’ cross-sectional areas of the adjacent branches,
the effect resembling those found in bifurcations with positively sloped /-V rela-
tions (see previous subsection).
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8.4 Recapitulation and conclusions

Several conclusions can be drawn from our computations:
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Any bifurcation is topologically symmetrical, but is metrically either symmetrical or
asymmetrical depending on the equality or inequality of the sister branch lengths and/or
diameters.

The transfer properties of equidistant sites on the sister paths depend on the ‘proximal-
to-distal’ relations along the path and are determined by metrical parameters: the path
length and diameter. The equidistant sites are similar or dissimilar.

Metrically symmetrical sister paths of equal lengths and diameters are identical in their
transfer properties, provided that the local -V relation of the dendritic membrane
and the synaptic inputs are the same. The reason for that is the identity of each pair
of equidistant sites along the sister paths. This identity is represented graphically by
the overlapped sister path profiles of electrical parameters, i.e. membrane voltages
or currents. The sister profiles are indistinguishable and, in that sense, are called
‘degenerative.’

Metrical asymmetry induces the difference between equidistant sites in their transfer
properties and thereby in electrical states. The greater the metrical asymmetry is, the
greater the electrical difference between the sister paths. In this case, the sister path
profiles diverge. In other words, breaking the metrical symmetry of the bifurcation
removes the degeneracy of electrical profiles of the sister paths.

The specific ‘path-to-path’ relation is determined by the difference in the ‘proximal-
to-distal’ relation along the sister paths and thus depends both on the type of local I-V
relation of the dendritic membrane and on the type of synaptic input. The ‘proximal-to-
distal’ relation of any type is exalted along the shorter branch compared to the longer
sister branch.

In a bifurcation with homogeneous membrane properties and any type of synaptic
input (single-site or distributed), the sites along the shorter branch contribute to the
somatopetal core current more efficiently than equidistant sites on the longer branch,
whatever the local /-V relation. There is one exception. This special case is a bifur-
cation with an N-shaped (type 3) local /-V relation in the electrical downstate when
the dendritic depolarization is within the range of the negative slope of the /-V curve.
Here, the sites along the shorter branch are less effective than those along the longer
one.

The heterogeneous diameter (d) modulates the effectiveness of the sister branches.
Thinner branches are less effective. It is so because the local transmembrane leak
conductance and the core conductance are proportional to different powers of the
diameter: d' and d?, respectively. In passive bifurcation with single-site inputs at each
site along the thinner branch, the proportion between the core current and membrane
leak current is changed in favour of the leak (decreased effectiveness) in proportion
to a decreased d. In the dendrites with distributed synaptic inputs, the contribution to
the core current in the thinner branch is smaller because of reduced membrane surface
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area: given a surface current density, the intensity of the transmembrane current is
proportional to the diameter (perimeter 7d).
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9
Geography of the dendritic space

Biological neurons have complex and diverse shape and size, which are mainly
defined by their dendritic arborization (see Chapter 2). Considering the com-
plex arborizations given by nature one can recognize the elementary structures
considered in Chapters 7 and 8. The uniform segments, symmetrical or, more
often, asymmetrical bifurcations as structural components are present in biological
arborizations en masse and in various, unpredictable combinations. The geometri-
cal information required for building the electrical structure of biological dendrites
is the same as for the elementary artificial dendritic structures: the branching pat-
tern, lengths and diameters of the branches, whereas the 3D organization does not
matter. In the 3D biological arborization, because of the complexity all these struc-
tural details are seen hardly if at all, and so retrieving and relating the structural
and electrical features are hampered. To deal with this problem we have to separate
different aspects of geometry of the dendritic space.

One aspect could be considered as intrinsic, irrelevant of the 3D arrangement
of a neuron in the space of the brain or spinal cord. The components of the
dendritic structure are characterized only in terms of their lengths and diameters.
The multiplicity of the structural components (paths, branches and bifurcations)
imparts the complexity to the biological dendrites. In a given arborization, one
meets unpredictably connected branches with unpredictably varying lengths and
heterogeneous diameters and, in that sense, the dendritic geometry is stochastic
both topologically and metrically. Since the difference in length and diameter
between dendritic branches and paths is a determinative indicator of metrical
asymmetry, we name this aspect the whole arborization metrical asymmetry. This
one-dimension (path distance) geometrical aspect is sufficient for computations of
the electrical structure of the biological arborization. However, it is not sufficient
for understanding how the synaptic inputs arriving from different sources in the 3D
space of the population are processed by the dendrites embedded in this space. For
that, another 3D (extrinsic) aspect of the dendritic geometry should be considered.
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Indeed, the arborizations are 3D structures embedded in the 3D space of the
nervous tissue. In the 3D space, the dendritic branches plough unpredictably
meandering ways of randomly varying direction that impart new dimensions to
the (geo)metrical stochasticity of the arborization structure. One can choose planar
polar, volume cylindrical or spherical coordinates for appropriate description of the
arborization spatial structure. According to the coordinate dependence of its ele-
ments the structure can be symmetrical or asymmetrical in 3D. Collectively these
structures define layered, laminar or nuclear organization of parts of the spinal
cord and the brain. The arborization forms a special kind of complex stochastic
space, the dendritic space. It is this space, in which non-electrical forces separate
the charges and create the electric fields translocating the charges and producing
electrical events considered as neuronal signals.

The dendritic space of each neuron is the bearer and determinant of its electrical
transfer properties. In this chapter we consider how the bearers are structurally
composed and then, in the following chapters we consider how the dendritic space
determines its electrical properties. Navigation in this intricate space requires spe-
cial maps, which have to represent clearly the spatial structure of the arborization.
To describe the structure of the dendritic space one has, like in terrestrial geogra-
phy, to distinguish characteristic elements of the ‘dendritic landscape’, to choose
the reference landmarks (coordinate system) for defining mutual location of the
elements, and even to perform spatial transformations for getting a clearer view
of the inter-relation between the structural elements. We start with a description
of the general ‘geography’ of the dendritic space, taking well-known neuron types
as examples. Then we describe specific instances of the these types of neurons
collected in the database of digitized cells that we use for simulation studies of the
geometry-induced electrical features.

9.1 Dendritic arborization in 3D and 2D representations

Complex spatial objects require relevant tools for visualization of their struc-
ture and properties. Maps of different kinds serve as such tools. One can notice
some analogy between dendritic map-making and celestial or terrestrial cartog-
raphy: original 3D objects have to be transformed into other 3D or 2D objects
for the sake of clarity of their structural details. For instance, map-makers first
observe the Earth as a 3D object close to an oblate spheroid. It is then represented
by a terrestrial global 3D sphere or by flat 2D maps obtained by corresponding
transformation of the originally measured 3D spatial data. Several types of car-
tographical projections (cylindrical, azimuthal etc.) on 2D map planes have been
invented for better visualization of the Earth landscape. The 3D globe and 2D maps
are further used for visualization of properties of different geographical regions.
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Figure 9.1 Arborization of seven dendrites of an abducens motoneuron in 2D
dendrogram (left) and 3D (right) representations. Dendrite No. 2 is black and
others are grey. Air-way extents are shown by dashed lines for four of the nine
paths of this dendrite. For the longest path (indicated by arrows) the air-way extent
is also shown by a dashed line near the corresponding dendrogram.

For instance, mapping the borders between countries gives a political map of
the world. Putting colour-coded physical values such as temperature on the geo-
graphical maps provides a temperature map that improves understanding of the
weather.

The dendritic arborization of the neuron is a peculiar 3D spatial object (e.g.
Figure 9.1). It is visualized as an original 3D image projected onto certain projec-
tion plane(s) or as a transformed flat image called a dendrogram (see Chapter 2).
The natural image of the arborization seen in the microscope is formed by mean-
dering branching 3D curves of heterogeneous thickness (Figure 9.1). Computer-
aided measurements of 3D coordinates and diameters of the curves provide
digitized data for further spatial transformation and building the dendrograms
(Figure 9.1), which can be considered as the kind of cartographical projections
of the original 3D image. The two representations of the same arborization serve
different purposes.

The world of the neuron with its dendrites is soma-centric. The peri-somatic
volume is the ‘meeting space’ shared by the dendrites and the pre-synapic axons



116 Geography of the dendritic space

contacting them. The pattern of the dendritic branching in this volume determines
the sampling (retrieving) of pre-synaptic signals from the 3D space. Describing the
geography of the 3D dendritic space gives spatial reference points and guiding lines
for specification of the spatial signal reception by the dendrites. For this world the
cardinal directions and the compass rose are made of the air-way radii emanating
from the conventional centre at the soma. A family of air-way radii drawn from
the somatic origin to the tips or other characteristic sites of the paths of a given
dendrite define the spatial angle as the branching space or field of the dendrite.
These fields can be morphologically characterized in terms of their orientation,
extent and shape in the 3D space, occupancy by (density of) dendritic branches
etc. These characteristics are used for classification of the dendritic spatial patterns
together with some functional assumptions (Ramén-Moliner and Nauta, 1966;
Migliore and Shepherd, 2005).

For our restricted purposes applying an appropriate classification to distinct
parts of the space occupied by the dendrites is based mainly on the spatial radiation
of the dendrites in the peri-somatic space (Fiala and Harris, 1999). According to
this classification, one can particularly distinguish dendritic fields with laminar,
spherical, cylindrical, conical, bi-conical and fan radiation (see Table 1.2 in Fiala
and Harris, 1999). In fact, such classifications and further subclassifications are
based on the symmetry of distribution of dendritic branches in the 3D space.
For instance, dendrites branching within a sphere centred at the soma are an
example of spherical radiation, which can be symmetrical or asymmetrical. In the
symmetrical case, the dendrites radiate in all directions from the cell body giving
the stellate-type arborization characteristic of spinal motoneurons and other cells
in the subcortical nuclei and cerebellum. If the dendrite radiates from the cell body
in directions restricted to part of a sphere, the angular distribution of the dendrites
is asymmetrical and the spherical radiation is of the partial-type characteristic of
the neurons situated at the edges of so-called ‘closed’ nuclei (e.g. Clarke’s column
or vestibular nuclei). Examples of conical or bi-conical radiations are provided
by the dendrites, which radiate within conical or paraboloidal regions oriented in
one direction or in two opposite directions from the cell body, respectively. For
instance, the bi-conical radiation is characteristic of bi-tufted and pyramidal cells
of the cerebral cortex. Existence of such preferential directions of the dendritic
radiation means breaking the spherical symmetry of the spatial distribution of
the dendrites. A regular cone and paraboloid are geometrical figures of rotation,
i.e. they are symmetrical relative to a certain straight line, the axis of rotation in
the sense of equal extent from the axis in all directions determined by azimuthal
angles. Fan-type radiation can be considered as an example of breaking the axial
symmetry by putting restrictions on all azimuthal directions except those in a narrow
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range that makes the dendritic field practically flat, like in the cerebellar Purkinje
neurons.

The organization of dendrites in spatial angles centred at the soma provides
information about how dendritic paths are trailed in the 3D peri-somatic space.
The representation of the arborization in the 3D space shows the shape of the cell,
its location and orientation relative to sources of its synaptic inputs and to other
cells in the population. Although the 3D image of the arborization is widely used,
there are many other important morphological details that are hardly visible. For
instance, in the 3D image alone, it is hard to estimate and compare the lengths of the
dendritic paths important for electrical computations, unlike their 3D orientation
and extent. Longer paths may have longer extent in 3D (the so-called air-way extent
measured by the length of the rectilinear segment between the soma and distal tip-
dashed lines in Figure 9.1) if the spatial tortuosity of all curvilinear dendrites is
not extensive, which is not always the case. In contrast, a tortuous long dendritic
path may terminate at approximately the same or an even smaller air-way distance
compared to a short and straight one.

A much clearer visualization of the spatial relationships between dendritic parts
is provided by transformation of the corresponding 3D curves into rectified lines
prolate in the same direction on the plane. Such a system of straight lines having
the same length, thickness and connections as the dendritic branches is known
as the dendrogram (Figure 9.1, left; see also Chapter 2). The dendrogram repre-
sents the dendritic space in two dimensions of a different nature. One dimension
is continuous, measured by the coordinate x corresponding to the path distance
from the soma. We travel along this dimension when moving along any dendritic
path, as far as the dendritic paths extend. Another dimension is discrete: we travel
along this dimension by making discrete jumps from one path to another, yet
remaining at the same path distance from the soma. This dimension is measured
by a set of discrete numbers corresponding to different paths. How far we move
in this direction depends on the arborization complexity estimated by the com-
plexity function, which counts the number of the dendritic paths at a given path
distance x from the soma (Korogod et al., 2000). Hence, the dendrogram pro-
vides a formal, discrete-continuous 2D space, on which one can map the electrical
properties, e.g. parameters characterizing the distal-to-proximal (continuous) and
path-to-path (discrete) relations. Noteworthy, a 2D dendrogram including diam-
eters contains exhaustive morphological information required for computation of
electrical processes in the dendrites. Due to one-to-one correspondence between
the 2D dendrogram and 3D representations of the arborization one can re-map
the computed properties from 2D to 3D representations and observe how they are
organized in the 3D peri-somatic space.
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9.2 Distinct 3D dendritic landscapes

Any classification of the dendritic structures in the 3D space is conditional and
approximate. Due to richness of dendritic shapes one can meet many interme-
diate cases. However, representatives of clearly distinct classes could be a good
choice for analysis of the 3D and 2D dendritic geometry and geometry-induced
features of the electrical structures (Fiala and Harris, 1999). Attractive examples
are arborizations, which occupy 3D regions of clearly different dimensions and
symmetry:

e the flat, planar arborization of the Purkinje neurons of the cerebellum;
e the spherical arborization of motoneurons; and
e the bi-conical arborization of the pyramidal neurons of the cerebral cortex.

In the dendritic space of these neuron types, semi-schematically shown in
Figure 9.2, one can distinguish characteristic ‘landscape’ parts, which can be
attributed to the branching pattern classes introduced above for description of
the whole arborization. This is the reason why the reconstructed Purkinje neu-
rons, pyramidal neurons and motor neurons have been selected for our library of
digitized cells used for the analysis of geometrical and electrical structures (see
Section 9.3). What are the features of the 3D dendritic spaces of each selected

type?

9.2.1 Planar dendritic field: Purkinje neurons

Purkinje neurons are characteristic and constant elements of the cerebellar cortex
and have been described at length in numerous places (Llinds and Hillman, 1969).
In the 3D space of the cerebellum, the Purkinje neurons are aligned like book
pages or domino bricks stacked one in front of the other. The main morphological
features of their dendritic space are depicted in Figure 9.2, A. The dendrites emerge
from one or two short main stems and almost immediately give rise to secondary
smooth branches which divide further to form a very dense plexus containing an
enormous number of branchlets. The very complex arborization lies in one thin flat
half-lunar layer (Figure 9.2, A). In the flat Purkinje neuron arborization, one can
notice planar sectors (delimited by dashed lines), occupied by offspring radiating
from the single main dendrite stem. The overlapping of the sectors belonging to
different subtrees can be very small. Such a morphological structure of the dendritic
space makes Purkinje neurons very convenient for mapping and studying spatial
electrical phenomena. Hence, in future, description of the electrical structure of
this type of dendritic field we will refer to planar sectors as structural components
of the dendritic space.
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Figure 9.2 Schemata of the morphological dendritic spaces of a cerebellar Purk-
inje neuron (A), a brain stem abducens motoneuron (B) and a cortical pyramidal
neuron (C). The flat dendritic field of the Purkinje neuron is partitioned into almost
non-intersecting sectors (A, dashed lines) occupied by subtrees emerged from the
main dendrite stem. The spherical dendritic field of abducens motoneuron (B)
is partitioned between individual dendrites, which emerge from the soma and
branch into practically non-intersecting cone-like regions. The dendritic field of
the pyramidal neuron (C) is composed of the hemispheric basal part, the cylindri-
cal part surrounding the main stem of apical dendrite with more or less numerous
oblique subtrees and the disk-like part occupied by the apical dendrite tuft. Each
of these parts is partitioned into spatial spherical or cylindrical sectors occupied
by individual basal or oblique dendrites or by distal subtrees of the apical dendrite.

9.2.2 Spherical dendritic field: motor neurons

Sherrington (1952) called motoneurons the final common path because all the activ-
ity in the central nervous system that influences movement converges ultimately
on motoneurons. The motoneurons are unique in that they are located in the central
nervous system but project their axons outside to control muscles. They are among
the most well-known and extensively studied neurons. All the dendrites of a single
motoneuron scan a large peri-somatic space, each dendrite sweeping its own more
or less extended sector. In the 3D space of the population, the branching regions of
the neighbouring motoneurons overlap and this overlapping can be rather extensive.

Typically, the region of the peri-somatic 3D space occupied by the motoneu-
ronal dendritic arborization is spherical (the ‘spherical radiation pattern’ according
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to classification of Fiala and Harris, 1999). Noteworthy is partition of the dendritic
space of the motoneurons between individual dendrites. Arborizations of abducens
motoneurons provide demonstrative examples (Bras et al., 1987, 2003), one of
which is illustrated in Figure 9.2, B. The space surrounding the soma of abducens
motoneurons can be divided into conical (or paraboloid) spatial sectors owned
by individual dendrites. Noteworthy, morphometrical analysis of this neuron type
shows that a sector owned by a given dendrite does not intersect with the sec-
tors owned by the neighbouring dendrites (Bras et al., 1987, 2003). In our first
work in 1987 (Bras et al., 1987) one can find the results of detailed quantitative
analysis of the dendritic geometry in 3D space of the population applied to one
abducens and one laryngeal motoneuron of the cat. In these neurons, each den-
drite characterized by ‘computer dissection’ is shown to occupy a definite field.
A clear picture of their orientation is provided when each dendrite is represented
separately. Their space occupancy is clearly different, as confirmed by the princi-
pal components analysis providing evidence that dendrites differ in their direction
in space. Moreover, comparisons between dendrites made on the basis of length,
diameter, tapering, branching pattern, daughter-branch ratio and branching power
demonstrate that each single dendrite has its own personality. Further description
of electrical structure of this type of dendritic field requires spatial sectors of certain
3D orientations.

9.2.3 Composite dendritic field: pyramidal neurons

The pyramidal neuron, called by Ramén y Cajal the psychic cell, is a multipolar
neuron located in the hippocampus and cerebral cortex (Ramén y Cajal, 1911).
These cells have a conically shaped soma, a single apical dendrite extending towards
the pial surface, multiple basal dendrites and a single axon. In the primary motor
cortex, layer V pyramidal cells are extremely large. The 3D space occupied by
the pyramidal neuron dendrites is a composition of two or more parts and this
partition is also conditional (Figure 9.2, C). According to the classification by
Fiala and Harris (1999), the 3D dendritic radiation of the pyramidal neuron is
classified as bi-conical with one conical region occupied by the apical arborization
and another one by basal dendrites. However, the ‘generatrix’ is not a straight
line for the apical or basal cone. For instance, the radii of the apical cone laid off
from the apical stem as the axis in the distal tuft region are much greater than
those in the proximal region, in which oblique dendrites radiate, and the axial
length of the tuft region is much shorter than that of the pre-tuft stem. Because
of this heterogeneity, one can consider the apical 3D space as composed of two
parts: a nearly cylindrical region of oblique dendrites and early apical branching,
and a disk-like or widely open cone-like region occupied by the tuft. If basal
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dendrites radiating at different angles relative to the vertical axis have very similar
lengths, then the basal dendritic 3D space can be classified as hemispherical instead
of conical. Whatever the division, each of the regions can be further divided into
sectors, which give space to individual basal and oblique dendrites and to the apical
subtrees (Figure 9.2, C). The apical dendrites spreading over two large regions of
different 3D geometry and crossing several cortical layers are much longer than
basal dendrites confined to a smaller peri-somatic region. This difference in the
air-way extent is a pre-requisite for the metrical asymmetry of these two main
dendrite types in terms of their path lengths. In the cortex 3D space, the pyramidal
neurons are gathered in the cortical columns so called due to closely located parallel
main stems of apical dendrites. It is not clear whether different positions of the
pyramidal neurons in the column interior or periphery are associated with smaller or
greater tangential branching asymmetry. This is the case for the crowns of botanical
trees grown on the forest edge compared to those grown in the thicket. In the
neocortical ‘forest’, such kinds of asymmetry are described in the layer IV stellate
neurons (Liibke et al., 2000). Further description of electrical structure of this type
of dendritic field requires planar or volume (disk-like, cylindrical or spherical)
sectors.

9.3 Digitized dendritic arborizations

The morphological structures of biological dendritic arborizations further used
for computations of their electrical structures (Chapters 10-12) are collected in
our library of digitized neurons, which are taken from different sources. They are
neurons of the most well-known types that are characteristic of different parts
of the central nervous system: cerebellar Purkinje neurons, neocortical pyramidal
neurons and motoneurons of the brain stem and spinal cord. They have been
recorded intracellularly, identified electro-physiologically, stained intracellularly
with HRP and reconstructed as described in our corresponding work (Grant et al.,
1979; Durand et al., 1983; Bras et al., 1987; Durand, 1989; Bras et al., 1993;
Vigot and Batini, 1997, 1999; Korogod et al., 2000; Kulagina et al., 2007). The
reconstructions of abducens motoneurons (Korogod et al., 1994; Bras et al., 2003),
spinal motoneurons (Korogod et al., 2000) and one of Purkinje neurons (Kulagina
et al., 2007) were performed at high spatial resolution. The spatial patterns of the
dendritic arborizations of the library neurons (Figures 9.3-9.5) are representative
of the classes to which they belong. Therefore, there are good reasons to extrapolate
certain of their electrical properties to their class-mate neurons.

In the context of this book, to consider the dendritic arborization as the deter-
minant of its spatial electrical behaviour the most noteworthy structural fea-
tures are the difference in size, the difference in complexity and especially the
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Figure 9.3 Reconstructed dendritic arborizations of cerebellar Purkinje neurons
(P1 to P6) and their histograms of distribution of the dendritic path lengths as
an indicator of metrical asymmetry. Abscissae: path distance from the soma, pm.
Ordinates: number (n) or dendritic tips in a given interval of path lengths (bin
width 10 um). (Source: P1 from Kulagina et al., 2007; P2 and P3 from Roth and
Héusser, 2001; P4, P5 and P6 from Rapp et al., 1994.)
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Figure 9.4 Reconstructed dendritic arborizations of neocortical layer 5 pyramidal
neurons (C1 and C2) and their histograms of distribution of the dendritic path
lengths as an indicator of metrical asymmetry. Abscissae: path distance from the
soma, pm. Ordinates: number (n) or dendritic tips in a given interval of path
lengths (bin width 10 um). (Source: C1 from Mainen and Sejnowski, 1996; C2
from M. Larkum, University of Bern.)
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Figure 9.5 Reconstructed dendritic arborizations of motoneurons and their his-
tograms of the distribution of the dendritic path lengths: spinal motoneurons of cat
(M1), frog (M2) and rat (M3) and two abducens motoneurons of rat (M4 and M5).
Abscissae: path distance from the soma, pm. Ordinates: number (n#) or dendritic
tips in a given interval of path lengths (bin width 10 pm). (From Korogod et al.,
1994, 2000.)

metrical asymmetry of the dendritic branching. The simplest, though not exhaus-
tive, quantitative illustration of the metrical asymmetry of an arborization is pro-
vided by histograms of the distribution of the dendritic path lengths (Figures
9.3-9.5). In fact, the histogram shows the distribution of the path coordinates of
distal tips of the dendrogram for each arborization.
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9.3.1 Purkinje neurons

Six reconstructed cerebellar Purkinje neurons named P1 to P6 in our library (Fig-
ure 9.3) were selected from different sources. Neuron P1 reconstructed and fully
analyzed in the work of Kulagina et al. (2007) was selected from a series of
intracellularly labelled cells in slices of rat cerebellum (Vigot and Batini, 1997,
1999). The five other neurons, P2 to P6 were retrieved from publicly available
databases as files importable into NEURON simulation software. Neurons P2 and
P3 were described by Roth and Hausser (2001) as cells P19 and P20, respectively,
and located at URL http://www.dendrite.org/dendritica?1.0/batchback/data/cells.
Neurons P4, P5 and P6 were described by Rapp et al. (1994) as celll, cell2 and
cell3, respectively, and posted in the ModelDB database at URL http://senselab.
med.yale.edu/senselab/modeldby.

In this representative sample, the shortest dendritic paths have a length of about
50 pm and the longest ones are 250 to 350 pm long. The relatively short extent
and small difference in length of individual dendritic paths account for a relatively
small metrical asymmetry.

9.3.2 Neocortical pyramidal neurons

For our library we selected two reconstructed pyramidal neurons of layer 5 of rat
neocortex (cells C1 and C1 in Figure 9.4). The neuron C1 published in Mainen
and Sejnowski (1996) was retrieved from the open-access database ModelDB
(file j4a.hoc at URL http://senselab.med.yale.edu/senselab/modeldb/ShowModel.
asp?model=2488). The cell C2 was generously provided by Dr. Matthew Larkum,
Department of Physiology, University of Bern.

The two neurons bear the features typical of their class: the long maximal extent
of apical dendrites (up to 1300—1400 um) and the large difference in path length
(asymmetry) of apical and basal subtrees (Figure 9.4). The maximal path length of
the basal dendrites reaches 300 um, which is approximately as long as the extent
of the whole Purkinje neuron arborization (cf. Figure 9.3). The minimal paths are
about 50 pm.

9.3.3 Motoneurons

The five reconstructed motoneurons (M1 to M5 in Figure 9.5) are described in
detail in our previous works (Korogod et al., 1994, 2000). They were selected
for the library on the basis of the morphological criteria as examples of cells
with individual dendrites of different total lengths and widely varying morpho-
metrical parameters. Three cells are spinal motoneurons of cat (M1), frog (M2)
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and young rat (M3) and two cells (M4 and M5) are abducens motoneurons of
rat.

These motoneurons differ characteristically in the morphology of their dendritic
spaces (Figure 9.5). The arborizations are composed of four dendrites in the frog
motoneuron (M2), eight and seven in the rat abducens motoneurons (M4 and M5),
ten in the rat spinal motoneuron (M3) and thirteen dendrites in the cat spinal
motoneuron (M1). The total number of dendritic branches is the smallest in the rat
abducens motoneuron (126) while this number is more than doubled in the spinal
motoneuron of rat (282), frog (262) and cat (333). The total dendritic length is
also the smallest in the rat abducens motoneuron (11,931 pm). Among the spinal
motoneurons, the total dendritic length is the shortest in the rat (20,803 um) while
it is greater in the frog (52,411 um) and the cat (59,557 um). The total dendritic
area follows the same rule, being the smallest in the rat abducens motoneuron
(39,257 um?) and the largest in the spinal motoneurons with the largest surface
area in the cat (301,738 um?). The index of complexity of each dendrite in the five
motoneurons varies from 0 to 6.33. The highest complexity index (6.33) is found in
one frog dendrite and the lowest (0) characterizes one dendrite in the frog and one
in the rat abducens motoneuron. The coefficient of topological asymmetry varies in
the range 0 to 0.75, being the highest in one dendrite of the rat abducens motoneu-
ron. In this metrically very diversified sample, the same topology characterizes one
trio and three pairs of dendrites in the five motoneurons (M1 to M5). Such dendrites
have the same number of dendritic branches and the same branching patterns as
indicated by equal topological asymmetry and/or complexity indexes (see Table 1
in Korogod et al., 2000). Histograms of the path length distributions for the recon-
structed motoneurons are shown in Figure 9.5.
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Electrical structures of biological dendrites

Any live dendrite contains constitutive parts, such as the artificial elements used
in Chapters 7 and 8 to demonstrate the biophysical laws that rule the proximal-to-
distal and path-to-path electrical relationships. In fact, the live dendrite is made of
similar elements and is ruled by the same laws. However, any piece of dendrite
observed under a microscope in an histological preparation displays a much more
complex shape than artificial elements. It appears tortuous, irregular, often nodular
with branching points and daughter branches of different lengths and diameters.
These idiosyncratic attributes are totally unpredictable, making dendrites unique.

In this chapter, as we tackle much more complex live objects, we consider first
natural dendritic structures of moderate complexity: individual dendrites extracted
from a whole arborization. We study electrical structures of natural dendrites in
the same way as we did in the previous chapters dealing with simplified artificially
built structures. We look for geometry-related features in the electrical structures
in relation to structural heterogeneities and branchings in their natural occurrence.
As the recognizable geometry-related features of electric structures are found for
individual dendrites, they will be used as navigation tools in electrical structures
of complex arborizations of different neuron types described in Chapter 11.

10.1 Geometry of an example dendrite

Here we show an example of a systematic study performed on one individual
dendrite extracted from the reconstructed arborization of an abducens motoneu-
ron of the rat (cell MS in Figure 9.5). The location of the selected dendrite in
the 3D space surrounding the soma is shown in Figure 10.1, A (Korogod et al.,
1998). The structural features important for shaping the electrical structure are
hardly seen on this 3D image, which must be transformed into the dendrogram
representation to display the branching pattern (the topology) and lengths of all
branches and paths (Figure 10.1, B, top insert). From this representation, we get
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Figure 10.1 An individual dendrite taken from the reconstructed dendritic
arborization of an abducens motoneuron of the rat (cell M5 in Figure 9.5): A:
location of the selected dendrite (thick line) in the whole 3D arborization; B: the
dendrogram (top insert) and heterogeneous diameter as a function of the path dis-
tance from soma along four dendritic paths (indicated by numbers 1 to 4) (Arrows
point to featured variations of the diameter.); C: the diameter variation along each
individual path. (Adapted from Korogod et al., 1998.)

quantitative characteristics of the metrical asymmetry in terms of path lengths.
Another important metrical parameter is the diameter. Its spatial variation is seen
on a special plot of the whole dendrite (Figure 10.1, B) and in detail for all individual
paths (Figure 10.1, C).

As one can clearly see in Figure 10.1, B and C, the selected dendrite has a
moderately complex morphology with seven branches forming four paths. It is a
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sensible example in several respects. First, it is topologically symmetrical. The
branch originating from the soma forms the first-order bifurcation and each sister
branch emerging here forms the second-order bifurcation. Its topological asym-
metry index is O (Verwer et al., 1992). Second, this topologically symmetrical
dendrite is metrically asymmetrical. Its metrical asymmetry is determined by the
difference in lengths and diameters between paths. The longest path 1 is approx-
imately 150 um longer than its sister path 2 (this difference is about 1/3 of the
longer sister branch’s length). There is approximately the same 50 um difference
in length between the three progressively shorter paths 2, 3 and 4. In the second-
order bifurcation of paths 2 and 4, the difference between the terminal branches
is smaller in both absolute and relative values. The absolute difference is about
50 um that makes about 1/4 of the longer branch length. Third, in the course of
the reconstruction process, several increases in the dendritic diameter are observed
along paths 1 and 4 (indicated by arrows in Figure 10.1). Although these swellings
may well be artifacts due to intracellular injection of HRP, they are remarkable
features that must be reflected in the electrical structure of the dendrite, according
to our demonstration.

Let’s attribute to this dendrite different membrane properties (passive or active)
and synaptic inputs (single-site or distributed) to study its electrical structures and
discover its geometry-induced electrical features.

10.2 Passive dendrite with single-site inputs

First, we compute the passive electrical structure represented by the path profiles
of the relative effectiveness of the somatopetal current transfer 7' (x). Figure 10.2
shows such an electrical structure computed for the specific membrane resistance
R, = 3kQ - cm? and the cytoplasm resistivity R; = 100 Q - cm.

As expected, the somatopetal current transfer effectiveness 7T'(x) decays with the
path distance from the soma, with unequal rates along the asymmetrical paths. The
decay is smooth along uniform segments, but not at the sites of abrupt change in
the diameter or branching. At bifurcations, the slopes of decay along asymmetrical
sister branches are different and the corresponding branching path profiles of 7' (x)
diverge. Resulting from such a divergence, the values of 7' (x) are unequal at sites
which are equidistant from the soma, but located on different dendritic paths. The
divergence of the path profiles is greater if the difference between the paths in their
length (the metrical asymmetry) is great. In our example, the difference in length
is small between the sister paths 2 and 3 and is much greater when either of these
paths are compared to the longest path 1. Correspondingly, the T'(x) profile along
path 1 deviates greatly from those along paths 2 and 3. On the path 1 profile of T'(x)
one can clearly see variations of the slope at the path distances corresponding to
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Figure 10.2 Passive electrical structure of the individual dendrite of rat abducens

motoneuron shown in Figure 10.1. Abscissa: path distance from the soma, um.
Ordinate: the relative current transfer effectiveness, dimensionless.

large variations of the dendritic diameter (cf. Figure 10.1, B, C). These geometry-
induced features of the passive electrical structure expressed in terms of 7 (x) can
now be used as a reference to consider other types of electrical structures.

10.3 Dendrites with distributed inputs
10.3.1 Dendrite with positive I-V relation slope

Now we apply homogeneously distributed tonic synaptic activation to this den-
drite. We keep the same homogeneous membrane properties (passive or Hodgkin—
Huxley-type active) with the same set of electrical parameters as in the case of the
simplest artificial structures (Chapters 7 and 8). Correspondingly, the steady-state
local /-V relations of the dendritic membrane remain the same: linear or non-linear,
each with positive slope over the whole range of membrane voltages.

Introducing a steady, spatially homogeneous, excitatory conductivity to the den-
drite with either passive or active membranes produces inhomogeneous steady
voltages and currents (Figure 10.3, A and E, solid lines). The transmembrane depo-
larization E(x) is the greatest at the distal tips and decays toward the soma and
further to the distal axon end. Noteworthy, the path profiles of E(x) look like mirror
images of the path profiles of 7'(x) considered in the previous section (Figure 10.2).
The effective equilibrium potential Ey(x) remains at the initial level —65 mV in
the soma and axon, but is shifted to depolarization in the dendritic branches.
It is homogeneous (E; = —32.5 mV) throughout all paths of the passive dendrite
(dashed line in Figure 10.3, A) with homogeneous Gy = Gpgand G, = Gs + G q
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Figure 10.3 Path profiles of the potentials, conductivities and currents resulting
from steady uniform activation of excitatory synaptic inputs distributed along
the individual dendrite with passive (A-D) or active (E-H) extra-synaptic mem-
branes. Abscissae: path distance from soma, um. Ordinates (A, E): transmem-
brane potential E(x) (solid lines) and effective equilibrium potential of the total
transmembrane current Eq(x) (dashed lines), mV; (B): homogeneous total mem-
brane conductivity G, and its equal partial conductivities of synaptic and passive
extra-synaptic dendritic membrane (G, and G 4), mS cm~2; (F): inhomogeneous
total membrane conductivity G,(x) with its inhomogeneous voltage-dependent
(Gna(x) and Gk(x)) and homogeneous voltage-independent (G5 and G) com-
ponents, mS cm~2; (C, G): total membrane current density per unit membrane
area Jp(x), LA cm~2; (D, H): core current increment digoe /0x = —i(x) equal to
minus the total current per unit path length, pA um~!. Striped area in D: current
collected from the path element dx. Numbers 14 indicate the paths shown on the
dendrogram in Figure 10.1, B. (From Korogod et al., 1998.)
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(Figure 10.3, B). However, E(x) is inhomogeneous in the active dendrite; it is max-
imal at the proximal end and decays with different rates towards the distal tips (Fig-
ure 10.3, E, dashed lines). The active membrane conductivity G,(x) increases with
increasing path distances from the soma (Figure 10.3, F). Its voltage-independent
components G and G are homogeneous, whereas voltage-dependent ones G, (x)
and Gk (x) follow inhomogeneous membrane depolarization E(x). The main con-
tribution comes from the non-inactivating potassium conductivity Gk (x) associated
with hyperpolarization equilibrium potential E . The inactivating sodium conduc-
tivity Gna(x) associated with depolarization equilibrium potential Ey, gives a one
order of magnitude smaller contribution. With such profiles of E(x) and Ey(x), the
driving potential E(x) — E4(x) is negative and decreases with path distance from
the soma, with a greater rate in the active case. In both passive and active den-
drites, the surface density of the dendritic current monotonically decreases with
increasing path distance from the soma (Figure 10.3, C and G). The increment
of the somatopetal core current, which is minus the membrane current density
per unit length digoe(x)/0x = —i(x) = —m - D(x) - Jn(x) also decreases but not
monotonically (Figure 10.3, D and H).

Abrupt elevations of the plot are observed on some dendritic segments. Compar-
ison with the path profiles of the dendritic diameters D(x) (Figure 10.1, B, C) shows
that they correspond to the segments with abrupt increased diameters. Thus, the
sites that are more distal give progressively smaller contributions to the core current.
However, if a local increase in the diameter occurs and is greater than the decrease
in the surface current density, the contribution to the core current increases at this
location. The path profiles of spatially inhomogeneous characteristics along asym-
metrical sister branches and paths diverge. As in Section 8.3.1 (see also Korogod
and Kulagina, 1998), comparison of equidistant sites X = Xjong = Xshort ON paths of
different length (e.g. long path 1 and short path 2) shows, on the shorter path: (i)
smaller E(x); (ii) greater active Eq(x); (ii1) greater driving potential E(x) — Eq(x);
(iv) greater current density J,(x) and (v) greater relative effectiveness of passive
somatopetal current transfer from single-site sources 7'(x) (Bras et al., 1993).
Finally, (vi) an elementary contribution to the somatopetal core current from dis-
tributed sources is greater if the ratio of the diameters D(Xiong)/ D (Xshort) dO noOt
exceed the ratio of the current densities Ji, (Xshort)/ Jm(Xiong)-

From these findings, it becomes obvious that the type of distal-to-proximal
relation is determined by the type of local /-V relation in the dendrite in both
passive and active configurations. Thus, whatever the configuration of the dendritic
membrane, the natural geometry specifies this general spatial relation according to
lengths and heterogeneous diameters along different paths. The metrical asymmetry
of the dendritic paths receiving distributed tonic activation brings about a clear
segregation of the path profiles of the transmembrane voltage and, if present, of
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the voltage-dependent conductances, of the effective equilibrium potential Eq(x)
and of the surface density Jp,(x) of the total membrane current. The path profiles
along the most asymmetrical path 1 are the most different from other profiles.
Conversely, the path profiles are close to each other in the second-order bifurcation
of small metrical asymmetry composed of paths 3 and 4. The varying dendritic
diameter is another contributor to metrical asymmetry. It remarkably modulates
the core current increment per unit path length and therefore the contribution of
the corresponding dendritic sites to the total current delivered along the path to the
soma.

10.3.2 Dendrite with an N-shaped I-V relation

The same dendrite is used with the other type of /-V relation of the dendritic
membrane (Korogod et al., 2002). We take the same cocktail of dendritic conduc-
tances including passive extra-synaptic and active NMDA-type synaptic compo-
nents which produces electrical bistability in artificial dendrites as described in
Section 8.3.2. The protocol of simulations is also the same. However, for inducing
electrical bistability in the reconstructed dendrite, we have to set an intensity of
synaptic activation different from that used in the case of the artificial dendrite.

The biophysical mechanisms defining the somatopetal current transfer effec-
tiveness are examined in the two stable steady states of low and high depolar-
ization (the downstate and upstate), inherent in the bistability. The computations
are performed at two maximum synaptic conductivities Gawvpa = 8.9 mS cm ™2
(Figure 10.4, A1-D1) and Gawvpa = 9.0 mS cm ™2 (Figure 10.4, A2-D2), which
are just below and above the upper limit of the electrical bistability for this den-
drite. Four electrical parameters are plotted: the transmembrane potential and the
effective equilibrium potential of the total membrane current (Figure 10.4, A1 and
A?2); the total membrane conductivity and its synaptic component (Figure 10.4, B1
and B2); the membrane current per unit area (Figure 10.4, C1 and C2) and the core
current increment per unit path length (Figure 10.4, D1 and D2), expressed as a
function of the path distance from the soma. Each parameter can thus be related
to the four dendritic branches, their length, their asymmetry and variations in their
diameters.

In the downstate, all four parameters are extremely sensitive to the local geometry
of the dendritic branches (Figure 10.4, A1-D1). The four dendritic paths (1 to 4) are
clearly differentiated by their transmembrane potential E (x) with divergent profiles
at branching points. The greater the asymmetry of the branching, the greater the
divergence of the voltage profiles. The dendritic depolarization reaches unequal
maximum levels at the four distal tips (Figure 10.4, A1) and decays with unequal
rates along the asymmetrical paths. The total membrane conductivity G, (x) is also
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Figure 10.4 Impact of dendritic geometry on path profiles of electrical parameters
in a dendrite with an N-shaped -V relation. The electrical bistability is induced by
tonic activation of distributed NMDA-type glutamatergic synaptic conductance.
Computations are performed at two synaptic intensities, Gxvpa = 8.9 mS cm ™2
(row A1-D1) and Gxuvpa = 9.0 mS cm™2 (row A2-D2), corresponding to values
below and above the upper limit of the range of electrical bistability for this
dendrite. The electrical parameters are shown along paths 1 to 4 of the dendrite as
a function of the path distance from the soma. Abscissae: path distance from soma,
pm. Ordinates (A1, A2): The transmembrane potential E(x) and the effective
equilibrium potential of the total transmembrane current Eq(x). (B1, B2): The
total membrane conductivity per unit membrane area G,(x) and its active synaptic
component Gympa (x). (C1, C2): The total current per unit membrane area Jp,(x).
(D1, D2): The core current increment per unit path length i ore(x)/0x. (From
Korogod et al., 2002.)
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spatially heterogeneous (Figure 10.4, B1) and follows the profile of the membrane
potential (Figure 10.4, Al). The synaptic conductivity Gnmpa(x) is of the same
order of magnitude as the passive extra-synaptic conductivity and makes up about
1/3 to 1/2 of the total membrane conductivity G,(x) at the root and the distal tip
of path 1. The total current density per unit membrane area J,(x) (Figure 10.4,
C1) is the product of the total membrane conductivity G,(x) (Figure 10.4, B1)
and the driving potential E(x) — Eq(x) in Figure 10.4, Al. The absolute value of
Jm(x) increases from 1.4 to 3.4 pA cm~2 with the path distance from the soma.
The largest increase concerns the longest and most depolarized path 1. The core
current increment per unit path length di.o./0dx is calculated as the product of
Jm(x) taken with the opposite sign and the dendritic perimeter = D(x). The core
current decreases sharply over the first 50 um in the four dendritic paths and then
fluctuates over a narrow range (0.07 to 0.12 pA um™!) according to the variations
of the dendritic diameters (Figure 10.1, B, C), reflecting accurately these structural
heterogeneities.

In the upstate, the four electrical parameters behave in a totally different way.
The transmembrane potentials are similar in the four dendritic paths, with steep
slopes in their proximal parts, and reach saturation near the reversal potential of
the synaptic current after the first 200 pum from the soma (Figure 10.4, A2). Sim-
ilarly, the synaptic conductivity Gnmpa(x) is nearly identical in the four dendritic
paths (Figure 10.4, B2) and more than one order of magnitude greater than in the
low depolarization state (downstate). It should be noted that, with NMDA conduc-
tances close to the upper limit for electrical bistability, the membrane depolariza-
tion exceeds the values recorded experimentally from the soma of live neurons.
Decreasing synaptic conductivity below this limit or clamping the soma at a lower
membrane potential brings the membrane depolarization close to experimental val-
ues and does not alter the fundamental behaviour of the model. Using this upper
limit is justified by the fact that it provides extreme conditions in which the most
contrasted patterns can be illustrated. The inward current density (Figure 10.4, C2)
decreases with the path distance from the soma in all four dendritic paths with a
sharp slope in their most proximal parts to reach zero in their distal parts (> 400
um from the soma). There, the synaptic conductivity is very high and the driving
potential is zero as the membrane depolarization £ (x) saturates close to the reversal
potential of the synaptic current Exvpa = 0 mV. It is remarkable that the total cur-
rent density orders the four dendritic paths in the sequence No. 4 < No.3 <No. 2 <
No. 1 in the downstate but in the opposite sequence No. 1 < No. 2 < No. 3 < No. 4
in the upstate. The core current in each dendritic path (Figure 10.4, D2) decreases
sharply over the first 300 pm from the soma to reach zero in their distal parts, indi-
cating that the periphery of the dendrite does not contribute to the total somatopetal
current.
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The modulatory effect of the dendritic diameter heterogeneity on the core current
increment (longitudinal transfer effectiveness from distributed sources) is also more
prominent in the downstate. In the upstate, only the large proximal heterogeneity
preceding second-order bifurcation of paths 3 and 4 has this impact, whereas the
distal parts of the dendrite are all equally ineffective. The metrical asymmetry
of branching also causes the divergence of electrical path profiles, which is most
prominent in the downstate and very small in the upstate. The greater asymmetry
of paths, the more segregated the path profiles are. This is clearly demonstrated by
the greatest divergence of electrical profiles along the most asymmetrical path 1.
The profiles along the other paths form a more compact group.

We conclude that the N-shaped type of -V relation of the reconstructed dendrite
determines the type of the distal-to-proximal relation along the dendritic paths. If
the membrane depolarization is within the range of positive slope of the I-V
relation, then a smaller inward current is generated at greater depolarization as
in the previous case (Section 8.3.2). However, if the depolarization is within the
range of the negative slope, then a greater depolarization generates a greater inward
current density. In both upstate and downstate, the dendritic depolarization is higher
in the more distal regions. In the downstate, the depolarization over the whole
dendrite is within the range of the negative -V slope and, correspondingly, the
inward current density is greater in the more depolarized distal regions. The spatial
relation is opposite in the upstate since the depolarization is now within the range
of the positive slope. In this state, more depolarized distal regions generate inward
currents of smaller density.

Our detailed analysis of the electrical profile of the single live dendrites demon-
strates that its specific geometry rules the path-to-path electrical relations whatever
the membrane properties, passive or active.

10.4 Reconfigurations of passive electrical structures

In the previous sections, attention has focused on the electrical consequences of
the metrical asymmetry and some other important aspects have been cast aside.
We must also consider the impact of the size of the dendrites. Indeed, the dendrites
of different neurons differ in their path distance extents. Another important aspect
is the dependence of the geometry-related electrical structure on the electrical
parameters, first of all on the membrane resistivity, which may change, e.g. as
a result of changing the intensity of synaptic activation. Here we consider these
aspects with the example of a pair of metrically different individual dendrites
with equal topology extracted from arborizations of significantly different sizes.
These are the dendrite 5 of the rat (M3) and the dendrite 6 of the cat (M1) spinal
motoneurons (Figure 9.5 and see Chapter 9). Both dendrites have the same number
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Figure 10.5 Reconfiguration of the electrical structures of two dendrites by chang-
ing Ry,. Top: Somatopetal charge transfer effectiveness T (x) (ordinates) computed
as a function of the path distance from soma (abscissae) under R;,, = 100 k<2 - cm?
(black lines), 10 k2 - cm? (dark grey) and 1 k2 - cm? (light grey). Arrowheads
indicate dendritic sites with T (x) = 0.5 defining the outer borders of the high
efficiency domains. Bottom: Dendrograms of dendrite 5 (A) and dendrite 6 (B)
with the same number of branches (seven) and the same asymmetry index (0.57)
but different metrical characteristics. The same arrowheads on dendrites delimi-
tate the distal borders of the high efficiency domains on the dendritic paths. (From
Korogod et al., 2000.)

of branches (seven) and the same topological asymmetry index (0.57), but they
display very different metrical parameters. The path lengths vary from 250 to
345 pm in the rat and from 500 to 1477 pm in the cat. The cumulative path length
of the branches is 3.5 times smaller in the rat than in the cat dendrite. The diameters
of the stem dendrites and their evolutions along the dendritic paths are also different
(Figure 10.5, lower part).
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The passive electrical structure of each dendrite is represented by 7 (x) profiles
computed for three uniform specific membrane resistances R, = 100, 10 and
1 k2 - cm? (Figure 10.5, upper part).

Both dendrites under each R,, show the general features of the somatopetal
charge transfer effectiveness 7'(x) decay with path distance from the soma as
described above. The decaying path profiles of 7(x) along asymmetrical paths
diverge. At any given dendritic site x, 7 (x) decreases as the values of R, decrease
from 100 to 10 and 1 k2 - cm?. Correspondingly, the path distances to the dendritic
sites of a given effectiveness 7'(x) decrease with Ry,. Spatially homogeneous,
equal decrements in the membrane resistivity produce spatially inhomogeneous
and unequal decrements in 7'(x). These coupled geometry- and R;-dependent
changes in the charge transfer effectiveness domain are qualitatively similar for
any level of T'(x).

Consider now two aspects of the same picture. First, we fix a certain 7 (x)
level and look for locations x on different dendritic paths that have the same
effectiveness. This is illustrated in Figure 10.5 in which the reference level is
arbitrarily fixed at 7 (x) = 0.5 (horizontal dashed line). The dendritic branches
of the two dendrites are divided into two domains of different efficiency, one
higher and one lower than 7'(x) = 0.5. The arrowheads in Figure 10.5 indicate
the dendritic sites with 7'(x) = 0.5 defining the outer border of the high-efficiency
domains. These border sites are not equidistant on different dendritic paths. The
shorter rat dendrite is highly efficient over its whole extent at R, = 100 and
10 k2 - cm?, but not at 1 k2 - cm?, where distal 125 um and longer segments are
in the low efficiency domain (Figure 10.5 A, arrows). The longer cat dendrite is
highly efficient over its whole extent at 100 k2 - cm? but not at 10 and 1 k2 - cm?
(Figure 10.5, B) where large distal segments reduce their effectiveness to below
the 0.5 level. Second, we fix a certain path distance x and consider the difference
in the values of T'(x) at equidistant locations x on different dendritic paths. A
noteworthy observation is that T (x) divergence is observed for different values
of the passive membrane resistivity Ry, (or the inverse value, the conductivity
Gmn = 1/Ry). The divergence is the greatest in the medium range of R, = 1/Gyy,
and smaller in the high- and low-resistance ranges (low- and high-conductance
ranges). The medium R,, range providing the greatest 7'(x) divergence is size-
specific: the longer the dendrites, the greater the Ry, values inducing the maximum
divergence. In our example, the 7'(x) profiles along the asymmetrical branches of
the longer dendrite of the cat motoneuron diverge significantly at about one order
of magnitude greater R,, compared to the shorter rat motoneuron dendrites. In the
cat dendrite, the significant fact is that the shortest branch is more efficient at 100
and 10 k2 - cm? than its much longer sister branch, but becomes less effective at
1 kQ - cm?.
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Electrical structure of the whole arborization

The superposition of the electrical profiles of all individual dendrites of a given
neuron represents the electrical structure of the whole arborization. The electrical
path profiles form a complex tree-like structure that is topologically equivalent
(homeomorphous) to the morphological dendritic arborization as both of them are
composed of the same number of identically connected branches and paths. Due
to this one-to-one correspondence between the dendritic paths and their electrical
profiles, the tree-like electrical structure acquires several important features of the
morphological tree such as branching pattern, path distance extent and complexity
function.

Which new aspects are brought in when several individual dendrites are united
in the whole arborization? Although one can expect occurrence or absence of new
properties induced by the whole system, we focus on the new emerging properties
in this chapter.

To find out what is the case, we explore the whole arborization electrical structure
by applying the same protocols in the same sequence (passive membrane and single-
site inputs, passive or active membrane and distributed inputs) as those applied to
individual dendrites in the preceding section. Namely, we start with the passive
electrical structure of the whole arborization represented by the superposition of
the current transfer profiles 7' (x) of individual dendrites, which remain the same
as those computed for each extracted individual dendrite.

11.1 Organization of the spatial electrical profiles

We start by computing passive electrical structures of the whole arborization trans-
ferring single-site inputs for different neurons. The careful observation of the
patterns of spatial electrical profiles reveals two main organizations. Depending on
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the dominating pattern of the mutual locations of the diverging profiles, we classify
these organizations as continuum-type or cluster-type.

The electrical structure of the small dendritic arborization of a spinal motoneuron
of a young rat (cell M3 in Figure 9.5) provides an example of the continuum-type
(Figure 11.1) The diverging electrical profiles of individual dendrites intermingle
and densely cover the plane of the plot, resembling a comet tail. The density is
high in the middle of the ‘tail’ with occasional profiles above and below the main
stream.

This arrangement corresponds to the histogram of the distribution of the dendritic
path lengths having a clear narrow single mode with a small number of distinctly
shorter and longer paths (Figure 9.5). Hence, small metrical asymmetry favours
the continuum-type organization of electrical profiles.

A remarkably different type of passive electrical structure is provided by the
dendritic arborizations of Purkinje and pyramidal neurons (library cells P1 and C1,
Chapter 9) shown in Figure 11.2. In each studied case, the electrical profiles are
organized in bundles separated by ‘empty’ space in which no or few profiles are
found. The bundles are defined as sets of dendritic branches that display similar
electrical transfer properties at given distances from the soma. As we know from the
analysis of electrical structure of artificial bifurcations (Chapters 7 and 8), the prox-
imity of electrical profiles indicate similarity of electrical transfer properties 7 (x)
of the corresponding sister paths with small metrical asymmetry. The arborization is
characterized by a number of bundles, indicating similarity of electrical properties
of the branches. Conversely, distinct bundles indicate between-group dissimilarity
of electrical properties of the corresponding dendritic paths. Hence, the passive
electrical structure of the whole reconstructed arborization is informative with
regard to the presence of dendritic domains similar or dissimilar in their trans-
fer properties. Comparing the bundles of electrical profiles and the corresponding
dendrograms (Figure 11.2), two important facts must be underlined. Some bundles
(indicated by open arrows) reflect the asymmetry between the subtrees belonging to
the same individual dendrite: to the unique dendrite of the Purkinje neuron (left) or
to the apical dendrite of the neocortical pyramidal neuron (right). The asymmetry
between different individual dendrites has the most distinct impact on the electri-
cal structure of the whole arborization of the neocortical pyramidal neuron: the
dense bundle corresponding to the basal dendrites (black arrow) is clearly distinct
from the bundles corresponding to the apical tuft (open arrows). This is in good
correspondence with the remarkable difference between these groups of dendrites
in their path lengths, as is clearly seen on the dendrogram below and quantitatively
characterized by the histogram in Figure 9.4, in which the mode of shorter basal
dendrites is far apart from that of the much longer apical paths. We classify this
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Figure 11.1 Top: Continuum-type passive electrical structure of a spinal motoneu-
ron of young rat. The electrical structure is represented by the current trans-
fer effectiveness T'(x) as a dimensionless function of the path distance x from
the soma (abscissa, um) computed at Gy, = 350 uScm 2 and R; = 100 - cm.
Bottom: The dendrogram of the whole reconstructed arborization illustrating the
metrical asymmetry due to differences in length between the dendritic paths (see
also the histogram in Figure 9.5). The dendritic diameters are not shown.
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Figure 11.2 Top: Cluster-type passive electrical structures of Purkinje neuron P1
(left) and neocortical pyramidal neuron C1 (right). The electrical structure is rep-
resented by the current transfer effectiveness 7'(x) as a dimensionless function of
the path distance x from the soma (abscissa, um) computed at G, = 300 uS cm™>
and R; =250 - cm for P1, and at G, = 40 puS cm 2 and R; = 1502 - cm for
C1. The arrows indicate bundles of electrical profiles with similar 7'(x). Bottom:
The dendrogram of the whole reconstructed arborization of the corresponding
neurons illustrating the metrical asymmetry due to differences in length between
the dendritic paths (see also the histograms in Figures 9.3 and 9.4). The dendritic
diameters are not shown.
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organization as cluster-type, signifying the presence of multiple dendritic elements
with similar patterns of metrical asymmetry.

11.1.1 An electrical detector of metrical asymmetry

In Chapters 7 and 8, we noticed that the passive electrical transfer function 7'(x)
is a good sensor of individual structural heterogeneities in the dendritic structure,
such as abrupt variations in the diameter or asymmetrical branching. Now we use
the same tool as an electrical detector of the collective asymmetrical properties
characteristic of groups of dendritic elements. In this context, gathering the elec-
trical profiles into groups deserves special attention, especially a new emerging
property not predicted, where the metrical asymmetry between the dendritic paths
is not clearly distinct. This property opens new possibilities for detecting metrical
asymmetry patterns based on the analysis of the electrical profiles.

Let’s consider first the passive electrical structure of the Purkinje neuron
computed with G, = 300 uS cm™? (Figure 11.2, left). First, the distinction of the
groups of electrical profiles points out the presence of significant metrical asym-
metry of the dendritic paths in the arborization. If the asymmetry causes electrical
distinction, then the electrical distinction detects the existence of significant asym-
metry. Second, the fact that the profiles form distinct bundles means that metrical
asymmetry pattern is repetitive: each repeating instance of significant asymmetry
contributes repetitively to the distinct groups, making them more numerous. In
this case, natural variability of path length and diameters (variability of the met-
rical asymmetry) is unable to dissipate the bundles of profiles into a continuum.
In short, to have distinct groups of electrical profiles, the arborization must have
significantly asymmetrical branchings and similar branchings must be numerous.
These are pre-requisites for the bundled electrical structure of the Purkinje neuron
arborization at high conductivity (low resistivity) of the passive dendritic membrane
(G = 300 uScm™2).

The geometry of the dendritic arborization of the pyramidal neuron is noticeable
in two respects: the asymmetry between basal and apical dendrites and that between
subtrees within the apical dendrite (see dendrogram in Figure 11.2, bottom right
and the histogram of path lengths in Figure 9.4, C1). The main metrical asymmetry
between the basal and apical arborizations causes noticeable distinction between
the more homogeneous bundle of basal profiles and the heterogeneous bundle fam-
ily of the apical profiles (Figure 11.2, top right). At a given membrane conductivity
Gm = 40 uS cm ™2, the basal electrical profiles are gathered into a single, more or
less homogeneous compact group (black arrow), whereas the apical path profiles
significantly diverge and form three distinct bundles (open arrows). Within the api-
cal arborization, asymmetrical subtrees are distinguished. In the main bifurcation
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located at about 450 um from the soma, one sister branch is the origin of the most
extended subtree 3. At 150 um further from this point, another sister branch forms
the next bifurcation from which two other subtrees emerge, the longer sub-tree
1 and shorter subtree 2. The distal parts of the longer sub-trees 3 and 1 are low
efficiency with some preponderance of the subtree 1. The shortest subtree 2 is the
most efficient in the passive current transfer. Hence, according to their transfer
effectiveness the three apical subtrees are ordered in the sequence No. 2 > No. 1 >
No. 3. The dendritic sites located at the same path distance from the soma on
these asymmetrical subtrees differ significantly in their passive transfer effective-
ness. However, within each subtree, one finds branches of similar effectiveness. An
important observation is the critical difference in transfer effectiveness between
the basal and apical parts of the reconstructed arborization.

These findings confirm the presence of more or less distinct bundles of electrical
profiles in neurons with very different morphologies. The key words for explaining
the presence of the bundles are metrical asymmetry and branching complexity of
the dendritic paths.

11.1.2 Demonstration of cluster-type electrical structures

Although the observation of the bundles seems to be the rule for the tested neurons,
how robust are they when different values of membrane conductivity are used in the
computations? Are there alternatives to the bundle-type structure of the electrical
path profiles? To answer this question, we perform a relevant type of mathematical
analysis of electrical structures aimed at revealing robust groups with statistically
significant within-group similarities and between-group differences in electrical
transfer properties, the so-called cluster analysis.

Technique of cluster analysis

The cluster analysis of the electrical structures is performed using the k-means
clustering method provided by CSS, STATISTICA (Statsoft, Tulsa, Oklahoma,
USA, 1991). The corresponding algorithms are based on the theoretical derivations
described in Hartigan (1975) and Zupan (1982). The cluster analysis is performed in
a 2D parameter space in which each dendritic branch is described by two parameters
of its steady electrical state: the mean voltage and the mean voltage gradient, i.e.
the mean slope of the voltage decay in physical coordinates (Bras et al., 1993;
Korogod et al., 1994). The mean voltage is computed as the sum of the voltages of
isopotential compartments divided by the number of compartments of each branch.
The mean gradient is computed as the voltage difference between the origin and
the end of the branch, divided by branch length. The solution to the clustering
problem, giving the number of clusters k, is obtained after a minimum of two
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iterations in all cases. The program starts with k random clusters and then moves
objects (dendritic branches in our case) between these clusters, with the aim of:
(1) minimizing the variability of the descriptive parameters (voltage and gradient)
within the clusters and (2) maximizing the variability between the clusters. This
is computationally equivalent to analysis of variance (ANOVA) in reverse, in the
sense that the significance test in ANOVA evaluates the between-group variability
against the within-group variability when computing the significance test for the
hypothesis that the means of the groups are different from each other. Thus, in
k-means clustering, the program moves the objects in and out of the clusters to get
the most significant ANOVA results. For each cluster, in addition to its content with
Euclidean distances of each member from the cluster centre in the parameter space,
the program also provides computation of Euclidean distances to all other clusters,
descriptive statistics (sample means and standard deviations) for every dimension,
and analysis of within- and between-cluster variance (F tests of significance and
P levels).

To apply this procedure to the electrical structures of the dendritic arborization of
one abducens motoneuron (Figure 9.5, M5), first, the steady-state voltage along the
dendritic branches is computed. Then, the mean voltage and gradient are computed
as descriptive parameters for each dendritic branch. Finally, the cluster analysis is
performed in the space of these two parameters for the set of all branches of the
given motoneuron. As a result we know to which cluster each branch belongs. Each
cluster is coded by its own colour, which is used to indicate the electrical profiles
corresponding to all branches belonging to the given cluster. This is illustrated on
the example of the arborization of the rat abducens motoneuron M5 in Figure 11.3.
Dendritic branches that display similar voltages and gradients over a given distance
constitute a cluster and are coloured in the same.

The number of clusters is found to be k = 4 in this case when computations are
performed with R, = 3kQ - cm?. Additional computations are made to test the
dependency of the existence and the number of clusters on changes in the value
of R,,. The number of clusters remains the same (k = 4) for computations with
R, = 10k - cm? in both motoneurons. With R,, = 1k - cm?, the number of
clusters increases to k = 5 resulting from the partition of cluster 2 into two sub-
clusters (2a and 2b). The solution to the clustering problem is obtained after the
minimum accepted number of two iterations with a statistically highly significant
discrimination between all the clusters (see below). The clusters characterized by
their mean values of voltages and gradients are sequentially ordered according to
the somatofugal behaviour of these two parameters: from the highest mean voltages
and gradients in cluster 1 to the lowest values in cluster 4 (see Table 1 in Korogod
et al., 1994 for details). To assess how distinct the clusters are, a statistical analysis
is performed. Several quantitative estimates of discrimination between the clusters
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Figure 11.3 (Plate 2) Cluster-type electrical structure of reconstructed dendritic
arborization of the abducens motoneuron shown in Figure 9.5 as cell M5. Three
top boxes: The results of the cluster analysis of the somatofugal voltage decay
are coded by colour and mapped on the profiles expressing the electrical structure
of the M5 arborization, computed with R, = 1, 3 and 10 k2 - cm?. The steady
voltage (ordinates) clamped to 10 mV above the rest potential at the soma decays
along the branches with increasing path distance from the soma in pm (abscissae).
Each branch ascribed to a cluster according to similarity of the mean voltage and
gradient over a given distance is shown in the same colour. The mean voltages and
gradients are the highest in cluster 1 (red) and lowest in cluster 4 (violet) and they
are intermediate in clusters 2 (green) and 3 (cyan) containing the greatest numbers
of profiles. Bottom box: The dendrogram of the arborization with the branches in
the colours of the clusters that they belong to. (Rearranged from Korogod et al.,
1994.)
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are computed. The magnitude of the F-test values obtained from the analysis of
variance for each dimension (voltage and gradient) is an indication of how well the
respective dimensions discriminate between the clusters. The results of ANOVA
show that all values of F are > 1 and all significance levels but two are < 0.001,
giving evidence of a highly significant discrimination between the clusters. This is
true for the three values of Ry, in this motoneuron (Table 2 in Korogod et al., 1994).
In the ‘mean voltage-gradient’ two-parameter space, Euclidean distances between
the clusters and those between the branches within each cluster are computed to
get quantitative estimates of the compactness of each cluster and the separation
between them. The results of these computations (see Figure 3 and Table 3 in
Korogod et al., 1994) show that the mean Euclidean distances within the clusters
are always several times smaller than those between the clusters for the three values
of R, giving a further quantitative indication of good statistical discrimination
between the clusters.

In Figure 11.3 with colour-coded cluster affiliation of the dendritic branches and
of their electrical profiles, we notice an obvious correspondence between the colours
and the bundles. Each bundle is mainly one colour, different bundles are different
colours and the sequence of colours coding the clusters from higher to lower
voltages and gradients corresponds to the sequence from upper to lower bundles.
The colours indicate clusters and therefore the coloured bundles correspond to
clusters of branches statistically discriminated according to their electrical transfer
properties. The results of cluster analysis for the same arborization at different
Ry, are specially interesting. When Ry, is changed from higher to lower values, the
electrical structure evolves in a characteristic manner. At reduced R, = 1k - cm?
(high conductance) the bundles of electrical profiles are compressed and visually
less distinguished, reflecting a reduction of the difference between dendritic paths
and branches in their transfer properties. However, the same recognizable bundles of
profiles remain the same colours. This means that at the new lower level of transfer
effectiveness, the within-group similarities and between-group differences remain
statistically significant and the groups of electrical profiles remain statistically
discriminated. This qualifies the observed electrical structures as the cluster-type
structure.

There are more noteworthy details in the path profiles and dendrogram plots of
the electrical clusters (Figure 11.3). First, the path distance location of branches
belonging to different clusters. It is not surprising that cluster 1 (red, most efficient)
and cluster 4 (violet, least efficient) are located, respectively, in the most proximal
and most distal parts of the arborization. More interesting and even unexpected is
that the branches belonging to the two other statistically distinct clusters 2 (green)
and 3 (cyan) of intermediate effectiveness are located at approximately the same
medium path distances from the soma. Second, almost all the individual dendrites
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contribute to both clusters 2 and 3 of intermediate effectiveness, which means
similarity of their metrical asymmetry patterns. Third, the latter observation proves
the possibility to use features of electrical structure, such as grouping the electrical
profiles into bundles, as a detector of morphological parts of the arborization with
similar metrical asymmetry. This is important because this morphological feature is
not always obvious. Indeed, in the histogram of the distribution of the dendritic path
length of the abducens motoneuron (Figure 9.5, M5), one can hardly distinguish
clear modes of intermediate path lengths. Thanks to the electrical structure, one
can thus detect rather obscure features of asymmetrical dendritic morphology.

11.2 Robustness of the electrical bundles

Simultaneous tonic activation of all synaptic inputs distributed over the whole
arborization is the alternative to the activation of single-site inputs. Both types of
activation are equally far from the physiological reality which lies in between these
two extreme cases. The problem is that neither the number nor the exact locations
of the activated synapses are known. However, one can assume that if certain
geometry-induced features are present in both electrical structures computed for
the two limiting, unrealistic cases, then these features are likely to be present in
the ‘intermediate’ physiologically reasonable cases. Let’s take such a feature as
bundles of 7'(x) profiles that correspond to the single-site activation case and ask the
question whether such bundles are also formed by the voltage profiles representing
the passive electrical structure of the same arborization, but receiving distributed
inputs.

The electrical structure of the whole arborization with a passive membrane
receiving homogeneously distributed synaptic activation represented by the family
of voltage path profiles (Figure 11.4, b) is computed in the same way as in the case
of an individual dendrite (Chapter 10). The family of voltage profiles forms almost
a mirror image of the passive electrical structure represented by 7'(x) profiles
(Figure 11.4, a). The bundles of the electrical path profiles in (a), statistically
characterized as clusters, have their ‘mirror’ bundles in the electrical structure
of the same dendrites tonically activated via distributed inputs (b). We conclude
that the robust geometry-induced feature present in both representations of the
electrical structure are the bundles of the 7 (x) and voltage path profiles. They
indicate that, in the whole arborization, there are certain groups of branches and
paths characterized by within-group similarities and between-group differences
in processing of arbitrarily organized synaptic inputs for the same geometrical
reasons.

Let us now perform one more test for the robustness of such geometry-induced
electrical features of the whole arborization. We equip the dendritic membrane
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Figure 11.4 Electrical structures of the reconstructed dendritic arborization of
abducens motoneuron (cell M5 in Figure 9.5) with passive (a, b) and active,
Hodgkin—Huxley type (c) properties of the dendritic membrane. Electrical struc-
tures are represented by the path profiles of the relative effectiveness of the
somatopetal current transfer 7 (x) from single-site sources in passive dendrites
(a) and by the path profiles of the membrane potentials (b, ¢) resulting from tonic
activation of excitatory synaptic inputs homogeneously distributed over the den-
drites with passive (b) or active (c) membranes. (Rearranged from Korogod et al.,
1998.)
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with voltage-dependent conductances of the Hodgkin—Huxley type and submit the
dendritic arborization to the same type of distributed tonic synaptic activation as
in the preceding case for passive dendrites. In the case of individual dendrites,
although there is an asymmetry-induced divergence of the voltage path profiles
(Figure 10.3, E), due to the currents through the voltage-dependent extra-synaptic
conductances, the profiles diverge less than in the case when this dendrite has a
passive extra-synaptic membrane (Figure 10.3, A). Since such non-linearity of the
dendritic membrane erodes the asymmetry-induced electrical effects, can it also
erode the asymmetry-induced grouping of the dendritic branches and paths?

Consider the family of path profiles of the membrane voltages generated by the
same dendritic arborization with an active (Hodgkin—Huxley type) membrane in
response to tonic activation of distributed synaptic inputs that provides another
active type of electrical structure (Figure 11.4, c). This type looks also like a mirror
image, though somewhat deformed, of the passive structure (a) with still recog-
nizable distinct ‘mirror’ bundles. Hence, the presence of bundles corresponding
to the groups of branches in similar electrical states is a common feature induced
by the dendritic geometry, namely by multiple elements with similar metrical
asymmetry.

11.3 Dynamic reconfigurations of the whole electrical structure

How are the general properties of activity-dependent reconfiguration of the passive
electrical structure found in individual dendrites (Chapter 10) manifested in whole
arborizations of different types?

11.3.1 The size effect

We will take specific examples of complex arborizations that highlight the effects
of such structural features as the size and metrical asymmetry patterns. Among
our library neurons, the greatest difference in the overall size of the dendritic
arborizations (more than four times) is found between the cerebellar Purkinje cells
and neocortical layer 5 pyramidal cells. There is approximately the same difference
between basal and apical dendrites of the same pyramidal neuron. These neuron
types are worth considering in this context because they also have a special pattern
of metrical asymmetry which induces a noticeable feature of the passive electrical
structure: the bundles of the passive electrical profiles.

We can compute the passive transfer ratio 7(x) for the Purkinje neuron P1
(Figure 9.3) and the pyramidal neuron C1 (Figure 9.4) at different values of the
membrane conductivity Gy, and select plots with similar maximum divergence of
the electrical path profiles. These data are shown in Figure 11.5.
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Figure 11.5 Size dependence of dynamic reconfiguration of the electrical struc-
tures of neocortical layer 5 pyramidal neuron (A) and Purkinje neuron (B1 and
B2). The current transfer effectiveness 7' (x) (ordinate, dimensionless) is computed
as a function of the path distance from the soma (abscissae, m) along all the den-
dritic paths of the arborization at different values of the membrane conductivity
G, indicated in 1S cm™2 on the corresponding plot.
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At low G, values, e.g. 1 uS cm 2, the electrical profiles of each arborization
merge into a single bundle at a level close to the maximal relative transfer effec-
tiveness 7' (x) = 1. In both neurons, an increase in the membrane conductivity G,
(decrease of the membrane resistivity Ry, = 1/Gy,) leads to the segregation of
electrical profiles that neatly correspond to asymmetrical subtrees. In the pyrami-
dal neuron, at Gy, = 10 uS cm™2, the bundles of electrical profiles in the apical
sub-trees are clearly segregated, whereas those in the basal dendrites remain essen-
tially merged at a high effectiveness level. At the same G, value, the electrical
profiles of the whole arborization of the Purkinje neuron also remain essentially
merged. To get approximately the same segregation as that obtained at 10 pS cm ™2
for the pyramidal neuron, the membrane conductivity of the Purkinje dendrites has
to be increased almost by an order of magnitude, up to 80 uS cm~2. The maximum
segregation of the electrical profiles of the apical arborization in the pyramidal
neuron is observed at G, = 40 uS cm~2 and that of the whole arborization of the
Purkinje neuron at 500 1S cm~2, that is 12 times greater. In the pyramidal neuron,
at Gy, = 500 uS cm™2, the apical electrical profiles are again virtually merged, but
at a low level close to 0, whereas the profiles corresponding to the basal dendrites
are separated almost maximally. Increase of G, up to 2000 1S cm ™2 in the Purkinje
neuron reduces the segregation of the electrical profiles, which approach the low
level.

The results show that, in both neurons, it is possible to define three characteristic
ranges of membrane conductivity: the low-conductance range, in which all the
electrical profiles are closely adjacent to each other at a level of relatively high
transfer effectiveness; the high-conductance range, in which the electrical profiles
are also closely adjacent, but at a level of relatively low relative effectiveness;
the medium-conductance range, in which the profiles corresponding to asymmet-
rical subtrees are maximally segregated. The limits of these ranges are shifted
to greater values, approximately by one order of magnitude, in Purkinje neurons
compared to pyramidal neurons. The same is true for the range limits correspond-
ing to the basal dendrites compared to apical dendrites in the pyramidal neuron
arborization.

An important question arises from the observation of compressed electrical pro-
files at very low and very high values of membrane conductivity. As in these cases,
all the profiles merge into a very narrow single bundle, it seems like the metrical
asymmetry becomes unimportant and the grouping of the dendritic branches and
paths does not exist anymore. To check whether this is true or not, we can expand
the scale along the 7 (x) axis so that the visual difference between top and bottom
profiles increases approximately to the same extent as in the case of intermediate
membrane conductances. The outcome is shown in Figure 11.6 for the dendritic
arborization of the Purkinje neuron. In the reference plots of T'(x) in full scale from
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Figure 11.6 Robustness of the asymmetry-induced grouping of the dendritic
branches and paths according to similarity and dissimilarity of their passive trans-
fer properties. The families of the passive electrical profiles 7'(x) computed at the
membrane conductivities G, = 1 uS cm~2 and 2 mS cm 2 (indicated above the
corresponding plots) and shown in the same full scale as in Figure 11.5 (left) and
expanded (right).

0 to 1 (left), one cannot see the bundles, at least the three which were distinct at
intermediate conductivities (cf. Figure 11.5, A). All the profiles are compressed
into a narrow single bundle at very low conductivity (1 1S cm™2, top) into a dense
strip at high conductivity (2 mS cm ™2, bottom). However, when the same 7'(x) pro-
files are plotted with an expanded ordinate scale (right), one sees the groups of the
profiles (enveloped by ellipses) which correspond to those observed in Figure 11.5,
A, e.g at G, = 500 uScm ™2 and even 80 uS cm 2. Hence, although the differ-
ence in the passive transfer effectiveness between the asymmetrical paths becomes
small at very low and high membrane conductivities, the general ‘cluster-type’
features of the electrical structure are conserved. For the groups of asymmetrical
branches and paths, the between-group differences and the within-group electrical
similarities remain.
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11.4 Spatial aspects of reconfigured electrical structure

Considering the asymmetry-induced divergence of the passive electrical path pro-
files of the whole arborizations at different membrane conductivities, we focused
in the previous section on the width of the strip of profiles in the dimension along
the ordinate T'(x). Here we focus on another dimension and consider the width
of the same strip along the abscissa, i.e. the path distance from the soma. This
width can be considered at different levels of transfer effectiveness 7'(x). From
this we know how far the proximal dendritic path section extends, in which the
transfer effectiveness exceeds a given level. This aspect of the dynamic recon-
figuration of electrical structures we consider for different types of motoneurons.
The selected digitized motoneurons (Figure 9.5) have different sizes, from small
(spinal motoneuron M3 of young rat) to medium (rat abducens motoneuron M4)
and large spinal motoneurons (cat M1 and frog M2). When the reconfigurations
of the electrical structures of the pyramidal and Purkinje neurons were compared
(Figure 11.5) we took different values of G, that provide similar divergence of
electrical profiles. Now we explore the difference in 7'(x) profiles computed for
four motoneurons in the same conditions: each at three different G, = 0.01, 0.1
and 1.0 mS cm 2 that correspond to the membrane resistivity values Ry, = 100, 10
and 1 kQ - cm? (Figure 11.7).

Let us consider four aspects of the same plots. First, like in the similar plots
for Purkinje and pyramidal neurons, we consider in general the compactness of
the whole family of path profiles at different values of membrane resistivity. For
that we compare how far from each other the profiles along the 7'(x) ordinate are.
Second, we note in which range of transfer effectiveness the profiles fall. For that
we use T(x) = 0.5 as the reference level and distinguish only two ranges: high,
with T'(x) > 0.5 and low, with T'(x) < 0.5. Third, we note at which path distances
x the T'(x) profiles cross the reference 0.5 level and from x coordinates of these
cross-points we infer the path distance extent of the highly effective dendritic
domain. Fourth, ultimately we specially note the distance between the right-most
and left-most cross-points, which can be considered as an indicator of the metrical
asymmetry of the electrically high-efficiency sections of the asymmetrical dendritic
paths.

Consider the first aspect and make sure that, in the reconstructed motoneu-
rons, the size-dependence of the divergence of the electrical path profiles corre-
sponds to that observed in the arborizations of Purkinje and pyramidal neurons. In
each motoneuron, the 7(x) profiles are most compact at the highest tested R, =
100kS2 - cm® and diverge at intermediate R,,, = 10k - cm? (Figure 11.7, black and
dark grey lines). In some cases, the family splits into distinct bundles having spe-
cific features in each arborization. At the lowest R, = 1 k2 - cm? the profiles (light
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Figure 11.7 Passive electrical structures and their reconfiguration induced by
changes in the membrane resistivity Ry, for the dendritic arborizations of four
motoneurons shown in Figure 9.5: rat spinal (A), rat abducens (B), cat (C) and
frog (D) spinal motoneurons. Top: Electrical structures are represented by the path
profiles of the somatopetal charge transfer effectiveness (ordinates) as a function of
the path distance from soma (abscissae) computed for R, = 100kS2 - cm? (black
lines), 10 kS2 - cm? (dark grey lines) and 1 k2 - cm? (light grey lines). The profiles
above and below the dotted line at 7'(x) = 0.5 correspond to the low-efficiency
(T (x) < 0.5) and high-efficiency (T (x) > 0.5) domains of the dendritic paths. The
path coordinates of the cross-points of profiles on the 7'(x) = 0.5 line define the
path distance from the soma to the border of the high-efficiency domain. Bottom:
The complexity function of the arborizations and their high-efficiency domains
represented by the number of the dendritic path profiles (ordinates) with T (x) =
0.5 at three values of Ry: 100 kS2 - cm? (black line), 10 k2 - cm? (dark grey line)
and 1 k- cm? (light grey line), as a function of the path distance from soma
(abscissae). The number of profiles is equal to the number of dendritic paths. At
Ry = 100 k2 - cm?, the entire arborizations are in the high-efficiency domain of
the motoneurons (A—C) with only one exception (D). Their complexity function
is superimposed on that of the entire arborizations (black lines). In D, the two
functions display a slight difference (Total). (From Korogod et al., 2000.)

grey lines) of the shortest arborization (A, rat spinal motoneuron) further diverge,
whereas those of the larger motoneurons (B—D) become compressed again, espe-
cially in the distal parts of the largest cat (C) and frog (D) motoneurons, where
they overlap at nearly zero level. Hence, in this respect the reconfiguration of the
electrical structures caused by changes in Ry, in small and large motoneurons is
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in good correspondence with that observed in the arborizations of Purkinje and
pyramidal neurons.

Now consider the second and third aspects of the reconfiguration picture. The
partition of the arborizations into two arbitrary domains of charge transfer effec-
tiveness (low and high efficiency) reveals that three of the four motoneurons have
their whole arborization in the high-efficiency domain under R, = 100 k2 - cm?,
The bundles of the shortest dendritic arborization (Figure 11.7, A) are the most
compressed up to the distal tips, with values of 7' (x) between 0.95 and 1.0, indicat-
ing a close similarity of all the dendritic paths in their transfer effectiveness. The
behaviour of the rat abducens (Figure 11.7, B) and the cat motoneuron (Figure 11.7,
C) is similar under R,, = 100 k2 - cm?, except for the longest path distances, in
which a slight tendency toward decompression is observed in the cat. In the frog
motoneuron (Figure 11.7, D), the electrical profiles are more decompressed even
at Ry, = 100 k2 - cm?, with some of the longest profiles in the low-efficiency
domain. At R, = 10kS2 - cm?, all arborizations are decompressed, showing a much
wider variation in the charge transfer effectiveness of the paths. Except for the rat
spinal motoneuron, the longest profiles fall into the low-efficiency domain beyond
400-500 pum from the soma, some of them even reaching values close to zero effi-
ciency at 1500 pum from the soma in the frog motoneuron (Figure 11.7, D). Because
the rat spinal motoneuron (Figure 11.7, A) has no dendritic paths longer than
500 pm, all the profiles remain in the high-efficiency domain although they are
very decompressed in their distal parts with 7'(x) in the range between 0.93 and
0.56. Under R,, = 1 kQ - cm?, a dramatic reduction in the high-efficiency domain
characterizes all arborizations. The bundles of profiles are compressed again in
the four arborizations and the T (x) profiles decay abruptly over the first 250 pm
from the soma to reach the low-efficiency domain. The longest path profiles of
the cat and frog motoneurons fall to values close to zero efficiency between 550
and 700 pm from the soma, whereas none of the profiles of rat spinal or abducens
motoneurons reach zero 7'(x), even in their most distal parts.

Ultimately, consider the fourth aspect of the reconfiguration picture: the disper-
sion of the borders of the highly effective proximal parts of the dendritic paths
estimated by the width of the cross-section of the family of electrical profiles by
the reference level line 7' (x) = 0.5. A noteworthy feature is observed in the pro-
files for cat and frog motoneurons at medium and low Ry,: with change of Ry,
from 10 to 1 kS2 - cm? the cross-points shift to the left and become closer to each
other (the left-shifted cross-sections are narrower). This means that, in terms of
the path distances, the high-efficiency domains of the dendritic arborizations
become smaller and less asymmetrical when Ry, is reduced. Another noteworthy
feature is seen when comparing the path distance location of the cross-sections of
the electrical profiles of different motoneurons. When Ry, is reduced to 1 k2 - cm?
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the shorter cross-sections of small and large arborizations are located at about the
same 250 pum path distances from the soma. This means decreasing differences
between small and large arborizations in the path distance extent of their highly
effective domains.

11.5 Complexity of the whole arborization and its electrical domains

The reconfiguration of the electrical structures of the whole arborizations of four
motoneurons caused by introducing different values of Ry, reveals an unequal
reduction in the their high-efficiency domains. It also indicates clear quantitative
differences between the sensitivity of 7'(x) of each arborization to changes in Ry,.
The representation of the global electrical structure in physical coordinates pro-
vides a direct estimate of the proportion of the path extent in the high-efficiency
domain, but the number of paths in this domain often is not resolved because of
the overlapping of electrical profiles in narrow bundles. To solve this problem, we
use the fact that the dendritic subtrees and their corresponding bundles of electrical
profiles are homeomorphous (topologically equivalent). Here we use the complex-
ity function introduced by Korogod et al. (2000) to describe the composition of
the dendritic domains of high efficiency. The complexity of any dendritic domain
is defined by the number of dendritic paths as a function of the path distance from
the soma. At zero path distance, the complexity function is equal to the number
of primary dendrites emerging from the soma. As the path distance increases, the
number of paths increases by 1 when a bifurcation occurs or decrements by 1 when
a path terminates. The complexity function increases in the spatial domain where
the branchings prevail over terminals and decreases where the terminals prevail.
It is used to further characterize the number of dendritic paths included in the
high-efficiency domain under the three values of Ry, (Figure 11.7, bottom). The
surface areas below the plots of the complexity function show the total length of
the dendritic paths in the domain. For R,,, = 100 k2 - cm?, the entire arborizations
are highly effective in all motoneurons but one. Correspondingly, the complexity
function is the same for the whole arborization and the high-efficiency domain
(Figure 11.7, black lines). The exception is the frog motoneuron, in which a small
difference is observed (Figure 11.7, D, black line and line marked Total). In the rat
spinal motoneuron, with path lengths that do not exceed 480 um, the maximum
complexity (99 paths) occurs at the shortest path distance of 280 um (Figure 11.7,
A). For the rat abducens motoneuron with a dendritic extension of 770 pum, the
maximum complexity is smaller (35 paths) and occurs at 346 pm from the soma
(Figure 11.7, B). In the cat spinal motoneuron, the maximum complexity (70 paths)
occurs at about 540 um, whereas the longest path is 1627 um (Figure 11.7, C).
In the frog spinal motoneuron, the maximum complexity (60 paths) is at 470 um
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from the soma, and the arborization extends up to 1824 um (Figure 11.7, D).
The reduction in R, to 10 kQ/cm? has no effect on the complexity function of
the high-efficiency domain in the rat spinal motoneuron, whereas the function
decreases by approximately 5%, 20% and 60% in the other three motoneurons.
In the two small motoneurons, the same changes in R, introduced almost no
changes in the complexity of their high-efficiency domains. However, a further
reduction in R, (1 k2/cm?) induces large changes in both path extent and com-
plexity function in the four motoneurons. The complexity function ascertains that
the high-efficiency domain can be reduced to a small number of dendritic branches
efficiently connected to the soma under low values of R,,. We conclude that the
complexity function gives additional quantitative information that is not retrieved
from observation of the electrical profiles.

For neurobiologists, the electrical structures of the whole arborizations repre-
sented by families of curves remain a rather unusual abstract object although they
contain extremely rich information for understanding the electrical properties of
dendritic arborizations. Our fine analysis of dendritic profiles by explaining the
biophysical mechanisms that rule their electrical structures provides the necessary
and fundamental principles on which we can now rely to proceed to the exploration
of the 3D shapes of the biological neuron.
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Electrical structures in 3D dendritic space

For the biologist, the gap between results of model computation and live neurons is
filled when an electrical structure is mapped on the static anatomy of the dendritic
field of neurons. The speaking likeness of these 3D images opens a new way
of thinking by providing a functional image of 3D dendritic space. Indeed it is
new because the question of the electrical state of the whole dendritic space is
rarely addressed, although critical for understanding how the neuron processes its
inputs.

The three types of neurons investigated here have their own idiosyncratic 3D
dendritic pattern so well described in morphological words. In Chapters 10 and 11,
we explore the arborizations as determinants of their spatial electrical properties
without referring to the dendritic geometry as an object inserted in physical 3D
space. The restriction of this view can be explained with a simple analogy. This is
a view of the dendrites ‘from the inside’.

We can imagine the dendritic arborization as a ‘cave maze’ in the brain’s depths.
When we are inside the maze, we do not perceive its 3D shape. We can wander
inside, uncoiling ‘Ariadne’s thread’ on our path from the entry (the soma) to the
deadlocks (the distal tips) and then measure the length of the threads between
those points to find the path lengths. Another spatial information available from the
interior view is the diameter of the ‘cave’ at each site along the path. Knowing the
lengths and diameters of all the paths in such a labyrinth is sufficient for computing
the spatial electrical structures. So, the arborization as the determinant of the spatial
electrical properties can be exhaustively characterized. Now, we escape from the
dendritic maze and look at it ‘from outside’. From the exterior viewpoint, we can
observe the geography of dendritic space, we search for elements of dendritic
arborization bearing similar or dissimilar electrical properties and define where in
the 3D space these elements are located. This is necessary for answering further
the question of how the dendrites process synaptic inputs delivered in the 3D space
of the brain where the arborizations are inserted.

161
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Let us go to the 3D dendritic space of the neurons in our library and see the
3D arrangement of their electrical maps which were described from the ‘interior
viewpoint’ in the preceding chapters.

12.1 The 3D electrical structures of Purkinje neurons

We start with the electrical maps of the dendritic space of Purkinje neurons. This
space has the most advantageous geography: it is planar and the dendritic elements
are located very close to each other, which facilitates greatly the comparison of
their electrical states.

Figure 12.1 shows the electrical structures of the reconstructed planar dendritic
arborizations of six Purkinje neurons (Kulagina et al., 2007). Each electrical struc-
ture is represented by a dendritic map of steady voltage that is identical to the map
of passive transfer profiles 7'(x) (see Chapter 6). The comparison of the six elec-
trical structures (plots P1 to P6 in Figure 12.1) reveals common and cell-specific
features. The common feature is the organization of the path profiles into more or
less dense bundles corresponding to sets of paths with similar voltage transfer. The
voltage profiles corresponding to the asymmetrical dendritic paths are separated,
although they run along side each other over path distances of several tens of mi-
crometres. In all cells, they indicate the presence of multiple segments situated at
equidistance from the soma, characterized by different voltages and thus different
passive transfer properties.

The cell-specific features are represented by different deviations of the voltages
at the distal dendritic tips from the same reference voltage (—60 mV) at the soma.
These dendritic voltages range from about —66.5 mV in P5 to —68.5 mV in P2. The
voltage difference between the tips of the shortest and longest dendritic paths range
from about 3.5mV in P1 to about 6mV in P3, P4 and P6. Finally, the number and
mutual position of individual path profiles and their pattern itself are cell-specific.
On the 3D images of the arborizations (Figure 12.1), dendritic domains with similar
(same colour) or dissimilar (different colours) voltages are situated in dendritic
fields. We find two main types of partition of the dendritic arborizations according
to spatial transfer properties. In four cells (P1, P3, P4 and P6), the domains look like
planar sectors approximately limited by radii (dashed lines) emerging from major
branching points. In each case, one can distinguish sectors of low (L), medium
(M) and high (H) effectiveness. Noteworthy, in four cases, the electrical structure
is clearly partitioned into radial sectors according to transfer properties. Therefore
we conclude that a sector-like arrangement of the electrical structure is typical for
planar dendritic arborizations of Purkinje neurons, at least for this small sample.
The identified sectors of low, medium and high transfer effectiveness are spatially
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Figure 12.1 (Plate 3) Electrical sectors in the reconstructed planar dendritic fields
of Purkinje neurons P1 to P6 (Figure 9.3). For each cell, the passive membrane
voltages (ordinates, mV) are computed along the dendrites as a function of the
path distance x from the soma (abscissae, pm), colour-coded with the six-colour
palettes (inserts) and mapped on the plot of electrical profiles and 3D image of the
arborization. Same or different colours indicate dendritic domains with similar or
dissimilar voltages (passive transfer properties). In each case, the domains of low
(L), medium (M) and high (H) depolarization/effectiveness are identified. In P1,
P3, P4 and P6 the domains look like planar sectors approximately limited by radii
(dashed lines) emerging from major branching points. In P2 and P35, the partition
of the dendritic fields appears more patchy. (From Kulagina et al., 2007.)
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separated and ordered by the polar angle indicating polar angular arrangement of
the branching asymmetry.

12.2 The 3D electrical structure of pyramidal neurons

The dendritic space of the cortical pyramidal neurons is far more complex. The
pattern of stratification of all cortical regions displays a common architectural prin-
ciple of vertical and horizontal orientation of its structural elements, being present
in the most simple as well as the most complicated kinds of cortex. The unique
shape of the dendritic apparatus of the pyramidal neuron adheres to this principle.
The singularity of the electrical structure of the pyramidal neuron arborization lies
in a similar type of stratification which we classify as layered (Figure 12.2).

The 3D map of its passive transfer effectiveness (Figure 12.2) shows that the
apical dendrite transfers the signals arriving at the main stem segments in layers
4-2 with differing effectiveness. The electrical structure of the apical tuft composed
of tangential branches to the cortex surface has the spatial arrangement of the
sector-field or sector-like type, common to the other types of neurons already
described. For instance, the right sector of the tuft tangential field is occupied
by the apical subtree 3, composed of the longest and electrically least efficient
branches (Figure 12.2), whereas the right sector is formed by more efficient tuft
branches of the subtree 2. The 3D space of the basal arborization in layer 5 is filled
with the most proximal and efficient branches.

12.3 The 3D electrical structures of motoneurons

The arborization of the motoneurons is a true 3D structure as the dendrites radiate
in all directions in the 3D space around the soma. Each individual dendrite occupies
its own spatial sector in 3D space and the spatial sectors of different dendrites do
not intersect (Bras et al., 1987, 1993; Korogod et al., 1994). We know that the
presence of clusters is demonstrated in the electrical structure of the two abducens
motoneurons shown in Figure 11.3 (Korogod et al., 1994).

The mapping of these clusters on their 3D images in Figure 12.3 reveals their
specific features. With no surprise we find that the branches belonging to the most
effective cluster 1 occupy the region of 3D space that is the most proximal to
the soma (coloured red in Figure 12.3). Also not surprising is the location of the
least efficient cluster 4 members on the far periphery of the 3D dendritic space.
Noteworthy is the location of the branches forming clusters 2 and 3, characterized
by intermediate values of the somatopetal current transfer effectiveness as esti-
mated by the mean values of the somatofugal voltage and voltage gradient. On
the dendrogram plot (Figure 11.3), one can see the branches of the same dendrite



12.3 The 3D electrical structures of motoneurons 165

Bt ’E‘
B2 <y i \
% subtrees:

B3 —— 1
B4 T e
B5 % Bl 068 v 4

0.38
0.28

> ¥..
B6 0.58 g2

0.18

um
% 800 1200 1800
Figure 12.2 (Plate 4) Passive electrical structure of reconstructed dendritic ar-
borizations of the pyramidal neuron (cell C1) of layer 5 of the neocortex. Bottom:
Path profiles of the relative effectiveness of the somatopetal current transfer 7 (x)
(ordinate, dimensionless; abscissa, path distance from the soma, um). Top left
and right: Respectively, the dendrogram and 3D image of the reconstructed ar-
borization, on which the colour-coded values of 7' (x) are mapped (the six-colour
palette is shown in the insert). B1-B10: basal dendrites. Ap: apical dendrites with
several relatively short oblique dendrites. Arrows 1-3 indicate three main apical
subtrees. Ellipses envelope groups of the path profiles corresponding to the den-
dritic branches with relatively high (green), medium (blue) and low (magenta)
transfer effectiveness.

located at similar path distances from the soma, but belonging to different clusters
according to their transfer properties in the intermediate ranges (clusters 2 and 3).
In 3D space (Figure 12.3), these cluster 2 and 3 branches occur at similar air-way
distances from the soma at the same spatial angle, which is the 3D domain occu-
pied by the given individual dendrite. Hence, the branches with intermediate, but
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Figure 12.3 (Plate 5) 3D location of electrical clusters of the dendritic arborization
of abducens motoneurons. (From Korogod et al., 1994.)

significantly discriminated transfer effectiveness share the same sectors of the
3D space of the arborization. This occurs in different spatial angles around the
soma. Such an arrangement of transfer properties in 3D space can by qualified
as the electrical structure of the shared-sector type. In dendritic arborizations
with such electrical structures, the dendrites occupying different spatial sectors of
the peri-somatic 3D space transfer currents from synaptic inputs to these sectors
with significantly discriminated levels of effectiveness. This looks like coarse (low
effectiveness) and fine (high effectiveness) tuning of the dendritic signal receiver
serving the given spatial sector of the 3D dendritic field.

12.4 High-efficiency domain of the motoneuronal arborizations in 3D

To finish with the passive electrical structures, let’s consider now the dynamic
reconfiguration of high- and low-efficiency domains in the 3D space of dendritic
arborizations with the example of a large and a small motoneuron (cells M1 and
M3 in Figure 9.5). The data obtained from Figure 11.7 are mapped onto the 3D
images of the arborizations (Figure 12.4) (Korogod ef al., 2000).

Athigh R, = 100k - cm?, the entire projection fields are in the high-efficiency
domain, whereas the number of dendritic branches efficiently connected to the soma
is decreased dramatically atlow R, = 1k - cm?. The effective zone is reduced to a
small sphere around the soma in both large and small motoneurons. At intermediate
Ry, = 10k - cm?, the large motoneuron with long dendritic paths has many distal
branches in the low-efficiency domain compared to the small motoneuron. The
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Figure 12.4 (Plate 6) Maps of the high-efficiency domain (red) of cat and rat
spinal motoneurons (respectively M1 and M3 of Figure 9.5) for three values of
Ry. At Ry, = 100k - cm?, the dendritic fields of both arborizations are in the
high-efficiency domain, with a similar weight for all synaptic inputs. By reducing
the value of Ry,, the high-efficiency domains shrink and many dendritic branches
are disconnected functionally from the soma. (From Korogod et al., 2000.)
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larger the dendritic field, the greater is the variability of the 3D extent of the
high-efficiency domain. The long dendritic paths of the cat motoneuron display
a higher sensitivity to reduction in the values of R,,, while short dendritic paths
of the rat motoneurons are only affected by values of R, < 10 k2 - cm?. The
size-dependence of the reconfiguration of the electrical structure demonstrated in
Chapter 9 is verified here for the 3D structure.

12.5 Bistable dendritic field

We know that electrical bistability is provided by an N-shaped /-V relation for the
dendritic membrane due to the presence of non-linear synaptic conductances. This
configuration is the most probable in live neurons that are embedded in numerous
networks and involved in different functional activities. According to background
activity, the neuron modifies the dynamics of its dendritic state to dwell in perfect
harmony with the demand of the current operations performed by the neuronal
networks. This electrical behaviour is well demonstrated by computing the current
density in the dendrites in two stable states.

12.5.1 Maps of current density

Simulations (Korogod et al., 2002) performed on the abducens motoneuron M4
are illustrated in Figure 9.5. In this motoneuron, the electrical bistability is pro-
vided by an N-shaped /-V relation for the dendritic membrane due to the presence
of non-linear NMDA-type glutamatergic synaptic conductances. The protocol is
the same as for individual dendrites with distributed NMDA-type synaptic inputs
(Chapter 10). When the whole dendritic arborization of this motoneuron is ton-
ically activated by homogeneously distributed NMDA synaptic inputs with two
values of synaptic conductances fixed just below (ENMDA = 3.3 mScm™?) and
above (Gampa = 3.4 mScm™?) the upper limit of bistability, the current den-
sity is unevenly distributed over the arborization. This is clearly demonstrated in
Figure 12.5, where the current density computed in the low (A and C) and high
(B and D) depolarization states (downstate and upstate, respectively) is mapped
onto the 3D image (A and B) and the dendrogram (C and D) of the arborization.
In the downstate, the dendritic field displays a ring of small current density
(—0.33nA cm™2) around the soma with an irregular outline depending on the
dendritic paths. The remaining part of the arborization shows only small differences
in current density, with three exceptions found in the most complex asymmetrical
dendrites 3 and 5 (Figure 12.5, C) and in the very distal tip of dendrite 2, with
a high current density of —0.43nA cm~2. The dendritic fields of each of these
three dendrites are spatially well separated, projecting in three different regions.
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Figure 12.5 (Plate 7) Bistable spatial distributions of the total membrane cur-
rent density mapped on the dendritic arborization of motoneuron M4 shown in
Figure 9.5. A: Snapshot of the plane projection of 3D reconstructed arborization
and C: the corresponding dendrogram at downstate with Gavpa = 3.3 mScm ™2,
just below the limit of the range of electrical bistability. B: Snapshot of the plane
projection of 3D arborization and D: the corresponding dendrogram at the upstate
with Gampa = 3.4 mS cm 2, just above the upper limit of the range of electrical
bistability. The computed current density is colour-coded and scaled in six equal
steps from —0.33 to —0.43 nA cm™2 for A and C and from 0 to —10nA cm~? for
B and D. (From Korogod et al., 2002.)

Noteworthy, the inward current of greatest density is generated in the distal branches
of the most complex dendrites 3 and 5, which are the branches placed in the least
efficient cluster 4 according to their passive membrane properties (cf. right box
in Figure 12.3). Comparison of the same figures shows that many branches being
at the same path distances from the soma, generate noticeably different inward
currents that also correspond to their affiliation with different clusters.

In the upstate, the current density maps are totally inverted. The most proximal
dendritic branches generate high current density up to —10nA cm™~2 over the first
80 um from the soma. Past the first 200-250 um from the soma, the current
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Figure 12.6 (Plate 8) Bistable spatial distribution of the current transfer effec-
tiveness mapped on the same dendritic arborization as shown in Figure 12.5. A:
Snapshot of the 3D reconstructed arborization and C: the dendrogram in the down-
state. B: Snapshot of the 3D arborization and D: the dendrogram in the upstate.
The computed core current increments are colour-coded and scaled in six equal
steps from 0 to —0.15 pA um ™! for A and C and from 0 to —8.5pA um~! for B
and D. (From Korogod et al., 2002.)

density reaches zero in every dendrite, making a large part of the dendritic field
a functionally silent zone. Comparison of the downstate and upstate reveals a
much more heterogeneous contribution of each individual dendrite to the total
somatopetal current in the downstate.

To explore the contribution of each dendritic compartment to the current reaching
the soma, we compute the current transfer effectiveness for the downstate and
upstate of the electrical bistability of the same motoneuron.

12.5.2 Maps of current transfer effectiveness

The results of the computation are mapped on the 3D image and dendrogram of the
arborization (Figure 12.6). In the downstate, the spatial maps of the current transfer
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effectiveness (Figure 12.6, A and C) reveal that the difference between the most
effective proximal parts and the low effectiveness distal regions of the dendritic field
is extremely small, from 0to0 0.15 pA pm~'. However, in this narrow dynamic range,
the transfer effectiveness varies greatly between different dendritic sites, giving a
patchy image of the dendritic field with the most effective patches in the proximal
dendritic branches and the least effective ones distributed in the distal dendritic
parts. In the upstate, a small peri-somatic zone restricted to only four dendritic
stems displays a high transfer effectiveness of —8.5 pA um~! (Figure 12.6, D)
which decreases rapidly to low values with a location-dependent variability. Beyond
100-200 pm from the soma, the whole dendritic field displays zero efficiency and is
electrically disconnected from the soma. These spatial patterns (Figure 12.6, B and
D) are similar to those of the current density maps illustrated in Figure 12.5, B and D.

Hence, the material of this chapter has shown the 3D location of the electrical
domains in the dendritic field and show that they are dependent on changes in
the passive membrane resistivity R, (conductivity G, = 1/R,,) as well as on
voltage-dependent membrane properties. We have demonstrated that the dynamic
spatial variations of the 3D domains are related to the metrical asymmetry of the
arborization and to the orientation of metrically asymmetrical parts in 3D space.
We have revealed some geometry-related 3D patterns in the electrical structure of
the arborization that are related to specific types of neurons. Finally, we have shown
features of the 3D electrical structures of the arborizations that can be common to
different types of neurons.
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13

Dendritic space as a coder of the temporal
output patterns

The dendritic job to process synaptic inputs ends by generating patterns of output
discharges. If the site of initiation of action potentials has long been known, the
mechanisms by which the axo-somatic trigger zone is finally put into action is an
open question. A 60-year-old large consensus admits the simple explanation: the
current shifts the voltage at the initial segment and when a threshold is reached,
the neuron fires. The reasons for the numerous different types of output patterns
observed from a single neuron are skipped and remain unknown. How the output
patterns are formed by the electrical dendritic arborization with non-linear, active
membrane is explained in this chapter.

We select two types of neurons with clearly different geometry and cock-
tails of voltage-dependent channels in their dendrites, and simulate generation
of output discharge patterns in response to tonic activation of synaptic inputs dis-
tributed over the dendritic membrane to find out the rules that govern the neuronal
code.

13.1 Terminology to describe the repertoire of neuronal discharges

We propose the following terminology to describe the types of electrical activity
of neurons that we observe in our models.

Elementary electrical event at the neuron output (axon) is a single action poten-
tial (spike) or a burst of action potentials. Other examples of elementary events
recorded from the soma or dendrites are slow depolarization waves or postsynaptic
potentials.

Burst of action potentials is a group of sequential action potentials separated by
the same or different time intervals, the duration of which is compatible with the
refractoriness period. Examples are groups of two (doublet), three (triplet) or four
(quadruplet) action potentials.

Pattern is a certain sequence of elementary electrical events.
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Auto-rhythmical pattern is a certain periodically repeating sequence of identical
or different elementary electrical events.

Continuous discharge is a pattern formed by long-lasting sequence of action
potentials with equal inter-spike intervals.

Repertoire of electrical activity is a set of different patterns which are gener-
ated by a neuron in certain conditions (e.g. during tonic synaptic activation with
intensities in a certain range).

Although these definitions are not absolutely rigorous, they are sufficient for
comparison of different neurons in the richness of their repertoires. If the time
intervals between elementary events change insignificantly so that it is possible
to consider the activity type unchanged (e.g. repeating quadruplets or repeating
triplets), then it is taken as a variation of activity of the same type. A new pattern
is thought to occur if, for instance, a sequence of triplets changes to a sequence of
doublets or to a repeating sequence of combined ‘doublet-triplets’. The repertoire
is considered to be more rich if a neuron is able to generate a greater number
of different patterns with changes of synaptic activation in the same range of
intensities.

13.2 Geometry-induced features of Purkinje cell discharges

Two types of models of the Purkinje neuron with active dendrites are considered.
The first type has a soma, axon and dendrites active, due to the presence of cor-
responding sets of voltage-dependent channels. In the second type, the soma and
axon are passive, to mimic the blockade of the trigger zone, and the dendrites
remain active, although with a shorter list of channel types.

13.2.1 Model with active dendrites, soma and axon

The types and distribution of the voltage-dependent channels are the same as in
earlier models described by Miyasho et al. (2001) and De Schutter and Bower
(1994), in which the equations and parameters describing these channels, as well
as the relevant references can be found. The model contains channels conducting
the following 13 currents: fast inactivating sodium (NaF), persistent sodium (NaP),
P-type calcium (CaP2), T-type calcium (CaT), E-type calcium (CaE), anomalous
rectification potassium (Kh), delayed rectification (Hodgkin—Huxley type) potas-
sium (Khh), persistent M-type potassium (KM), A-type potassium (KA), D-type
potassium (KD), BK-type calcium-dependent potassium (KC3), K-type calcium-
dependent potassium (K23) and the passive leak current (Leak). The channels of
CaP2, CaT, CaE, Khh, KM, KA, KD, KC3, K23 and Leak currents are present
in the dendritic membrane. The somatic membrane contains the channels of NaF,
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NaP, CaP2, CaT, CaE, Khh, KM, KA, Kh and Leak currents. The axon hillock and
initial segment contain the passive leak and voltage-dependent channels (Hodgkin—
Huxley type): fast inactivating sodium and non-inactivating potassium channels.
The Ranvier nodes of the myelinated stem axon contain Hodgkin—Huxley type fast
sodium channels at high density and the passive leak. The myelinated segments are
passive. The somato-dendritic part of the model neuron also contains a mechanism
of intracellular calcium dynamics, which takes into account calcium entry into the
cytoplasm through plasmolemmal channels and extrusion from the submembrane
cytosol layer (e.g. by action of the pumps and by diffusion to the bulk of the
intracellular space) with a certain time constant.

In all computation experiments, a homogeneously distributed tonic activation
of the dendritic synaptic inputs is simulated by introducing voltage-independent
(AMPA -type glutamatergic) spatially homogeneous synaptic conductivity G asso-
ciated with the reversal potential £, = 0 mV. Certain constant values of G corre-
spond to different intensities of the tonic synaptic activation. The cytoplasm resis-
tivity is R; = 250 € - cm. The membrane specific capacitance Cy, is 0.8 pF cm ™
in the smooth dendrites and 1.5 wF cm ™2 in the spiny dendrites (see Miyasho et al.,
2001 and Kulagina et al., 2007 for details).

13.2.2 Output discharge repertoire and dendritic states

In the models of the Purkinje neuron with the ‘complete’ set of voltage-gated
and calcium-dependent channels, including all fast discharge mechanisms, the
repertoire of electrical activity and the role of dendritic geometry in the formation
of electrical patterns are analyzed with the following stimulation protocol. The
temporal and spatial patterns of electrical activity are studied at different intensities
of tonic activation of excitatory AMPA-type synaptic conductivity, expressed in
1S cm ™2 homogeneously distributed over the dendrites.

At synaptic intensities subthreshold for action potentials, a membrane depolar-
ization is generated in the dendrites. This depolarization is spatially heterogeneous
and is greatest in the most distal dendritic sites, decaying towards the soma with
unequal rates along asymmetrical dendritic paths. Since there is no propagating
discharge, this activity does not count as an output pattern.

A typical repertoire of auto-rhythmical electrical activity of Purkinje neurons is
illustrated by Figures 13.1 and 13.2 for the example of cell P1. For this cell, the
threshold of action potentials is reached at a synaptic intensity of 47 uScm™2.
At synaptic conductivity (activation intensity) values ranging between 47 and
65 uS cm ™2, the modelled neuron generates a sequence of repeating quadruplets
(illustrated at 50 uS cm~2 in Figure 13.1). The output activity is a sequential repe-
tition of the same burst which includes four action potentials with shorter intervals
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Figure 13.1 (Plate 9) Repertoire of electrical activity generated in the dendrites
(upper curves) and axon (lower curves in black) of the cerebellar Purkinje neurons
(P1) with active conductances at different intensities of tonic activation of the exci-
tatory synaptic inputs homogeneously distributed over the dendritic arborization.
Calibration bars: time, s. Ordinates: membrane potential, mV. The tonic synaptic
activation of the dendrites is simulated by introducing a homogeneous synaptic
conductivity (given in uScm~2 near corresponding plots). Horizontal brackets
above and below recordings envelop the repeating sequence of the elementary
electrical events which correspond to the action potentials and their bursts. The
reversal potential of the synaptic current equals 0 mV. Red, green and blue curves:
recordings of the membrane potential from sites D1, D2 and D3 shown on the 3D
representation of the Purkinje neuron (top). The sites are selected in the sectors of
the low, medium and high relative effectiveness of the somatopetal current trans-
fer (L, M and H in Figure 12.1, P1). (From 1. Kulagina, Dnipropetrovsk National
University.)
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Figure 13.2 (Plate 10) Same as Figure 13.1 but during generation of a pseudo-
stochastic pattern at a synaptic intensity of 68 1S cm~2. Fragments of the recording
are shown at different timescales (A, B, C, D) to facilitate the comparison of the

events in different parts of the cell. (From I. Kulagina, Dnipropetrovsk National
University.)
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between the first, second and third spikes and longer intervals between the third
and fourth spikes. In the given range, the greater the synaptic intensity, the shorter
the inter-spike and inter-burst intervals are (greater frequency of bursts and spikes
in a burst). This is an example of the same activity pattern but with variation of the
parameters of the activity.

Further increase of synaptic intensity in a narrow range of 66 to 67 uS cm™>
leads to a dramatic increase in the pattern complexity: there is an increase both
in the number of different elementary events in the repeating sequence and in
the duration of the sequence. For instance, at the intensity of 67 uScm™2, the
repeating sequence includes as many as 13 elementary events: a quadruplet (event
1); a spike-quadruplet complex (event 2); five quadruplets in series (events 3 to
7); a spike-triplet complex (event 8); a spike-quadruplet complex (event 9) and
four quadruplets in series (events 10 to 13). The duration of this repeating 13-
event sequence (and, correspondingly, the repetition period) is about 700 ms. At
68 uScm™2, it is difficult to determine the repeating sequence because of the
significant variability in sequential elementary events (Figure 13.2), so that, in
this case, the activity is classified as quasi-stochastic (may be an example of
the deterministic chaos). The repetition is not noticed even after a 12 second
observation.

With the synaptic intensity increased above 68 1S cm ™2, one can again observe
certain repeating sequences of the elementary events which form more or less com-
plex compositions. For instance, at 69 1S cm ™2, the repeating sequence is composed
of three bursts: two quadruplets and one spike-quadruplet complex (not shown). At
70 uS cm 2, the repeating sequence includes seven bursts: 1 and 2 are quadruplets;
3 is a spike-quadruplet complex; 4 is a quadruplet; 5 and 6 are two spike-triplet com-
plexes with slightly different inter-spike intervals and finally 7 is a spike-quadruplet
complex (Figure 13.1). At 73 uS cm ™2, the repeating sequence also includes seven
elementary events: initially it is a quadruplet (event 1) which is followed by two
spike-quadruplet complexes (events 2 and 3), then, with a longer interval (about
50ms), there is again a quadruplet (event 4) followed by three more spike-
quadruplet complexes (events 5 to 7). At 74 uS cm™2, the repeating sequence also
includes five elementary events: 1 is a quadruplet and 2—4 are three spike-quadruplet
complexes (the duration, i.e. the repetition period of the sequence, is about 250 ms).
At 76 uS cm™2, the sequence is significantly simplified down to a spike-quadruplet
complex. Further increase in the synaptic intensity over a wide range of val-
ues is accompanied with a further simplification of the repeating sequence to
being composed of only one elementary event. At values of 85 to 700 uS cm ™2,
this repeating sequence is a spike-triplet complex. At 2mScm™2 it is a spike-
doublet complex. At 5mScm~2, continuous firing is observed with the period
modulated by sinusoidal oscillations of the membrane potential in the dendrites.
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At 7mS cm 2, such a continuous firing activity has a constant period (inter-spike
interval) and at that time a persistent high-level depolarization is observed in the
dendrites.

We conclude that, in the cerebellar Purkinje neurons, it is possible to determine
three ranges of intensity of the distributed tonic synaptic activation for which the
output activity patterns of different complexity are observed:

(1) The low range (or the state of low membrane conductivity), which is characterized by
a relatively simple pattern formed by a low-frequency periodical repetition of only one
certain elementary event. In the case of cell P1, it is the range from 47 to 65 uS cm ™2
and the repeating event is a quadruplet of spikes with a greater repetition frequency
corresponding to greater synaptic intensity.

(2) The medium range (or the state of intermediate membrane conductivity), for which
characteristics are complex patterns formed by periodical repetition of multiple ele-
mentary events of diverse composition. In the example of cell P1, it is the range from 66
to 80 uS cm~2. With increasing intensity in this range, the number of repeating events
in a sequence first increases from 2 to 13 and then decreases to 2. The types of the
elementary events which appear in the repeating sequences are also more diverse. They
are quadruplets and triplets as well as ‘spike-quadruplet’ and ‘spike-triplet’ complexes.

(3) Thehighrange (or the state of high membrane conductivity), for which the characteristic
patterns are also simple, formed by a single-type one-event repeating sequence, but
following with a much higher frequency in contrast to the low range. In the example
of Purkinje cell P1, this range corresponds to synaptic conductivity values greater than
80 1S cm ™2 and the unique repeating elementary event is either spike-triplet complex
(in subrange from about 80 to 700 S cm~2), spike-doublet, simple doublet or finally a
spike, i.e. continuous firing (in the higher subrange).

13.2.3 Dendritic events during output discharges

A critical observation is the electrical states of active dendrites in the regions which
are characterized as having low, medium and high effectiveness of the somatopetal
current transfer in the passive configuration (red, green and blue recordings at sites
D1, D2 and D3, in Figures 13.1 and 13.2).

When regular simple periodical patterns are generated at low (50 uS cm~2) or
high (76 uS cm™?) synaptic intensities, then the membrane potential transitions
between downstate and upstate are simultaneous at these different sites and the
levels of the upstate and downstate voltage remain equal from cycle to cycle.
Closely overlapping traces indicate that the different domains of the arborization
have very similar voltages at each phase of the activity, i.e. they are in very
similar electrical states with a smaller difference in the upstate and a greater
difference in the downstate. In other words, during generation of simple regular
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patterns, the membrane voltage changes over the whole dendritic arborization
almost homogeneously. A small electrical heterogeneity in the dendritic space is
due to a certain, relatively small phase shift between periodical events at different
sites.

The spatial dendritic signature of complex patterns observed at medium-range
synaptic intensities is essentially different. For instance, consider a complex pattern
of seven repeating events obtained at an intensity of 70 uS cm™2 (Figure 13.1). The
difference between red, green and blue traces is very big, especially during the
generation of the last three events in the sequence. Another noteworthy detail of
the pattern is the significant variation of the upstate depolarization levels from one
event to another in the sequence, observed at each recording site, but especially big
at the low-effectiveness site D1 (red trace). Similar features are clearly seen in the
most complex pattern at 68 uS cm~2 (Figure 13.2, C). Hence, during generation
of complex patterns, there is an essential heterogeneity of electrical states over the
whole arborization with a noticeable difference between parts which are also most
different in their passive transfer properties.

It is worthwhile to remember that the metrical asymmetry was shown to be the
main reason for the difference in the passive transfer over dendrites with homo-
geneous membrane properties. Based on these observations, we assume that the
metrical asymmetry is a common reason for the difference between asymmetrical
parts of the dendritic arborization in both passive transfer properties and dynamic
regenerative activity. This suggestion is favoured by the fact that the difference in
both respects is small at low and high intensities of synaptic activation (i.e. in the
low- and high-conductance states, respectively) and is big at synaptic intensities in
the intermediate range (i.e. in the mid-conductance state). To summarize, equaliza-
tion of electrical state in dendritic space is associated with a better synchronization
of activity of different parts of the arborization over time.

13.2.4 Model with active dendrites but passive soma and axon

Here, the model is modified. The soma and axon are made purely passive (the
membrane conductivity G, = 677.25 uS cm™2 associated with resting potential
E, = —65mV) and the set of dendritic channels is reduced to five: CaP2, Khh,
KA, KC3 and Leak. The excluded dendritic channels are those conducting small
currents, which add minor details to the main oscillatory activity. All other chan-
nels, calcium dynamics and AMPA-type synaptic conductivity distributed over the
dendrites are kept the same.

The data described above indicate that the generation of auto-rhythmical pat-
terns of different complexities is related to certain structure-dependent changes
in electrical states of different parts of the dendritic arborization, which can be



13.2 Geometry-induced features of Purkinje cell discharges 181

considered as the spatial dendritic signature of certain electrical events occurring
at the cell output. However, there can be alternatives in defining the neuron parts
in which the main pattern is formed. One possible scenario is that the temporal
pattern is initiated in the axo-somatic trigger zone and then propagates along the
axon and back-invades the dendrites. This back invasion spreads differently along
different, particularly asymmetrical dendritic paths as was earlier observed in the
model of a reconstructed abducens motoneuron (Korogod et al., 1996). According
to an alternative scenario, the dendritic arborization itself plays the pattern-forming
role: different dendritic parts change their states of low and high depolarization and
supply the trigger zone with different somatopetal currents, which are transformed
into corresponding sequences of action potentials.

In the following series of computer experiments, the hypothesis of the principal
pattern-forming role of the dendrites is tested. The whole axo-somatic membrane of
the Purkinje neuron is made passive by switching off the fast discharge mechanisms.
In other words, the voltage-dependent channels in the soma and axon are blocked,
but those in the dendrites remain in operation, together with the mechanisms of
intracellular calcium dynamics. In these conditions, the trigger zone is actually
absent and any auto-rhythmical pattern has exclusively a dendritic origin. The
results obtained in these conditions are shown in Figures 13.3 to 13.6.

As in the previous simulations (Figures 13.1 and 13.2), the same tonic activation
of AMPA-type synaptic conductivity homogeneously distributed over the den-
drites causes oscillatory depolarization potentials in the modified Purkinje neuron
model. The shape and frequency of the oscillations depend on synaptic intensity
(Figure 13.3).

At low supra-threshold intensity of the tonic activation (synaptic conductivity
of 50 uScm™2 for neuron P1), the dendrites generate periodical relatively low-
amplitude depolarization waves from —60 to —30 mV and a period of about
40-50ms which are conducted passively into the soma and decay almost to the
resting potential along the axon (Figure 13.3). At a greater intensity of activa-
tion (54 uS cm™2), the periodical pattern changes: the dendrites generate a rel-
atively low-frequency (period about 90 ms) repeating sequence composed of a
low-amplitude (extent from —40 to —25 mV) faster wave followed by a high-
amplitude (extent from —75 to +60 mV) slower wave of depolarization. With a
further increased intensity of 58 uS cm™2, there are two low-amplitude and one
high-amplitude waves in the repeating sequence. The spatial picture of the activ-
ity recorded in the same three sites located in the regions of low, medium and
high relative transfer effectiveness (red, green and blue lines in the upper records
of Figures 13.3 and 13.5) indicates that the membrane potentials oscillate with
the same frequency, but with a certain phase shift. Each depolarization wave is
generated first at the site of low electrical effectiveness (red line, then at the site
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Figure 13.3 (Plate 11) Repertoire of the slow electrical activity generated in active
dendrites (upper coloured curves) and passive soma and axon (lower black curves)
of the cerebellar Purkinje neuron P1 (top) at different intensities (given in 1S cm™2)
of tonic activation of the excitatory synaptic inputs homogeneously distributed over
the dendritic arborization. Abscissas: time, s. Ordinates: the membrane potential,
mV. The colours of the recordings of the dendritic potentials correspond to those
in Figures 13.1 and 13.2. (From I. Kulagina, Dnipropetrovsk National University.)

of intermediate effectiveness (green line), then at the high-effectiveness site (blue
line) and finally at the soma (the black lower records of Figures 13.3 and 13.5).
At different sites, the amplitudes of the waves differ from each other, but at each
site the amplitudes are constant in time. With the activation intensity increased to
59 uS cm ™2, the pattern is complicated further and its spatial picture changes sig-
nificantly (Figure 13.3). The pattern observed in these conditions can be qualified
as quasi-stochastic, because it is not possible to detect a certain repeating sequence
of waves even during an observation as long as 12 seconds (Figure 13.4).
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Figure 13.4 (Plate 12) Same as Figure 13.3 at 59 uS cm~2 but the recordings at
sites D1-D3 and S are shown separately (see Figure 13.1 legend for labelling)
and during longer time. The repeating sequence is not detected even during an
observation time as long as 12 s, which may mean a pseudo-stochastic pattern of
slow oscillations of the membrane potential. Time calibration bar: s. Ordinates:
membrane potential, mV. (From I. Kulagina, Dnipropetrovsk National University.)
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In this case, the spatial dendritic picture of electrical activity (Figure 13.3) is:

(1) Anirregular oscillatory process is observed which is a combination of higher-frequency,
low-amplitude and lower-frequency, high-amplitude waves of depolarization in all
derivations.

(2) The low-amplitude oscillations have a more regular periodicity. The high-amplitude
oscillations have a noticeably irregular period which is not related to the period of the
low-amplitude waves: during the time interval between two consecutive high-amplitude
waves, three or four low-amplitude waves are generated.

(3) Depending on phase relationship between the low- and high-frequency oscillations,
the amplitude of the low-frequency wave is augmented if it occurs on the rising phase
of the high-frequency depolarization, or is noticeably reduced if it is generated during
the falling phase of the high-frequency wave. As a consequence, the amplitude of the
low-frequency oscillations vary significantly.

Especially noticeable variations are observed at the site belonging to the dendritic
region of low relative effectiveness of the somatopetal current transfer (D1). At
the sites situated on the subtrees with medium (D2) or high (D3) current transfer
effectiveness and at the soma (S), the low-frequency waves have smaller variations
of amplitude, but the period of these waves varies noticeably.

Further increase in intensity of the synaptic activation to 70 or 72 1S cm ™2 leads
again to a regular rthythm and constant amplitudes of both high-frequency and
low-frequency oscillations. At 70 uS cm™2, the phase shift between the oscilla-
tions in differently effective parts of the arborization is conspicuous. In this case,
the repeating sequence includes two low-amplitude waves and one high-amplitude
wave. At 72 uS cm 2, the phase shift becomes smaller and the difference between
the second low-amplitude wave and the high-amplitude wave is reduced. At
80 1S cm 2, these differences are almost undetectable and the repeating sequence is
acomposition of two waves: one low-amplitude and one high-amplitude wave. With
increase of intensity (e.g. up to 400 uS cm™2, Figure 13.3), the low-amplitude waves
disappear, the frequency of the high-amplitude depolarization waves increases and
their amplitudes decrease. With further increased intensity of the tonic synap-
tic excitation, the depolarization waves approach sinusoidal oscillations and their
amplitude decreases significantly. The membrane potential oscillates almost sinu-
soidally about the level, which is significantly shifted to high depolarization.
Finally, a high-intensity activation leads to development of steady spatially het-
erogeneous depolarization without any oscillations (not shown).

Comparison of this slow auto-rhythmical activity with the oscillatory burst-
ing discharges observed when the fast discharge mechanisms are not blocked
shows that, over time, the faster low-amplitude wave of depolarization corresponds
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Figure 13.5 (Plate 13) Oscillatory potentials generated by the Purkinje cell (C)
with active dendrites receiving distributed tonic synaptic excitation. Al: Reg-
ular auto-oscillations computed with axo-somatic passive membrane resistivity
Gm = 677.25 uS cm~? and recorded from the soma (black trace) and three den-
dritic sites (red, green and blue traces). B: A single expanded oscillatory cycle
extracted from A1 to show the phase-shift of voltages at the soma S (in black) and
at three dendritic sites D1 (in red), D2 (in green) and D3 (in blue) localized as
indicated by arrowheads in C. The four horizontal segments labelled 1-4 and the
vertical dotted lines indicate the phases of the oscillatory potential during which
snapshots were collected and depicted in Figure 13.6. A2 and A3: Same record-
ings as in A1 but computed with G, = 6.7725 and 67.725 mS cm ™2, respectively,
to show the differences in amplitudes and shift in time as compared to Al. D: A
single oscillatory cycle extracted from A2 with an expanded timescale to show
better the differences in phase and amplitude (dotted lines) between the record-
ings. Abscissae: time, ms. Note the different timescales. Ordinates: the membrane
potential, mV. (From Kulagina et al., 2007.)

approximately to the single action potential and the following high-amplitude slow
wave corresponds to a burst with a smaller or greater number of action potentials.

13.2.5 Spatial dendritic signature of the oscillatory temporal pattern

Figure 13.5 shows oscillations of the membrane potentials recorded from the soma
and three different dendritic sites (labelled S, D1, D2 and D3 on the 3D image of
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the arborization in insert C) of the Purkinje model with passive soma and axon.
The computations are performed for three different values of passive membrane
conductivity Gy, of the axo-somatic region providing a passive leak for the active
dendrites to prove the robustness of the dendritic oscillatory pattern.

In Al, a fragment of activity at Gp, = 677.25uScm ™2 is shown. The four
recordings are of different amplitudes, of slightly different shapes and occur with a
shift in time relative to each other. A single oscillation extracted from A1 is shown
in B in an expanded timescale to better illustrate the shift. The depolarization
potential at D1 (red trace) develops first, having a peak amplitude of 76.6 mV.
The second potential is recorded from D2 (green trace) with the highest amplitude
of 79.0 mV and is followed by the potential from D3 (blue trace) of 75 mV in
amplitude. The delayed potential recorded from the soma (black trace) has a peak
amplitude of 40 mV. In A2 (G, = 6.7725mS cm™?), the dendritic recordings are
similar to those in A1, but with a slightly larger shift in time while the somatic
recording displays a much smaller amplitude, reaching —40 mV. The current
delivered from the dendrites to the soma with a lower resistance produces a smaller
voltage drop. The difference in time and amplitude between the four recorded
potentials (extracted from one oscillation in A2) is best illustrated in D, with an
expanded timescale at the start of the rising phase of the oscillation. The main
result is that the recording D1 preceded D2 and D3 by several milliseconds. The
difference in amplitudes between the potentials recorded at the given sites S, D1,
D2 and D3 of the dendritic arborization and at a given moment in time (dashed
lines) of the oscillation are, for example, as large as about 100 mV between D1 and
soma S. In A3 (G, = 67.725mS cm™2), a larger difference in amplitude between
dendritic and somatic recordings occurs. There is also a difference in amplitude
and a larger shift in time with respect to the values observed in A1 and A2. The
demonstration that the oscillatory potentials are ordered in time is an important
finding that facilitates further understanding of the dynamics of the membrane
potentials in the dendritic field observed in space.

Figure 13.6 shows successive snapshots of the map of the membrane potentials
over the dendritic arborization taken during the four phases of the oscillatory
cycle indicated by labels 1, 2, 3 and 4 in Figure 13.5, B. The sequence, in which
the dendritic domains change their consecutive colours, allows identification of
the sequence of changes in the membrane potential and derivation of the phase
relationships of the events at these domains. This proper procedure allows the
demonstration of the split of the dendritic arborization into domains of different
voltage transients. Noteworthy, these domains correspond to those identified in the
passive configuration in the steady state (Figure 12.1, P1).

During the first phase of the cycle starting at the beginning of the rising phase
of the potential (+ = 1.2 ms), almost the entire dendritic arborization is set at a



1 2 3 4
At=02ms At=0.6ms At=0.75ms  At=1.0ms

A NS G
y AN,

o A
\ NG
t=493ms® =623 ms){_\

i N 7

\ %:3\": 4

R
TR iR ‘.‘ &;«

t=11.0ms t=54.55ms t=69.3 ms

mV mV mV
58.33 WM 65.00 -51.65 [ -49.98 _67.55 ] -67.38
51.67 58.33 -53.32 -51.65 -67.72 6755
45.00 51.67 -54.99 | -53.32 -67.89 | -67.72
38.33 45.00 -56.66 [l -54.99 -68.06 [l -67.89
31.67 38.33 -58.33 Bl -56.66 -68.23 Bl -68.06
25.00 31.67 -60.00 -58.33 -68.40 -68.23

Figure 13.6 (Plate 14) Dynamics of the electrical states of the membrane of
the Purkinje cell arborization. Snapshots of the dendritic maps of the membrane
potentials taken during phases 1 to 4 of the oscillatory cycle shown under the
potential in Figure 13.5, B. Columns 1 to 4 show eight snapshots taken with equal
time step At from top to bottom. Column 1 corresponds to the rising phase of the
potential, starting at # = 1.2 ms and ending at = 2.6 ms, snapshots taken every
0.2 ms. Column 2 corresponds to the falling phase of the plateau potential, starting
att = 6.8 ms and ending at + = 11.0 ms, snapshots taken every 0.6 ms. Columns
3 and 4 correspond to increasing (At = 0.75 ms) and decreasing (At = 1.0 ms)
inter-plateau hyperpolarizations, starting at t = 49.3 ms and 62.3 ms and ending
at t = 54.55 ms and ¢t = 69.3 ms, respectively. Membrane potential in mV is
colour-coded by the same six-colour palette in different ranges: from 25 to 65 mV
for columns 1 and 2, from —49.98 to 60 mV for column 3 and from —67.38 to
—68.4 mV for column 4. (From Kulagina et al., 2007.) Interactive detailed con-
siderations of the animation are provided by NeuronViewer tool with data file
PurkinjeP1.dat available at URL www.cambridge.org/9780521896771.
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potential between 25.0 to 31.67 mV except a tiny north-east domain between 31.67
to 38.33 mV (Figure 13.6, column 1). The following snapshots in the column show
that the shift to higher values involves first the north-east domain (38.33 mV).
Then, the arborization is split into successive dendritic domains with low to high
voltages which are ordered in space. The voltage reaches the highest values (58.33
to 65 mV) first in the north-east domain (the sixth snapshot in column 1). A state
of fully depolarized dendritic arborization (Figure 13.6, column 2) is reached just
before the beginning of phase 2 (indicated in Figure 13.5, B), corresponding to
the start of the repolarizing phase of the potential (+ = 6.8 ms). At that given
moment, the soma is depolarized between 31.67 and 38.33 mV. On the way back
to repolarization (column 2), the split between domains occurs again in an inverse
order to reach voltages between 38.33 and 25 mV (the end of column 2). At the
beginning of phase 3 (Figure 13.6, column 3, r = 49.3 ms), the arborization is
hyperpolarized between —49.98 and —51.65 mV, except some small domains near
the soma. During phase 3, the arborization is again divided into domains showing
potentials between —51.65 and —60 mV with regional differences of some tenths
of mV. During phase 4 (Figure 13.6, column 4, ¢t = 62.3 ms), successive dendritic
domains are still changing towards hyperpolarization, but the differences between
dendritic parts are reduced to only 1mV (—67.55 to —68.23 mV). Then, a new
cycle starts with the same successive spatial patterns of splits (not shown). The
turnover of the regional different polarizations of the dendritic membrane lasts the
duration of one cycle. One important finding is the fact that the same dendritic
sector in the arborization displays a difference in voltage as high as about 130 mV
during a single oscillation (see Figure 13.5, D). For example, the north-east domain,
which displays 58 to 65 mV at the beginning of the falling phase of the oscillation
(row 2), is hyperpolarized to —68 mV at the end of the oscillatory cycle (row 4).
Several features of the spatial maps of the oscillatory depolarization waves are
remarkable. The rising phase of the depolarization is steeper than the falling phase
(Figure 13.5). During generation of this auto-rhythmical activity, the dendritic
arborization behaves as a complex spatial oscillator with synchronous but not in-
phase changes in the membrane potential in different subtrees (Figures 13.5 and
13.6). In different parts of the dendritic arborization, the oscillations take place
with the same frequency (synchrony), but are phase-shifted in a certain structure-
dependent order. During each oscillatory cycle, the depolarization increases first
in the dendritic sectors that are characterized by a low relative passive transfer
effectiveness and then, the depolarization wave develops sequentially in the sectors
with intermediate and high transfer effectiveness. The decay of the depolarization
occurs in the same sequence, from low- to high-effectiveness sectors. As the ranking
of the dendritic sectors according to their transfer effectiveness is clearly correlated
with the metrical asymmetry of the corresponding subtrees, there are reasons to
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reckon that the same geometrical factors also determine the phase relationships
between oscillations of the membrane potential in different sectors and thus the
formation of the entire spatial-temporal pattern of the electrical activity of the
Purkinje model.

13.3 Geometry-dependent repertoire of pyramidal cell activity

The types and distribution of the membrane conductivities in our simulations of
discharge patterns of neocortical pyramidal neurons are the same as in earlier
models of this cell type (Mainen and Sejnowski, 1996, and references therein).
In short, the dendritic membrane contains the channels conducting the follow-
ing currents: fast inactivating sodium (Hamill et al., 1991; Mainen et al., 1995),
high-voltage activated (HVA) inactivating calcium (Reuveni et al., 1993), mus-
carinic (M-type) potassium (Gutfreund et al., 1995), calcium-dependent potassium
(Reuveni et al., 1993) and the passive leak current. The soma, axon hillock and
initial segment contain the same channel types as the dendrites and, in addition,
the delayed rectification non-inactivating potassium channels of Hodgkin—Huxley
type (Hamill et al., 1991; Mainen et al., 1995). In the axon, the myelinated seg-
ments contain passive leak conductivity of a very low value and the Ranvier nodes
contain fast inactivating sodium conductivity (Hamill et al., 1991; Mainen et al.,
1995) of a high value and passive leak conductivity. The cytoplasm resistivity
Ri = 150 2 - cm is homogeneous over the whole cell. The membrane capacitance
is Cpy = 0.75 uFecm ™2 everywhere except at myelinated segments of the axon
(Cp = 0.04 uF cm™~?2). The somato-dendritic part of the model contains a calcium
dynamics mechanism similar to that mentioned above in the description of the Purk-
inje cell model. The equations and parameters describing the membrane currents
and intracellular calcium dynamics are taken from Mainen and Sejnowski (1996)
with the corrections given by the authors in the model database ModelDB at URL:
http://senselab.med.yale.edu/senselab/modeldb/ShowModel.asp?model=2488.

13.3.1 Arborization size and electrical repertoire

The repertoire of activity of the simulated pyramidal neurons is studied using tonic
excitatory synaptic activation homogeneously distributed over dendrites with active
conductances. Such activation is simulated by introducing spatially homogeneous
voltage-independent synaptic conductance (analogous to AMPA-type glutamater-
gic conductance). The spatial-temporal picture of electrical activity of the neuron
is recorded at different intensities of activation.

The main result of this series of computation experiments is the observation
of the dependence of the electrical patterns on the dendritic asymmetry and the
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changes in the repertoire with changing the synaptic conductance states. As for the
Purkinje neuron (Figure 13.1), three ranges of homogeneous synaptic activation
are defined that are associated with discharge patterns of different complexity.
They are low, medium and high ranges of synaptic conductivity. Simple patterns
composed of one repeating elementary event are characteristic of the low and
high ranges, whereas at the medium range intensity the neuron generates several
complex patterns composed of two or much more elementary events, which are
often of different types. It is noteworthy that the limits of these three ranges in
the pyramidal neurons are significantly (several times or even one order) lower
compared to those determined by the pattern complexity changes in the Purkinje
neurons.

A typical example is illustrated by Figure 13.7, which shows the recordings from
the axon of the reconstructed pyramidal neuron C1 taken from the work of Mainen
and Sejnowski (1996).

For generation of the auto-rhythmical activity, the threshold value is
4.5 uS cm™2. The modelled pyramidal neuron generates a rather simple pattern that
is the repetition of a triplet of spikes with an approximately 1 s interval. When the
synaptic intensity exceeds 9 uS cm™2, the pattern becomes more complex in terms
of both the number and diversity of events in the repeating sequence. At a synaptic
conductivity of 9 uS cm™2, two elementary events repeat: a triplet followed by a
doublet. At 10 1S cm™2, the repeating sequence includes five elementary events:
events 1 to 4 are four doublets with somewhat different inter-spike intervals and
event 5 is a triplet. At 11 1S cm™2, a sequence of another five events repeats: two
individual spikes (events 1 and 2) followed by three doublets (events 3 to 5). At
12 uS cm ™2, the repeating sequence numbers seven events: a doublet (event 1),
four individual spikes (events 2 to 5), again a doublet (event 6) and finally a triplet
(event 7). At 13 uScm™2, it is practically impossible to determine a repeating
sequence because of the diversity of sequential combinations of elementary events
which include individual spikes, doublets and sometimes triplets. Such a pattern is
considered to be quasi-stochastic. Further increase in the synaptic intensity leads
to regularization and simplification of the pattern, which is a high-frequency rep-
etition of a doublet at 15 uS cm~2 and becomes a continuous discharge of action
potentials with a constant inter-spike interval at 20 uS cm™2 and more.

13.3.2 Spatial dendritic signatures of the temporal output patterns

The formation of spatial and temporal electrical patterns in the dendrites can
be comprehended by comparing the recordings made from different parts of the
arborization (A) during generation of aperiodical (B) and high-frequency period-
ical discharges (C) in Figure 13.8. The activity is recorded at the soma, at two
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Figure 13.7 Repertoire of electrical activity generated at the output of the pyrami-
dal neuron C1 with active dendrites at different intensities of tonic activation of the
excitatory synaptic inputs, homogeneously distributed over the dendritic arboriza-
tion. Abscissae: time, s. Ordinates: the membrane potential in mV at the distal
segment of the axon. Each horizontal bracket envelops the repeating sequence of
the elementary electrical events (action potentials and/or their bursts). The tonic
synaptic activation of the dendrites is simulated by introducing a homogeneous
synaptic conductivity (given in uS cm~2 below each plot). The reversal potential
of the synaptic current equals 0 mV. (From I. Kulagina, Dnipropetrovsk National
University.)
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Figure 13.8 (Plate 15) An example of simultaneous recording of electrical activity
in different parts of the pyramidal neuron C1. A: Location of the recording sites
on two projections of the dendritic arborization (side and top views) in the soma
(black pointer), asymmetrical apical dendrites (blue and magenta pointers) and
basal dendrites (green and yellow pointers). B and C: Recordings of the membrane
potential (ordinates: mV) during generation of, respectively, pseudo-stochastic
discharge pattern with a synaptic intensity of 13 uScm~2 and a high-frequency
sequence of doublets of action potentials with a synaptic intensity of 15 uS cm™2.
The colours of the curves correspond to those of the recording site pointers in
A. Time calibration bar: 200 ms. (From I. Kulagina, Dnipropetrovsk National
University.) Interactive detailed considerations of the animation are provided by
NeuronViewer tool with data files PyramidalB.dat and PyramidalC.dat available
at URL www.cambridge.org/9780521896771.

sites in highly asymmetrical apical branches and at two sites in different basal
dendrites.

A quasi-stochastic output pattern (B) is generated by cell C1 at synaptic
intensities close to 13 uScm™2. In the soma, it is an aperiodical sequence of
such elementary events as individual spikes and their doublets or, rarely, triplets
(Figure 13.8, B). A similar pattern is recorded from the basal dendrites, although
the spikes have lower amplitudes. Significantly different patterns are simultane-
ously recorded from the asymmetrical apical dendrites. When doublets or triplets
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of spikes are recorded from the soma and basal dendrites, the apical dendrites
generate slow depolarization waves of different amplitudes, which last as long as
the spike burst at the neuron output. The aperiodical changes of the membrane
potential in the two asymmetrical apical dendrites are asynchronous during this
complex pattern: there is a big difference between the corresponding voltage traces
at all stages of the activity.

A high-frequency regular pattern (activation intensity of 15 uScm™2) in the
soma and basal dendrites is formed by repeating doublets of spikes (Figure 13.8,
C). Simultaneously recorded activity in the apical dendrites is a synchronously
repeating sequence composed of a pair of slow waves of depolarization, which have
different amplitudes and are phase-shifted. Hence, during generation of a simple
periodical pattern, the membrane potential synchronously oscillates in different
parts of the dendritic arborization with a certain shape-dependent phase shift. This
indicates synchronous periodical transitions of the whole arborization between the
states of low and high depolarization during generation of the simple pattern in the
form of a one-event (a doublet) repeating sequence.

This is in contrast to the generation of a quasi-stochastic, aperiodical pattern
when asymmetrical parts of the apical dendritic subtree change their states of low
and high depolarization asynchronously and their levels of membrane depolariza-
tion are noticeably different.

13.4 Some general rules

Interesting rules emerge from the comparison made on the active Purkinje and
pyramidal neuron models.

Simple regular auto-rhythmical patterns are generated at low- and high-
conductance states and whatever the metrical asymmetry is, all the domains of
the dendritic arborizations change their states of low and high depolarization syn-
chronously. At that stage, the difference of potentials (lateral voltage) between
different domains is small, presuming small lateral currents and correspondingly,
small perturbations of the local current—voltage relations at different dendritic
sites. Therefore, the spatial dendritic signature of the simple patterns is a spatially
homogeneous electrical state of different dendritic domains. Simple patterns mean a
meagre repertoire of possible electrical activities in the low- and high-conductance
states.

The repertoire of output patterns becomes rich in the medium-conductance
range. The patterns become complex, forming a repeating sequence of many ele-
mentary events of different types. A relatively small conductance change produces
a change in the pattern type, i.e. change in the repeating sequence in terms of the
number of elementary events and the duration of the sequence. When a complex
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multi-event sequence is generated, the asymmetrical parts of the dendritic arboriza-
tion change their states of low and high membrane potentials asynchronously. Dur-
ing this activity, the lateral voltages between asymmetrical parts of the arborization
are large. This is the condition for big lateral currents and, correspondingly, large
perturbations of the local current—voltage relations. Therefore, the spatial dendritic
signature of the diverse complex patterns are made of different combinations of
the upstate and downstate depolarizations in discrete dendritic domains of more or
less expressed metrical asymmetry.

Specific limits of the synaptic conductance ranges providing poor and rich
repertoires depend on the size of the dendritic arborization in different types of
neurons (cf. Purkinje and pyramidal neurons) or the size of different parts of the
same arborization of a given neuron (cf. apical and basal dendrites of a pyramidal
neuron arborization). This size-dependence of the conductance range limits can be
roughly estimated by divergence of the passive transfer profiles along asymmetrical
subtrees computed at different values of the membrane conductivity G, (resistivity
Ry = 1/Gy,) (Figure 11.5).

The demonstration that dendritic arborizations with different morphologies and
ion channels that display similar variations of repertoires of the output discharge
patterns authorizes one to consider this finding to be a general rule for any operating
neuron.
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Concluding remarks

Coming back from our journey into dendritic space, we bring back with us the con-
viction that we have discovered some new critical notions which are the messages
that we must pass on.

What did we learn about the features pictured in many handbooks under such key
words as branching dendrites, complex trees, tapering branches, branching point,
excitable dendrites, etc. These words give a feeling of déja vu. Do they really take
on a special new significance in the description of operating neuronal dendrites as
dynamical electrical devices? We strongly believe that the answer is yes indeed, as
we attribute a specific role to every one of these structural features in a harmonious
working ensemble!

The scope of our book is restricted to the dynamical electrical picture of den-
dritic space. This picture is composed of spatial profiles of electrical values along
dendritic branches. We refer to what is observed as electrical states of parts of the
whole dendritic arborization. Mapping these values on the reconstructed images of
the dendrites provides a specific mosaic of electrical states of its parts, character-
izing the electrical state of the whole arborization. The dendritic structure is both
the bearer and determinant of its electrical properties as a whole.

To make these geometric features and the mechanisms underlying their function
clearer, we select special artificial conditions which help to unveil some hidden
neuronal operations. We use models imperfect and simplified, but efficient to
analyze reality. They replace impossible observations by simulations.

In our models, we use the following simplifications:

(1) The specific membrane properties are spatially homogeneous over the whole arboriza-
tion: everywhere in the dendrites the same cocktail of ion channels is present with
the same surface density. Our reason for these simplifications is that we perceive
the electrical states of the whole arborization as a mosaic of electrical states of the
branches and subtrees. The non-trivial state is when different parts differ in their states
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with characteristic electrical values spatially heterogeneous. Since both the membrane
properties and inputs are spatially homogeneous, the observed heterogeneity of electri-
cal states of the dendritic sites can only be attributed to the heterogeneity of dendritic
geometry due to variation of the branch lengths and diameters, that is the metrical
asymmetry.

(2) The synaptic activation attributed to the dendrites is exclusively excitatory, homoge-
neous in space and constant in time. This configuration is qualified in our book as a
spatially homogeneous tonic activation of the excitatory membrane conductance.

(3) The electrical maps are considered mainly in the steady state. The steady state means
that a given electrical state lasts infinitely, as if the time is frozen. This is ‘long
enough’ to catch the spatial picture of the electrical states and understand the electrical
communication between the dendritic sites. By observing the path profiles of the
membrane voltage, we see in which directions the voltage drops and hence from where
and to where the currents flow over the dendrites. The physical mechanisms of these
communications are basic: in a conductive media, the currents flow between sites
having different voltages (i.e. electrical states) and this difference is modulated by
geometry.

In this context we can summarize our observations and indicate specific and
common roles of different structural characteristics of the dendritic arborizations,
acting as a whole during the generation of electrical activity of a neuron.

Due to its branching structure the dendritic arborization operates as a system
of electrically coupled discrete elements (branches, subtrees). The coupling takes
place at a branching point, which is a piece of space much smaller than the whole
space of any contacting branch. Such a type of electrical coupling is fundamentally
different from that between elements contacting through a wide interface, e.g. like
cardiomyocytes forming the continuous excitable media of the myocardium. Such
a digitization, splitting into discrete elements, forms the basis for individualization
of electrical behaviour of each branch or subtree: the electrical states of sites along
a given discrete branch can differ from those along another. This is due to the
difference in coupling between internal sites within each branch and between the
sites of different branches adjacent to the common branching point.

The size of the dendritic arborizations is defined by the the size of its con-
structive elements: by the lengths and diameters of the branches. The metrical
asymmetry of branching due to difference in size of the branches is responsible for
the difference in electrical load which the coupled branches provide to each other
at the branching point. It is this difference in mutual electrical load that makes
the basis for difference in electrical states between the coupled discrete elements
of the branching dendritic tree. This difference can be smaller or greater, but it
always exists between asymmetrical branches and subtrees. However, one cannot
justifiably state that this difference is significant or insignificant without having a
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clear measure of the significance. At this stage of our knowledge of dendritic func-
tioning, we don’t have such a measure. It is a new horizon opened up in front of us
and we can only assume that derivation of a formal measure of significance of elec-
trical difference between asymmetrical paths may come from further scrutinizing
the geometry-induced features of the discharge patterns.

The complexity of a system is defined by the number of its discrete elements. In
this sense, the dendritic arborization is complex, as it is composed of many branches
and subtrees. They can be in similar or dissimilar states i.e. differ insignificantly
or significantly. As the electrical state of the whole arborization is determined by a
combination of states of the constitutive elements, the complexity and asymmetry
determine together the number of combinations of states of the elements, and
ultimately the diversity of states of the whole arborization. This could be a basis for
the formation of more or less rich repertoires of electrical activity patterns generated
by the whole neuron in which the dendritic arborization is the largest part, not only
as the receiver of the inputs, but also as the generator of the output signal.

14.1 Impact for interpretation of neuronal discharges

During our journey in dendritic space, we have dropped for a while the education in
electrophysiology that we have received and that we have taught our students. First
of all, this concerns the aspects which are based mainly on the data available with
the conventional tools of electrophysiologists, the microelectrode recordings from
a single point in the soma or, in better cases, from a few more points located mainly
in proximal dendrites. According to the dogma, the dendritic synapse acts and
generates local postsynaptic potentials which are transferred to the trigger zone, at
the initial segment. The voltage at the trigger zone does or doesn’t reach threshold
and the neuron does or doesn’t fire the action potential. Electrophysiology deals
with transient temporal events which are described thoroughly and well analyzed,
but fail to explain how a neuron generates the variety of its output discharge patterns.

Now with reference to our preceding accomplishments, old and new concepts
must be put together for providing a comprehensive vision of how time and space
aspects are united in the whole picture of the output discharge patterns of the
neuron. In the dynamic case, the states of different dendritic sites change and the
rates of change are different due to the voltage-dependence of kinetic properties
of many dendritic channels. When one makes snapshots of electrical states at
different moments in time, that is freezing time, the electrical mosaic evolves from
one snapshot to another, but the governing rules of electrical communications based
on geometry remain the same as in the steady state. We believe that, if the observer’s
eye is trained to see the geometry-induced features in the spatial electrical maps
obtained in conditions of spatially homogeneous properties and in steady states,
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this may help a lot in finding the corresponding features in more complex natural
conditions.

14.2 The dancing dendrites

Chapter 13 provides tools for training the observer to look at the time course of
the membrane potential of active dendritic branches during generation of output
discharges. This is a striking experience for an electrophysiologist. From now on,
each time he records action potentials, he will inevitably imagine the electrical
behaviour of the dendrites that are responsible for the temporal events that he
knows so well.

Our videos present animation of some examples of the temporal evolution of
the dendritic patterns of the transmembrane voltages generated by the neuron
during a single cycle of membrane oscillatory activity. The electrical path pro-
files along each branch move about in a fascinating ballet, orchestrated by their
different structural characteristics, acting as a whole during the generation of elec-
trical activity of a neuron. NeuronViewer, developed by Valery Kukushka, is an
interactive tool accompanying our book to play the score of the dendritic music
that generates the output discharge patterns of the neuron. This imaging device
helps to grasp the dendritic signature of the neuronal activity (available at URL
www.cambridge.org/9780521896771). Our work reports some of the mechanisms
that explain the dendritic origin of the variety of patterns of the output discharges.

14.3 Speculation for the future

The memories brought from our travel to dendritic space require revisiting major
aspects of conventional concepts of the neuronal functions and may be thought-
provoking for neuroscientists working in different fields. We can share some of
our speculations concerning further development of biophysics and physiology of
neurons.

14.3.1 The sensitivity function

Particularly, one can speculate about biophysical mechanisms by which the elec-
trical dynamics of the complex asymmetrical branching structure of the dendrites
govern the repertoire of discharge patterns in different neurons, depending on the
intensity of their inputs. One candidate mechanism could be space-dependent sensi-
tivity of the dendritic transfer properties to variation of the membrane conductance,
which may change as a result of both activities induced by synaptic action from
other neurons and generated intrinsically (Korogod et al., 2000; Kulagina et al.,
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2007). This aspect requires a systematic study. A similar problem is considered
in the theory of control systems of different natures. The so-called sensitivity
functions are used as a standard complementary to the transfer functions of a
system and this tool might help in providing exhaustive descriptions of the trans-
fer properties of the neuronal dendrites. Differential parameter sensitivities of the
transfer properties of asymmetrical dendritic paths could be a pre-requisite for
dynamic geometry-dependent reconfiguration of the electrical structure of the den-
dritic arborizations. In this context, it is also worthwhile to study how the sensitivity
depends on the range of variation of electrical parameters. As we have demonstrated
in this book (Chapters 11-13) the mosaic of electrical states of asymmetrical parts
of the dendritic arborization is most diverse when the values of the dendritic mem-
brane conductance are in some intermediate range, which is related to the size of
the arborization. This situation can be termed the ‘mid-conductance state’ by anal-
ogy with the widely used term ‘high-conductance state’. Detailed consideration of
electrical communication between asymmetrical domains of the arborization in the
mid-conductance state can open new perspectives for understanding the structural
pre-requisites for the diversity of discharge patterns of morphologically complex
neurons.

14.3.2 The functional dendritic space

The fixed shapes of dendritic arborizations drawn by anatomists since Ramoén y
Cajal can be revisited in terms of the dynamic functionality of the neuron. If we
accept that the artificial conditions of our simulation mimic different states of
neuronal activity and that neurons are spontaneously active in their networks, the
synaptic background activity must have an impact on the size and shape of the
functional dendritic field.

The spatial reconfiguration of charge transfer effectiveness in active dendritic
arborization opens the question of the pre- and postsynaptic scenarios when the
neuron is bombarded by the synaptic systems. The great majority of the studies
focus upon the synaptic connections. The presynaptic factors, as well as the post-
synaptic membrane receptors are extensively analyzed. Meanwhile the role of the
electrical states of the dendritic membrane per se as the receiving target is rarely
addressed. We suggest that the synaptic afferent systems to single neurons meet
different domains of the dendritic membrane which display different transfer effi-
ciencies at a given time. For example, our results obtained in Purkinje neurons
show spatial dendritic sectors separated by a difference in voltage as high as about
100 mV during a single membrane oscillation (see Chapter 13). As a consequence,
these functional dendritic sectors, which are alternatively turned on and off during
a cycle, may be a plastic device for selecting synaptic inputs.
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14.3.3 Invitation for other journeys in dendritic space

Our book is an attempt to extract some specific structural features that can explain
how a neuron implements the variety of its output discharges patterns. Our wish is
to provide a toolkit for understanding the biophysical mechanisms that explain the
processing and for predicting how different shapes of dendritic arborizations will
generate different output patterns.

Despite the progress made in the last decades, much is in front of us. The combi-
nation of different approaches will bring new complexities and new variability that
characterize various levels, together with new results. The experimental verifica-
tion of our spatial hypothesis requires complementing the conventional approaches
with new tools that provide a full description of the local transmembrane potential
in the dendritic membrane over large regions of the arborization. Cellular imag-
ing with voltage-sensitive dyes acting as a sensor of the local electrical field in
the neuronal membrane have already furnished some results (Gogan et al., 1995;
Zecevic, 1996; Savtchenko et al., 2001; Djurisic et al., 2004; Milojkovic et al.,
2005) and are progressing with better dyes and better optics. Biotechnology will
produce molecular machines that will manipulate the microstructure of the neu-
ronal membrane by drug delivery systems with controlled release (Browne and
Feringa, 2006; Hutzler et al., 2006; Lichtenberger and Fromherz, 2007). Fabri-
cation of controlled dendritic morphologies on micro-arrays (Katz and Grinvald,
2002; Jimbo, 2007) are no longer in the domain of imagination. The interpretation
of the results obtained with each new approach is often puzzling and will require
new hypotheses from new efforts in mathematics, biophysics, engineering and
neurobiology.
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action potentials 7, 8, 29, 45, 46, 173, 178, 179, 185,
199
burst of, 173, 175, 176, 178, 185, 191, 193
doublets 173, 174, 179, 190, 192, 193
ionic channels and 8, 29
quadruplets 173-175, 178, 179
triplets 173, 174, 178, 179, 190, 192
activation and inactivation 41
kinetic variables, see variables: kinetic
active dendrites, see dendrites: active
anatomical data, see morphometrical data
apical dendrite 119-121, 124, 142, 145, 152, 154,
164, 165, 192, 193
area
cross-sectional 48, 52,79, 110
membrane 20, 24, 81, 125
surface, see area: membrane
architecture, dendritic 10

astrobiology 6
asymmetry 19, 83, 93, 102, 121, 133, 136, 142, 145,
164, 189, 199

electrical 83, 93
metrical 20, 21, 95, 96, 99, 102, 111, 113, 121-124,
128, 129, 132, 133, 136, 142146, 150, 152,
154, 156, 171, 180, 188, 194, 198
factor 21
proper 21
ratio 21
topological 19, 125, 137
attenuation, see current: attenuation, voltage:
attenuation
axial current, see core current
axon 3,4,7, 14, 29, 30, 45, 77, 78, 82-87, 90, 93, 103,
120, 130, 173-175, 180-182, 186, 189-191

balance of currents 52
bifurcation 18, 22, 56, 95, 102, 103, 108, 109, 111,
129, 133, 136, 145, 146, 159
angle 17, 20, 95
node 18, 19, 56, 73, 103
point, see bifurcation: node
bioelectricity 37-46, 47
biophysical mechanisms 41, 133, 160, 200, 202

biophysical properties, see biophysical mechanisms
bistability 87, 109, 133135, 168-170
downstate 91, 109, 111, 133, 135, 136, 168-170,

179, 194
upstate 91, 109, 133, 135, 136, 168-171, 179, 180,
194
boundary conditions, see cable equations: boundary
conditions

boundary problem 53, 54
see also cable equations: boundary conditions
branch diameter 54, 100
branch length 17, 21, 129, 146
branching field, see dendritic fields
branching node, see bifurcation
branching patterns 17, 30, 113, 116, 118, 120, 127,
141
bursting, see action potentials: bursts of

cable 47, 59, 66, 77
clamped end 62
infinite 61, 95
see also conductance: characteristic Gy
input conductance 61, 62, 66, 67, 95
leaky end 61
sealed end 62
theory 26, 27, 47-57, 75
cable equations 47, 48-51, 59
additional conditions 53-56
boundary conditions 53, 54, 60, 71, 73, 79, 96, 99,
102
clamped-end 54, 60, 72, 97
leaky-end 54, 61, 62, 66, 72, 73, 97; see also
conductance: leak G,
open-end, see cable equations: boundary
conditions: clamped-end
sealed-end 54, 60, 72, 96
cable term 51, 52
definitional domain 49, 51, 53, 71
initial conditions 53
solutions 60-61, 66
source function 52, 53
calcium 37, 38
currents, see ion channels: calcium
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calcium-activated currents, see ion channels:
calcium-activated
capacitance, see membrane capacitance
capacitive current, see current: capacitive
channel current 43
channel conductance 41
channels, see ion channels
charge
separation in space 38, 47
transfer ratio 65, 67, 81, 152
see also current transfer
clamped-end, see cable equations: boundary
conditions: clamped-end
cluster analysis 146—149
clusters, see electrical clusters
code, see neuronal code
compartmental modeling 28
complexity 1, 4, 6, 21, 23, 25, 26, 28, 77, 113,
121, 127, 146, 159, 160, 178, 179, 190,
199
function 21, 22, 141, 157, 159, 160,
index 125
component
conductance 86, 89, 133, 134
see also membrane conductance
conductivity, see component: conductance
current 39, 4244, 85
concentration
extracellular 39
gradient 8, 37-40
intracellular 37-39
conductance 45, 75
characteristic g, 61, 97, 99
see also cable: input conductance: infinite
ionic, see membrane conductance: ionic
leak G, 54, 66, 73, 88, 96, 97, 98
see also cable equations: boundary conditions:
leaky-end
membrane, see membrane conductance
synaptic, see membrane conductance: synaptic
transfer G;; 57
conductivity, see membrane conductance
connectivity
matrix 18
pattern 4
continuity of voltage, see voltage: continuity
core conductor 47, 52, 79

core current 48, 49, 51-55, 61, 65, 68, 73-75, 79, 80,

82, 86, 91-93, 100, 107-111
increment 83, 87, 89, 91, 92, 103, 104, 107, 109,
110, 131-136, 170
somatofugal 86, 89
somatopetal 65, 86, 103, 135
cortical neurons 119, 164,

current 8, 9, 37-39, 42, 43, 47-49, 51, 52, 56, 57, 59,

63, 65,75,77,79, 82,93, 112
attenuation 56, 57
factor 57
ratio 56
axial, see core current
calcium, see ion channels: calcium
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calcium-activated, see ion channels:
calcium-activated
capacitive 42, 53, 59
conservation, see current conservation law
core, see core current
density 39, 65, 138
per unit membrane area 48, 53, 75, 86-92, 103,
104, 108-110, 112, 131-135, 168, 169, 171
per unit path length 75, 131, 132
external sources 43, 53,
extracellular 53
generator 53
input, see input current
ionic, see ion channels, ion currents
lateral 9, 43, 4749, 52, 53
see also core current
ligand-gated, see ion channels: ligand-gated
local, see membrane current
membrane, see membrane current
potassium, see ion channels: potassium
pump 39, 43
sink of 52, 53
sodium, see ion channels: sodium
source of 52, 53
synaptic, see synaptic currents
total path 75, 82
transfer, see current transfer
voltage-gated, see ion channels: voltage-gated
current conservation law 51, 52, 54-56, 73, 79, 83
current steamlet 53
current transfer 41, 56, 81, 86, 88, 95-99, 109, 141,
176
effectiveness 75, 80, 102-104, 109, 129, 130, 133,
136, 143, 144, 146, 153, 164, 165, 170, 184
from distributed sources 75, 86, 88
over dendrites 65-75
path profiles 71, 141
somatopetal 65, 66, 71, 80, 82, 83,93, 132, 141,
151, 179, 184
ratio 71, 81, 95-99, 102
see also current: attenuation
current—voltage relationship 41, 43, 44, 93
instantaneous 45, 46
linear 44
local 43, 79, 83
nonlinear 31, 44, 45, 46, 83, 87
N-shaped 45, 87
slope of
negative 43, 45, 87, 88, 90, 93, 109, 111, 136
positive 43-46, 83, 84, 87, 90, 91, 93, 106, 107,
109, 130, 136
stationary 43
steady-state, see current—voltage relationship:
stationary

data 17, 22-25, 44
morphometrical, acquisition of 15, 16, 28
decay of voltage, see voltage: attenuation
definitional domain, see cable equations: definitional
domain
dendrites
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active 78, 81, 84-88, 93, 106-108, 132, 174, 179,
180, 182,185,186, 191
asymmetry of, see dendritic arborization: metrical
asymmetry
morphology of 128, 185
see also motoneurons: abducens: morphology,
motoneurons: spinal: morphology, Purkinje
neurons: morphology, pyramidal neurons:
morpholgy
passive 84-87, 90, 92, 93, 107, 108, 129, 130,
132
see also dendritic trees
dendritic arborization 1, 2, 9, 10, 28, 29, 77, 113, 121,
127, 142, 161, 173, 197, 198
2D dendrogram 114-117, 123
see also dendrogram
3D structure 20, 113, 114-117
see also dendritic fields
architecture 10
branching pattern 17
complexity 23, 117, 199
see also complexity
electrical structure, see electrical structure:
arborization
electrical states 31, 180, 197, 199, 201
see also electrical states
metrical asymmetry 123, 194, 201
metrical symmetry 113
reconstructed 22, 23, 127
size 23, 189, 201
see also motoneurons, Purkinje neurons,
pyramidal neurons
denritic cable, see cable
dendritic depolarization, see depolarization
dendritic diameter, see diameter
dendritic domains 21, 47, 95, 138, 156-160, 165-168,
188
dendritic fields 14,117, 161, 166, 168
airway extent of 115, 17, 121
bi-conical 116, 118, 120
composite 120
conical 116
cylindrical 119
electrical maps of 168-171, 186
fan-radiation 116
flat 117, 118
laminar 116
planar, see dendritic fields: flat
spherical 116, 118
dendritic morphology, see dendrites: morphology of
dendritic path 48, 66, 75, 77, 78, 93, 95, 117, 135
distance 20-22, 71, 77, 80, 81, 84-87, 90-92, 95,
99, 101, 103-108, 110, 113, 117, 128-135,
137, 138, 143, 144, 146, 148, 151, 153,
156-159, 163, 165
distribution histogram 22, 122, 123
electrotonic 99
extent 95, 136, 141, 158
electrical structure of, see electrical structure:
dendritic path
length, see length: of dendritic path
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dendritic space 10, 29, 31, 47, 65, 114-118, 120, 161,
162, 173, 197, 199, 200, 202
electrical 29, 161, 162, 164, 180, 197
functional 29, 161, 201
geography of 113-125
dendritic trees, active, see dendrites: active
dendritic topology 19, 20, 30, 125, 127, 136
dendrogram 14, 15, 20, 30, 115, 117, 123, 127, 128,
131, 142-145, 148, 149, 164, 165, 168-170
see also Sholl diagram
electrical maps on 148-150, 165, 169-171
density, see current: density, ion channels: density
depolarization
bistable
high 91, 109, 111, 136, 168, 181
low 91, 109, 111, 135, 168, 181
see also bistability
equilibrium potential 86, 132
steady
heterogeneous 83-88, 90, 107-109, 130-133,
135, 136, 163, 175
homogeneous 91
inhomogeneous, see depolarization: steady:
heterogeneous
longitudinal gradient 85
transient
oscillations 181, 184, 188, 193
waves 173, 181, 184, 188, 193
deterministic chaos 178
diameter 20, 48, 51, 56, 77, 81,89, 95, 100, 111, 112,
120, 161
abrupt change, see diameter: step-wise change
acquisition, see diameter: sampling
as metrical parameter 20, 52, 111, 113, 120, 128,
133
heterogeneous 55, 72, 73,77, 78, 111, 128, 136
homogeneous 21, 55, 66, 71, 75, 77, 103
piece-wise homogeneous, see diameter: step-wise
change
post-step 79, 80, 100
pre-step 79, 80, 100
sampling 23
step-wise change 55, 72, 73, 77, 79, 100, 102, 107,
129, 132, 145
trans-node change 56, 105, 106, 108
uniform, see diameter: homogeneous
distance
airway, see distance: radial
path, see dendritic path: distance
radial 17, 20
distributed parameters 48, 59
see also synaptic inputs: distributed
distributed system 8
driving potential 40, 85, 89, 91, 107, 108, 132, 195
domain, definitional, see cable equations

effective equilibrium potential 41, 42, 84-86, 91,
108,110, 130, 131, 133, 134
electrical activity 173, 198, 200
pattern 173, 189, 192, 199
repertoire 174—179
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electrical coupling 48, 55, 56, 198
conditions of 54-56
current conservation 55; see also current
conservation law
voltage continuity 55; see also voltage: continuity
electric current, see current
electrical bistability, see bistability
electrical clusters 147-149, 164, 165, 167
electrical load 8, 87, 198
electrical profiles 109, 141, 144, 145, 149, 163
bundles 142, 145, 146, 149, 150, 159
degeneracy 111, 154
divergence 136, 142, 154, 156
groups, see electrical profiles: bundles
electrical states 10, 29, 31, 79, 95, 111, 152, 168, 179,
180, 187, 198
dendritic maps of 187, 197
local 77
electrical structure 28, 31, 41, 77, 85
arborization 31, 141-160
cluster type 142
continuum type 142
dendritic path, of 77-94
active 83-93
passive 79-81, 83-87
bifurcation, of 95-111
active 102-111
asymmetrical 102-106, 108
passive 95-107, 111
symmetrical 100-102, 107
branching, see electrical structure: bifurcation
reconfiguration 137, 152, 153, 156-159, 168, 201
tree, see electrical structure: arborization
electro-geometrical coupling 71
at branching point 73, 74
at diameter non-uniformity 72
electrotonic clusters, see electrical clusters
electrotonic structure, see electrical structure
equations
cable, see cable equations
differential 41
additional conditions, see cable equations:
additional conditions
boundary conditions, see cable equations:
boundary conditions
definitional domain, see cable equations:
definitional domain
initial conditions, see cable equations: initial
conditions
ordinary 41
partial 48, 53
equilibrium potential, see Nernst potential
equivalent cylinder 28, 100, 103—-106
evolutionary history 6, 7
excitability 7, 8, 29
extracellular specific resistance 52

finite cable 60-62

firing 10, 178
patterns 29
rate 82
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generators 8, 199
external 43, 53
geometrical parameters, see parameters: geometrical
geometry
dendritic 27, 31, 50, 71, 93, 113, 118, 127, 132,
134, 145, 152, 173, 175, 198, 199
3D (three-dimensional) 13-31, 120, 121, 161
branching 107, 108
global 74
local 28, 30, 133
neuronal 14, 15
reconstructed 29
glutamate-gated channels, see membrane
conductance: AMPA-type, membrane
conductance: NMDA-type
gradient
concentration, of, see concentration: gradient
depolarization, of, see depolarization: steady:
longitudinal gradient
potential, of, see voltage: gradient

high-conductance range 138, 180, 193 201
Hodgkin—Huxley model 47, 83

equations 45
heterogeneity

electrical 80, 180, 198

structural 54, 55, 120, 136, 198

inactivation, see activation and inactivation
infinite cable 60, 61, 63, 71, 95, 99
inputs, see synaptic inputs
input conductance, see cable: input conductance
input current 63, 80, 82, 93
from external source 43, 53
injected 70, 71
stimulating 43, 52
inter-spike intervals 174, 178, 179, 190
inter-burst intervals 178
intracellular calcium 37, 38, 175, 180, 181, 189
ion channels 5, 6, 8, 10, 29, 30, 38, 40, 194, 199
calcium 40, 57, 174, 180, 189
calcium-activated 40, 65, 174, 175, 180, 189
calcium-dependent, see ion channels:
calcium-activated
calcium-sensitive, see ion channels:
calcium-activated
chloride 40
density 83, 175, 197
glutamate-gated 45, 87, 88
leak 175
ligand-gated 5, 40
NMDA 45, 88
sodium 40, 174, 175, 180, 189
inactivating 86, 132, 189
persistent 87
potassium 6, 40, 174, 175, 180, 189
calcium-activated, see ion channels:
calcium-activated
non-inactivating 86
voltage-gated 40, 173-175, 180, 181, 189
voltage-sensitive, see ion channels: voltage-gated
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ion currents
activation of 41
inactivating 174, 175, 189
inactivation of 41
non-inactivating 45, 87, 175
see also ion channels
ion pumps 8, 38-40, 85, 178
ion concentration, see concentration
ion conductance, see ion channels
ion conductivity, see ion channels
I-V relations, see current—voltage relationship

kinetic variables, see variables: kinetic
Kirchhoft’s law 55

labeling 15, 16
A, see length constant
leak conductance
axial 54, 61, 66, 73, 88, 96-98
lateral, see leak conductance: axial
transmembrane 111
leak current, transmembrane 111, 174, 182
length
of axon 77, 103
of cable 66
of dendrites 54, 60, 66, 71, 72, 77, 81, 91, 120,
125
of dendritic branch 56, 97, 98, 99, 107, 113, 117,
129, 133, 146
of dendritic path 75, 78, 87, 88, 95, 99, 104, 107,
109-111, 113, 122125, 129, 131-135, 137,
143-145, 150, 156, 159, 161
length constant 95
ligand-gated channels, see ion channels: ligand-gated
linear cables 57, 63, 66
linear I-V relation, see current—voltage relationship:
linear
load, see electrical load
local current, see membrane current
low-conductance range — 154, 180, 193

magnesium 8
medium-conductance range 154, 180, 193, 201
membrane area 20
membrane capacitance 37, 42, 48, 49, 78, 88, 175,
189
membrane conductance 41, 77, 82, 83, 138, 149, 154,
180, 193, 194, 198, 200, 201
ionic 41
ligand-sensitive, see membrane conductance:
synaptic
leak 111
specific
per unit area 48
per unit length 48
synaptic 45, 108, 110, 134, 189, 190, 194
AMPA-type 189, 190
excitatory 107
NMDA-type 108, 110, 134
voltage-sensitive 45
see also ion channels

membrane conductivity 40, 41, 43, 45, 83-86, 88, 89,
130, 145, 146, 152155, 171, 179, 180, 186
excitatory 104, 130
inactivating sodium 86, 132, 189
non-inactivating potassium 86
partial 41, 42, 84, 85, 89, 92, 110, 131, 133-135
passive leak 186, 189
synaptic 84, 86, 88, 107, 133, 176, 179, 190, 191
AMPA-type 175, 180, 181
NMDA-type 88-92, 110, 134, 135
see also membrane conductance: synaptic
voltage-dependent, see membrane conductivity:
inactivating sodium, membrane conductivity:
non-inactivating
total 40, 84, 85, 89, 91, 92, 108, 110, 131-135
see also ion channels, membrane conductance
membrane current 9, 44, 53, 77, 108
dendritic map of, see motoneurons: abducens,
motneurons: spinal, Purkinje neurons,
pyramidal neurons
inward (in-flowing) 51, 82, 83, 86-88, 91, 107, 109,
135, 136, 169
multicomponent 41, 42
see also effective equilibrium potential
outward (out-flowing) 51, 86, 91, 109
synaptic, see synaptic currents
total 40, 41-46, 83, 85, 88
see also current: density, effective equilibrium
potential
membrane depolarization, see depolarization
membrane permeability, see permeability
membrane potential
equilibrium, see Nernst potential
reversal 44, 82, 85, 88, 135, 175, 176, 191
synaptic 9, 30
see also voltage: transmembrane
membrane resistance 48, 129
model 16, 28, 78, 100, 103, 108, 135, 161, 174, 175,
180, 181
compartmental 28
Hodgkin—Huxley, see Hodgkin—Huxley model
of Purkinje neuron 189
of pyramidal neuron 174-175
morphological noise 22, 23, 25
morphometrical analysis 120
morphometrical data 28
motoneurons
abducens
dendritic map of current 168-170
dendritic map of voltage 142, 151
electrical structure 147-151, 156-160
morphology 115, 119-121, 123, 125, 127,
128, 130
spinal 9
electrical structure 136, 142, 143, 156-160, 167
morphology 116, 121, 123-125

Nernst equation 39
Nernst potential 39, 65
NEURON (software) 124
neuron doctrine 1, 4
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neuronal code 9, 29, 31, 173,
neurons, see motoneurons: abducens, motoneurons:
spinal, Purkinje neurons, pyramidal neurons
NMDA (N-methyl-D-aspartate) 45
synaptic channels, see NMDA: synaptic
conductivity
synaptic conductivity 45, 87-92, 108-110,
133-135, 168
nodes of Ranvier 175, 189
noise, see morphological noise, topological noise

oscillatory potentials 181, 185-188
oscillatory bursting 184

Ohm’s law 49, 51, 54, 61, 75, 79, 80
output discharge 173, 175, 194, 199, 200

parameters
electrical 27, 43, 47,73, 74, 78, 92, 100, 111, 130,
133-136, 201
geometrical 30, 52, 78

metrical 20, 21, 111, 137; diameter, see diameter:

as metrical parameter; length, see length: of
branch, length: of path
topological 17, 19, 32; see also vertex ratio,
terminal/link ratio
sensitivity to changes of, see sensitivity function

partial differential equation, see differential equations:

partial
passive dendrites, see dendrites: passive
passive membrane 31, 79, 83, 85, 108, 141, 150, 163,
169
conductivity 185, 186
resistivity 138, 171
path, dendritic, see dendritic path
path distance, see dendritic path: distance
path length, see length: of dendritic path
pattern
of connectivity, see connectivity: pattern
of discharge
aperiodical 178, 190, 192, 193
periodical 178-181, 190, 193
spatial dendritic signature of 180, 181, 185, 192,
193, 200
quasi-stochastic, see pattern: of discharge:
aperiodical
regular, see pattern: of discharge: periodical
permeability
selective 38, 40
persistent sodium current, see ion channels: sodium:
persistent
phase relationships 184, 186, 189
phase shift 180, 181, 184, 184, 193
piece-wise uniform branch 55, 66—-68
plateau potentials 187
postsynaptic potentials 81, 173, 199, 201
see also membrane potential: synaptic
potassium 37, 38
currents, see ion channels: potassium
potential, see membrane potential
Purkinje neurons
dendritic map of voltage 162, 163, 186
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electrical structure 142, 144, 145, 152-156, 162,
163

morphology 5, 117-119, 121, 122, 124

repertoire of electrical activity 174—189, 194, 201
pyramidal neurons

morphology 2, 5, 116, 118-122, 124, 145,152

dendritic map of voltage 164, 165

electrical structure 142, 144, 152-156, 164, 165

repertoire of electrical activity 189-194

quantitative morphometric data 14—17

rate constants 41, 88
reciprocity of current and voltage transfer 57, 80
reconfiguration of electrical structure, see electrical
structure: reconfiguration
reconstruction 14, 16, 129
computer-aided 17, 22-25
see also morphological noise
repertoire of discharge patterns, see Purkinje neurons:
repertoire of electrical activity, pyramidal
neurons: repertoire of electrical activity
resistance
axial 55, 59, 75
core, see resistance: axial
cytoplasm 48, 52
membrane 48, 129
transfer 57
resistivity
cytoplasm 52, 55, 61, 71, 78, 88, 95, 129, 175
extracellular 52
intracellular, see resistivity: cytoplasm
membrane 71, 78, 95, 129, 136, 138, 154, 156, 157,
171, 185, 194
resting potential 7, 41, 45, 46, 49, 54, 60-62, 72, 83,
88,90, 91, 108, 180, 181
reversal potential, see membrane potential: reversal

sealed-end, see cable equations: boundary conditions:
sealed-end
semi-infinite cable 60, 61
see also cable equations
sensitivity function 159, 168, 200, 201
shape, dendritic 2, 25, 113, 116, 117, 161, 164, 201
diversity 5
hypothesis 1, 4
Sholl diagram 14
sign conventions 38, 49, 52
size, dendritic 113, 121, 136, 152, 153, 189
sodium 37, 38
currents, see ion channels: sodium
spatial-temporal patterns 189
specific membrane capacitance, see capacitance
specific membrane conductance, see conductance
specific membrane resistance, see resistance
spike trains, action potentials: burst of
spikes, see action potentials
stationary current—voltage relationship —
current—voltage relationship: stationary
steady-state current—voltage relationship —
current—voltage relationship: stationary
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steady states, electrical 29, 45, 48, 50, 59, 61, 75, 79,
84, 89, 146, 147, 161, 180, 197, 198
stable 46, 91, 135
structure 1, 8
branching, see structure: dendritic
dendritic 17, 20, 47, 95, 113, 114, 197
electrical, see electrical structure
electrotonic, see electrical structure
neuronal 22, 27, 28
symmetry 19, 20, 116, 118
axial 116
metrical 20, 111
spherical 116
synapses 9, 77, 82, 83, 150, 199
synaptic activation, 79
single-site 78, 150, 151
distributed 78, 81-84, 86-88, 90-92, 104-106, 109,
130-134, 136, 150-152, 173-176, 179-184,
189-191, 193, 198
tonic 31, 81-84, 86-88, 90-92, 104106, 109,
130-134, 136, 150-152, 173-176, 179-184,
189-191, 193, 198
synaptic conductance 31, 45, 82, 84-89, 91, 92,
107-111, 113, 133-135, 168, 175, 176,
179-181, 189-191, 194
synaptic conductivity, see synaptic conductance
synaptic currents 44, 81, 84, 85, 88, 91, 102, 103, 135,
191
excitatory 91
reversal potential, see membrane potential: reversal
through NMDA channels 87, 91
synaptic inputs 9, 10, 31, 111, 113, 117, 150, 161,
166, 167, 173, 201
distributed 29, 83, 90, 93, 111, 129, 131, 150-152,
168, 173, 175, 176, 182, 191
excitatory 84, 90, 109, 131, 151, 176, 182, 191
multiple 81, 93
NMDA-type 168
single 29, 31, 93, 129
synaptic intensity 134,175, 177-181, 190,
192
synaptic potentials 30
reversal 88, 91, 135
synchronization 180

terminal/link ratio 19
time constants 27, 175
tonic synaptic activation, see synaptic activation
topological noise 25
topology, see dendritic topology
transmembrane current, see membrane current
transfer

conductance 57

functions 9, 10, 28, 70, 71

impedance 57
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transfer of current, see current transfer
transfer of voltage, see voltage: transfer

variables
kinetic 41, 88
activation 41
inactivation 41
metrical 20, 78
see also parameters: geometrical: metrical
vertex ratio 19
voltage 8, 9, 47, 48, 59, 173, 179, 186, 199
attenuation 52, 56, 57, 67-70, 79, 81, 83, 146, 148
factor 56
ratio 56
reciprocity 57
continuity 55, 56, 69,73, 74,79, 108
decay, see voltage: attenuation
dendritic map of, see motoneurons: abducens,
motoneurons: spinal, Pukinje neurons,
pyramidal neurons
distribution along dendrites, see voltage:
transmembrane: path profiles
electrotonic 66, 67
see also voltage: transmembrane: path profiles
generator 43, 53
gradient 37
axial 47, 49, 52, 54, 59, 71, 73, 83, 100, 102, 10,
108, 146-149, 164, 193
lateral, see voltage: gradient: axial
input 61, 71, 74
spread
somatofugal 66, 71, 79, 100, 101; see also
voltage: attenuation
time integral 81, 102, 103
transfer 56, 57, 59, 162
over dendrites 59—-63
from distributed sources 82
see also voltage: attenuation, voltage:
transmembrane: path profiles
transient 27, 42, 62, 63, 186
transmembrane 38-44, 48-50, 54, 59-61, 65, 77,
82,93, 188
path profiles of 31, 59, 60, 74, 75, 79-81, 86, 93,
100-102, 132, 133, 146, 147, 150, 152, 162,
164, 179, 188, 198, 201
downstate, see bistability
upstate, see bistability
voltage-gated channels, see ion channels:
voltage-gated
voltage-sensitive channels, see ion channels:
voltage-gated
voltage dependence of membrane conductance 41, 45,
88, 89

weighted sum 42, 85
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